Skip to main content

Two Sides of the Same Coin – Compensatory Proliferation in Regeneration and Cancer

  • Chapter
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1167))

Abstract

Apoptosis has long been regarded as a tumor suppressor mechanism and evasion from apoptosis is considered to be one hallmark of cancer. However, this principle is not always consistent with clinical data which often illustrate a correlation between apoptosis and poor prognosis. Work in the last 15 years has provided an explanation for this apparent paradox. Apoptotic cells communicate with their environment and can produce signals which promote compensatory proliferation of surviving cells. This behavior of apoptotic cells is important for tissue regeneration in several model organisms, ranging from hydra to mammals. However, it may also play an important feature for tumorigenesis and tumor relapse. Several distinct forms of apoptosis-induced compensatory proliferation (AiP) have been identified, many of which involve reactive oxygen species (ROS) and immune cells. One type of AiP, “undead” AiP, in which apoptotic cells are kept in an immortalized state and continuously divide, may have particular relevance for tumorigenesis. Furthermore, given that chemo- and radiotherapy often aim to kill tumor cells, an improved understanding of the effects of apoptotic cells on the tumor and the tumor environment is of critical importance for the well-being of the patient. In this review, we summarize the current knowledge of AiP and focus our attention on recent findings obtained in Drosophila and other model organisms, and relate them to tumorigenesis.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100(1):57–70

    Article  CAS  PubMed  Google Scholar 

  2. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144(5):646–674. https://doi.org/10.1016/j.cell.2011.02.013

    Article  CAS  PubMed  Google Scholar 

  3. Letai AG (2008) Diagnosing and exploiting cancer’s addiction to blocks in apoptosis. Nat Rev Cancer 8(2):121–132. https://doi.org/10.1038/nrc2297

    Article  CAS  PubMed  Google Scholar 

  4. Frey B, Derer A, Scheithauer H, Wunderlich R, Fietkau R, Gaipl US (2016) Cancer cell death-inducing radiotherapy: impact on local tumour control, tumour cell proliferation and induction of systemic anti-tumour immunity. Adv Exp Med Biol 930:151–172. https://doi.org/10.1007/978-3-319-39406-0_7

    Article  CAS  PubMed  Google Scholar 

  5. Dasgupta A, Nomura M, Shuck R, Yustein J (2017) Cancer’s achilles’ heel: apoptosis and necroptosis to the rescue. Int J Mol Sci 18:1422–0067. https://doi.org/10.3390/ijms18010023. LID – E23 [pii] LID – (Electronic))

    Article  CAS  Google Scholar 

  6. Fuchs Y, Steller H (2011) Programmed cell death in animal development and disease. Cell 147(4):742–758. https://doi.org/10.1016/j.cell.2011.10.033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Tait SW, Ichim G, Green DR (2014) Die another way–non-apoptotic mechanisms of cell death. J Cell Sci 127(Pt 10):2135–2144. https://doi.org/10.1242/jcs.093575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Galluzzi L, Vitale I, Aaronson SA, Abrams JM, Adam D, Agostinis P, Alnemri ES, Altucci L, Amelio I, Andrews DW, Annicchiarico-Petruzzelli M, Antonov AV, Arama E, Baehrecke EH, Barlev NA, Bazan NG, Bernassola F, Bertrand MJM, Bianchi K, Blagosklonny MV, Blomgren K, Borner C, Boya P, Brenner C, Campanella M, Candi E, Carmona-Gutierrez D, Cecconi F, Chan FK, Chandel NS, Cheng EH, Chipuk JE, Cidlowski JA, Ciechanover A, Cohen GM, Conrad M, Cubillos-Ruiz JR, Czabotar PE, D’Angiolella V, Dawson TM, Dawson VL, De Laurenzi V, De Maria R, Debatin KM, DeBerardinis RJ, Deshmukh M, Di Daniele N, Di Virgilio F, Dixit VM, Dixon SJ, Duckett CS, Dynlacht BD, El-Deiry WS, Elrod JW, Fimia GM, Fulda S, Garcia-Saez AJ, Garg AD, Garrido C, Gavathiotis E, Golstein P, Gottlieb E, Green DR, Greene LA, Gronemeyer H, Gross A, Hajnoczky G, Hardwick JM, Harris IS, Hengartner MO, Hetz C, Ichijo H, Jaattela M, Joseph B, Jost PJ, Juin PP, Kaiser WJ, Karin M, Kaufmann T, Kepp O, Kimchi A, Kitsis RN, Klionsky DJ, Knight RA, Kumar S, Lee SW, Lemasters JJ, Levine B, Linkermann A, Lipton SA, Lockshin RA, Lopez-Otin C, Lowe SW, Luedde T, Lugli E, MacFarlane M, Madeo F, Malewicz M, Malorni W, Manic G, Marine JC, Martin SJ, Martinou JC, Medema JP, Mehlen P, Meier P, Melino S, Miao EA, Molkentin JD, Moll UM, Munoz-Pinedo C, Nagata S, Nunez G, Oberst A, Oren M, Overholtzer M, Pagano M, Panaretakis T, Pasparakis M, Penninger JM, Pereira DM, Pervaiz S, Peter ME, Piacentini M, Pinton P, Prehn JHM, Puthalakath H, Rabinovich GA, Rehm M, Rizzuto R, Rodrigues CMP, Rubinsztein DC, Rudel T, Ryan KM, Sayan E, Scorrano L, Shao F, Shi Y, Silke J, Simon HU, Sistigu A, Stockwell BR, Strasser A, Szabadkai G, Tait SWG, Tang D, Tavernarakis N, Thorburn A, Tsujimoto Y, Turk B, Vanden Berghe T, Vandenabeele P, Vander Heiden MG, Villunger A, Virgin HW, Vousden KH, Vucic D, Wagner EF, Walczak H, Wallach D, Wang Y, Wells JA, Wood W, Yuan J, Zakeri Z, Zhivotovsky B, Zitvogel L, Melino G, Kroemer G (2018) Molecular mechanisms of cell death: recommendations of the nomenclature committee on cell death 2018. Cell Death Differ 25(3):486–541. https://doi.org/10.1038/s41418-017-0012-4

    Article  PubMed  PubMed Central  Google Scholar 

  9. Jacobson MD, Weil M, Raff MC (1997) Programmed cell death in animal development. Cell 88(3):347–354

    Article  CAS  PubMed  Google Scholar 

  10. Green DR (2011) Means to an end: apoptosis and other cell death mechanisms. Cold Spring Harbor Laboratory Press, Cold Spring harbor

    Google Scholar 

  11. Kerr JF, Wyllie AH, Currie AR (1972) Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 26(4):239–257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Thornberry NA, Lazebnik Y (1998) Caspases: enemies within. Science 281(5381):1312–1316

    Article  CAS  PubMed  Google Scholar 

  13. Parrish AB, Freel CD, Kornbluth S (2013) Cellular mechanisms controlling caspase activation and function. Cold Spring Harb Perspect Biol 5(6). https://doi.org/10.1101/cshperspect.a008672

  14. Ellis HM, Horvitz HR (1986) Genetic control of programmed cell death in the nematode C. elegans. Cell 44(6):817–829

    Article  CAS  PubMed  Google Scholar 

  15. Yuan J, Shaham S, Ledoux S, Ellis HM, Horvitz HR (1993) The C. elegans cell death gene ced-3 encodes a protein similar to mammalian interleukin-1 beta-converting enzyme. Cell 75(4):641–652

    Article  CAS  PubMed  Google Scholar 

  16. Lamkanfi M, Declercq W, Kalai M, Saelens X, Vandenabeele P (2002) Alice in caspase land. A phylogenetic analysis of caspases from worm to man. Cell Death Differ 9(4):358–361. https://doi.org/10.1038/sj/cdd/4400989

    Article  CAS  PubMed  Google Scholar 

  17. Shalini S, Dorstyn L, Dawar S, Kumar S (2015) Old, new and emerging functions of caspases. Cell Death Differ 22(4):526–539. https://doi.org/10.1038/cdd.2014.216

    Article  CAS  PubMed  Google Scholar 

  18. Denton D, Aung-Htut MT, Kumar S (2013) Developmentally programmed cell death in Drosophila. Biochim Biophys Acta 1833(12):3499–3506. https://doi.org/10.1016/j.bbamcr.2013.06.014

    Article  CAS  PubMed  Google Scholar 

  19. Kumar S (2007) Caspase function in programmed cell death. Cell Death Differ 14(1):32–43. https://doi.org/10.1038/sj.cdd.4402060

    Article  CAS  PubMed  Google Scholar 

  20. Pop C, Salvesen GS (2009) Human caspases: activation, specificity, and regulation. J Biol Chem 284(33):21777–21781. https://doi.org/10.1074/jbc.R800084200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Grether ME, Abrams JM, Agapite J, White K, Steller H (1995) The head involution defective gene of Drosophila melanogaster functions in programmed cell death. Genes Dev 9(14):1694–1708

    Article  CAS  PubMed  Google Scholar 

  22. Chen P, Nordstrom W, Gish B, Abrams JM (1996) Grim, a novel cell death gene in Drosophila. Genes Dev 10(14):1773–1782

    Article  CAS  PubMed  Google Scholar 

  23. Wang SL, Hawkins CJ, Yoo SJ, Muller HA, Hay BA (1999) The Drosophila caspase inhibitor DIAP1 is essential for cell survival and is negatively regulated by HID. Cell 98(4):453–463

    Article  CAS  PubMed  Google Scholar 

  24. Yoo SJ, Huh JR, Muro I, Yu H, Wang L, Wang SL, Feldman RM, Clem RJ, Muller HA, Hay BA (2002) Hid, Rpr and Grim negatively regulate DIAP1 levels through distinct mechanisms. Nat Cell Biol 4(6):416–424. https://doi.org/10.1038/ncb793

    Article  CAS  PubMed  Google Scholar 

  25. Goyal L, McCall K, Agapite J, Hartwieg E, Steller H (2000) Induction of apoptosis by Drosophila reaper, hid and grim through inhibition of IAP function. EMBO J 19(4):589–597. https://doi.org/10.1093/emboj/19.4.589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lisi S, Mazzon I, White K (2000) Diverse domains of THREAD/DIAP1 are required to inhibit apoptosis induced by REAPER and HID in Drosophila. Genetics 154(2):669–678

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Xu D, Woodfield SE, Lee TV, Fan Y, Antonio C, Bergmann A (2009) Genetic control of programmed cell death (apoptosis) in Drosophila. Fly (Austin) 3(1):78–90

    Article  CAS  Google Scholar 

  28. Ashkenazi A, Dixit VM (1998) Death receptors: signaling and modulation. Science 281(5381):1305–1308

    Article  CAS  PubMed  Google Scholar 

  29. Igaki T, Kanda H, Yamamoto-Goto Y, Kanuka H, Kuranaga E, Aigaki T, Miura M (2002) Eiger, a TNF superfamily ligand that triggers the Drosophila JNK pathway. EMBO J 21(12):3009–3018. https://doi.org/10.1093/emboj/cdf306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kanda H, Igaki T, Kanuka H, Yagi T, Miura M (2002) Wengen, a member of the Drosophila tumor necrosis factor receptor superfamily, is required for Eiger signaling. J Biol Chem 277(32):28372–28375. https://doi.org/10.1074/jbc.C200324200

    Article  CAS  PubMed  Google Scholar 

  31. Moreno E, Yan M, Basler K (2002) Evolution of TNF signaling mechanisms: JNK-dependent apoptosis triggered by Eiger, the Drosophila homolog of the TNF superfamily. Curr Biol 12(14):1263–1268

    Article  CAS  PubMed  Google Scholar 

  32. Kauppila S, Maaty WS, Chen P, Tomar RS, Eby MT, Chapo J, Chew S, Rathore N, Zachariah S, Sinha SK, Abrams JM, Chaudhary PM (2003) Eiger and its receptor, Wengen, comprise a TNF-like system in Drosophila. Oncogene 22(31):4860–4867. https://doi.org/10.1038/sj.onc.1206715

    Article  CAS  PubMed  Google Scholar 

  33. Andersen DS, Colombani J, Palmerini V, Chakrabandhu K, Boone E, Rothlisberger M, Toggweiler J, Basler K, Mapelli M, Hueber AO, Leopold P (2015) The Drosophila TNF receptor Grindelwald couples loss of cell polarity and neoplastic growth. Nature 522(7557):482–486. https://doi.org/10.1038/nature14298

    Article  CAS  PubMed  Google Scholar 

  34. McEwen DG, Peifer M (2005) Puckered, a Drosophila MAPK phosphatase, ensures cell viability by antagonizing JNK-induced apoptosis. Development 132(17):3935–3946. https://doi.org/10.1242/dev.01949

    Article  CAS  PubMed  Google Scholar 

  35. Bergmann A (2010) The role of ubiquitylation for the control of cell death in Drosophila. Cell Death Differ 17(1):61–67. https://doi.org/10.1038/cdd.2009.70

    Article  CAS  PubMed  Google Scholar 

  36. Kamber Kaya HE, Ditzel M, Meier P, Bergmann A (2017) An inhibitory mono-ubiquitylation of the Drosophila initiator caspase Dronc functions in both apoptotic and non-apoptotic pathways. PLoS Genet 13(2):e1006438. https://doi.org/10.1371/journal.pgen.1006438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Man SM, Kanneganti TD (2016) Converging roles of caspases in inflammasome activation, cell death and innate immunity. Nat Rev Immunol 16(1):7–21. https://doi.org/10.1038/nri.2015.7

    Article  CAS  PubMed  Google Scholar 

  38. Yi CH, Yuan J (2009) The Jekyll and Hyde functions of caspases. Dev Cell 16(1):21–34. https://doi.org/10.1016/j.devcel.2008.12.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Feinstein-Rotkopf Y, Arama E (2009) Can’t live without them, can live with them: roles of caspases during vital cellular processes. Apoptosis 14(8):980–995. https://doi.org/10.1007/s10495-009-0346-6

    Article  PubMed  Google Scholar 

  40. Portela M, Richardson HE (2013) Death takes a holiday – non-apoptotic role for caspases in cell migration and invasion. EMBO Rep 14(2):107–108. https://doi.org/10.1038/embor.2012.224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Connolly PF, Jager R, Fearnhead HO (2014) New roles for old enzymes: killer caspases as the engine of cell behavior changes. Front Physiol 5:149. https://doi.org/10.3389/fphys.2014.00149

    Article  PubMed  PubMed Central  Google Scholar 

  42. Gorelick-Ashkenazi A, Weiss R, Sapozhnikov L, Florentin A, Tarayrah-Ibraheim L, Dweik D, Yacobi-Sharon K, Arama E (2018) Caspases maintain tissue integrity by an apoptosis-independent inhibition of cell migration and invasion. Nat Commun 9(1):2806. https://doi.org/10.1038/s41467-018-05204-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Baena-Lopez LA, Arthurton L, Xu DC, Galasso A (2018) Non-apoptotic caspase regulation of stem cell properties. Semin Cell Dev Biol 82:118–126. https://doi.org/10.1016/j.semcdb.2017.10.034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ravichandran KS, Lorenz U (2007) Engulfment of apoptotic cells: signals for a good meal. Nat Rev Immunol 7(12):964–974. https://doi.org/10.1038/nri2214

    Article  CAS  PubMed  Google Scholar 

  45. Ravichandran KS (2011) Beginnings of a good apoptotic meal: the find-me and eat-me signaling pathways. Immunity 35(4):445–455. https://doi.org/10.1016/j.immuni.2011.09.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Perez-Garijo A, Fuchs Y, Steller H (2013) Apoptotic cells can induce non-autonomous apoptosis through the TNF pathway. elife 2:e01004. https://doi.org/10.7554/eLife.01004

    Article  PubMed  PubMed Central  Google Scholar 

  47. Fogarty CE, Bergmann A (2017) Killers creating new life: caspases drive apoptosis-induced proliferation in tissue repair and disease. Cell Death Differ 24(8):1390–1400. https://doi.org/10.1038/cdd.2017.47

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Perez-Garijo A (2018) When dying is not the end: apoptotic caspases as drivers of proliferation. Semin Cell Dev Biol 82:86–95. https://doi.org/10.1016/j.semcdb.2017.11.036

    Article  CAS  PubMed  Google Scholar 

  49. Mollereau B, Perez-Garijo A, Bergmann A, Miura M, Gerlitz O, Ryoo HD, Steller H, Morata G (2013) Compensatory proliferation and apoptosis-induced proliferation: a need for clarification. Cell Death Differ 20(1):181. https://doi.org/10.1038/cdd.2012.82

    Article  CAS  PubMed  Google Scholar 

  50. Ryoo HD, Bergmann A (2012) The role of apoptosis-induced proliferation for regeneration and cancer. Cold Spring Harb Perspect Biol 4(8):a008797. https://doi.org/10.1101/cshperspect.a008797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Dvorak HF (1986) Tumors: wounds that do not heal. Similarities between tumor stroma generation and wound healing. N Engl J Med 315(26):1650–1659. https://doi.org/10.1056/NEJM198612253152606

    Article  CAS  PubMed  Google Scholar 

  52. Birnbaum KD, Sanchez Alvarado A (2008) Slicing across kingdoms: regeneration in plants and animals. Cell 132(4):697–710. https://doi.org/10.1016/j.cell.2008.01.040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Tanaka EM, Reddien PW (2011) The cellular basis for animal regeneration. Dev Cell 21(1):172–185. https://doi.org/10.1016/j.devcel.2011.06.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Haynie JL, Bryant PJ (1977) The effects of X-rays on the proliferation dynamics of cells in the imaginal wing disc of Drosophila melanogaster. Wilehm Roux Arch Dev Biol 183(2):85–100. https://doi.org/10.1007/BF00848779

    Article  PubMed  Google Scholar 

  55. Taub R (2004) Liver regeneration: from myth to mechanism. Nat Rev Mol Cell Biol 5(10):836–847. https://doi.org/10.1038/nrm1489

    Article  CAS  PubMed  Google Scholar 

  56. Fan Y, Bergmann A (2008) Apoptosis-induced compensatory proliferation. The cell is dead. Long live the cell! Trends Cell Biol 18(10):467–473. https://doi.org/10.1016/j.tcb.2008.08.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Smith-Bolton R (2016) Drosophila imaginal discs as a model of epithelial wound repair and regeneration. Adv Wound Care (New Rochelle) 5(6):251–261. https://doi.org/10.1089/wound.2014.0547

    Article  Google Scholar 

  58. Huh JR, Guo M, Hay BA (2004) Compensatory proliferation induced by cell death in the Drosophila wing disc requires activity of the apical cell death caspase Dronc in a nonapoptotic role. Curr Biol 14(14):1262–1266. https://doi.org/10.1016/j.cub.2004.06.015

    Article  CAS  PubMed  Google Scholar 

  59. Perez-Garijo A, Martin FA, Morata G (2004) Caspase inhibition during apoptosis causes abnormal signalling and developmental aberrations in Drosophila. Development 131(22):5591–5598. https://doi.org/10.1242/dev.01432

    Article  CAS  PubMed  Google Scholar 

  60. Kondo S, Senoo-Matsuda N, Hiromi Y, Miura M (2006) DRONC coordinates cell death and compensatory proliferation. Mol Cell Biol 26(19):7258–7268. https://doi.org/10.1128/MCB.00183-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Wells BS, Yoshida E, Johnston LA (2006) Compensatory proliferation in Drosophila imaginal discs requires Dronc-dependent p53 activity. Curr Biol 16(16):1606–1615. https://doi.org/10.1016/j.cub.2006.07.046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Clem RJ, Fechheimer M, Miller LK (1991) Prevention of apoptosis by a baculovirus gene during infection of insect cells. Science 254(5036):1388–1390

    Article  CAS  PubMed  Google Scholar 

  63. Hay BA, Wolff T, Rubin GM (1994) Expression of baculovirus P35 prevents cell death in Drosophila. Development 120(8):2121–2129

    CAS  PubMed  Google Scholar 

  64. Martin FA, Perez-Garijo A, Morata G (2009) Apoptosis in Drosophila: compensatory proliferation and undead cells. Int J Dev Biol 53(8–10):1341–1347. https://doi.org/10.1387/ijdb.072447fm

    Article  PubMed  Google Scholar 

  65. Fan Y, Wang S, Hernandez J, Yenigun VB, Hertlein G, Fogarty CE, Lindblad JL, Bergmann A (2014) Genetic models of apoptosis-induced proliferation decipher activation of JNK and identify a requirement of EGFR signaling for tissue regenerative responses in Drosophila. PLoS Genet 10(1):e1004131. https://doi.org/10.1371/journal.pgen.1004131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Fogarty CE, Diwanji N, Lindblad JL, Tare M, Amcheslavsky A, Makhijani K, Bruckner K, Fan Y, Bergmann A (2016) Extracellular reactive oxygen species drive apoptosis-induced proliferation via Drosophila macrophages. Curr Biol 26(5):575–584. https://doi.org/10.1016/j.cub.2015.12.064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Smith-Bolton RK, Worley MI, Kanda H, Hariharan IK (2009) Regenerative growth in Drosophila imaginal discs is regulated by Wingless and Myc. Dev Cell 16(6):797–809. https://doi.org/10.1016/j.devcel.2009.04.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Bergantinos C, Corominas M, Serras F (2010) Cell death-induced regeneration in wing imaginal discs requires JNK signalling. Development 137(7):1169–1179. https://doi.org/10.1242/dev.045559

    Article  CAS  PubMed  Google Scholar 

  69. Herrera SC, Martin R, Morata G (2013) Tissue homeostasis in the wing disc of Drosophila melanogaster: immediate response to massive damage during development. PLoS Genet 9(4):e1003446. https://doi.org/10.1371/journal.pgen.1003446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Fan Y, Bergmann A (2008) Distinct mechanisms of apoptosis-induced compensatory proliferation in proliferating and differentiating tissues in the Drosophila eye. Dev Cell 14(3):399–410. https://doi.org/10.1016/j.devcel.2008.01.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Amcheslavsky A, Wang S, Fogarty CE, Lindblad JL, Fan Y, Bergmann A (2018) Plasma membrane localization of apoptotic caspases for non-apoptotic functions. Dev Cell 45(4):450–464 e453. https://doi.org/10.1016/j.devcel.2018.04.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Ryoo HD, Gorenc T, Steller H (2004) Apoptotic cells can induce compensatory cell proliferation through the JNK and the Wingless signaling pathways. Dev Cell 7(4):491–501. https://doi.org/10.1016/j.devcel.2004.08.019

    Article  CAS  PubMed  Google Scholar 

  73. Perez-Garijo A, Shlevkov E, Morata G (2009) The role of Dpp and Wg in compensatory proliferation and in the formation of hyperplastic overgrowths caused by apoptotic cells in the Drosophila wing disc. Development 136(7):1169–1177. https://doi.org/10.1242/dev.034017

    Article  CAS  PubMed  Google Scholar 

  74. Simon R, Aparicio R, Housden BE, Bray S, Busturia A (2014) Drosophila p53 controls Notch expression and balances apoptosis and proliferation. Apoptosis 19(10):1430–1443. https://doi.org/10.1007/s10495-014-1000-5

    Article  CAS  PubMed  Google Scholar 

  75. Shlevkov E, Morata G (2012) A dp53/JNK-dependant feedback amplification loop is essential for the apoptotic response to stress in Drosophila. Cell Death Differ 19(3):451–460. https://doi.org/10.1038/cdd.2011.113

    Article  CAS  PubMed  Google Scholar 

  76. Diwanji N, Bergmann A (2017) The beneficial role of extracellular reactive oxygen species in apoptosis-induced compensatory proliferation. Fly (Austin) 11(1):46–52. https://doi.org/10.1080/19336934.2016.1222997

    Article  Google Scholar 

  77. Diwanji N, Bergmann A (2018) An unexpected friend – ROS in apoptosis-induced compensatory proliferation: implications for regeneration and cancer. Semin Cell Dev Biol 80:74–82. https://doi.org/10.1016/j.semcdb.2017.07.004

    Article  CAS  PubMed  Google Scholar 

  78. Kang Y, Neuman SD, Bashirullah A (2017) Tango7 regulates cortical activity of caspases during reaper-triggered changes in tissue elasticity. Nat Commun 8(1):603. https://doi.org/10.1038/s41467-017-00693-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Bergmann A (2018) Are membranes non-apoptotic compartments for apoptotic caspases? Oncotarget 9(60):31566–31567. https://doi.org/10.18632/oncotarget.25796

    Article  PubMed  PubMed Central  Google Scholar 

  80. Santabarbara-Ruiz P, Lopez-Santillan M, Martinez-Rodriguez I, Binagui-Casas A, Perez L, Milan M, Corominas M, Serras F (2015) ROS-induced JNK and p38 signaling is required for unpaired cytokine activation during Drosophila regeneration. PLoS Genet 11(10):e1005595. https://doi.org/10.1371/journal.pgen.1005595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Santabarbara-Ruiz P, Esteban-Collado J, Perez L, Viola G, Abril JF, Milan M, Corominas M, Serras F (2019) Ask1 and Akt act synergistically to promote ROS-dependent regeneration in Drosophila. PLoS Genet 15(1):e1007926. https://doi.org/10.1371/journal.pgen.1007926

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Worley MI, Setiawan L, Hariharan IK (2012) Regeneration and transdetermination in Drosophila imaginal discs. Annu Rev Genet 46:289–310. https://doi.org/10.1146/annurev-genet-110711-155637

    Article  CAS  PubMed  Google Scholar 

  83. Harris RE, Setiawan L, Saul J, Hariharan IK (2016) Localized epigenetic silencing of a damage-activated WNT enhancer limits regeneration in mature Drosophila imaginal discs. elife 5. https://doi.org/10.7554/eLife.11588

  84. Meserve JH, Duronio RJ (2015) Scalloped and Yorkie are required for cell cycle re-entry of quiescent cells after tissue damage. Development 142(16):2740–2751. https://doi.org/10.1242/dev.119339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Meserve JH, Duronio RJ (2018) Fate mapping during regeneration: cells that undergo compensatory proliferation in damaged Drosophila eye imaginal discs differentiate into multiple retinal accessory cell types. Dev Biol 444(2):43–49. https://doi.org/10.1016/j.ydbio.2018.10.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Galliot B (2012) Hydra, a fruitful model system for 270 years. Int J Dev Biol 56(6–8):411–423. https://doi.org/10.1387/ijdb.120086bg

    Article  CAS  PubMed  Google Scholar 

  87. Chera S, Ghila L, Wenger Y, Galliot B (2011) Injury-induced activation of the MAPK/CREB pathway triggers apoptosis-induced compensatory proliferation in hydra head regeneration. Develop Growth Differ 53(2):186–201. https://doi.org/10.1111/j.1440-169X.2011.01250.x

    Article  CAS  Google Scholar 

  88. Chera S, Ghila L, Dobretz K, Wenger Y, Bauer C, Buzgariu W, Martinou JC, Galliot B (2009) Apoptotic cells provide an unexpected source of Wnt3 signaling to drive hydra head regeneration. Dev Cell 17(2):279–289. https://doi.org/10.1016/j.devcel.2009.07.014

    Article  CAS  PubMed  Google Scholar 

  89. Vriz S, Reiter S, Galliot B (2014) Cell death: a program to regenerate. Curr Top Dev Biol 108:121–151. https://doi.org/10.1016/B978-0-12-391498-9.00002-4

    Article  CAS  PubMed  Google Scholar 

  90. Birkholz TR, Van Huizen AV, Beane WS (2018) Staying in shape: planarians as a model for understanding regenerative morphology. Semin Cell Dev Biol. https://doi.org/10.1016/j.semcdb.2018.04.014

  91. Hwang JS, Kobayashi C, Agata K, Ikeo K, Gojobori T (2004) Detection of apoptosis during planarian regeneration by the expression of apoptosis-related genes and TUNEL assay. Gene 333:15–25. https://doi.org/10.1016/j.gene.2004.02.034

    Article  CAS  PubMed  Google Scholar 

  92. Pirotte N, Stevens AS, Fraguas S, Plusquin M, Van Roten A, Van Belleghem F, Paesen R, Ameloot M, Cebria F, Artois T, Smeets K (2015) Reactive oxygen species in planarian regeneration: an upstream necessity for correct patterning and brain formation. Oxidative Med Cell Longev 2015:392476. https://doi.org/10.1155/2015/392476

    Article  CAS  Google Scholar 

  93. Tseng AS, Adams DS, Qiu D, Koustubhan P, Levin M (2007) Apoptosis is required during early stages of tail regeneration in Xenopus laevis. Dev Biol 301(1):62–69. https://doi.org/10.1016/j.ydbio.2006.10.048

    Article  CAS  PubMed  Google Scholar 

  94. Love NR, Chen Y, Ishibashi S, Kritsiligkou P, Lea R, Koh Y, Gallop JL, Dorey K, Amaya E (2013) Amputation-induced reactive oxygen species are required for successful Xenopus tadpole tail regeneration. Nat Cell Biol 15(2):222–228. https://doi.org/10.1038/ncb2659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Ferreira F, Raghunathan V, Luxardi G, Zhu K, Zhao M (2018) Early redox activities modulate Xenopus tail regeneration. Nat Commun 9(1):4296. https://doi.org/10.1038/s41467-018-06614-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Beck CW, Izpisua Belmonte JC, Christen B (2009) Beyond early development: xenopus as an emerging model for the study of regenerative mechanisms. Dev Dyn 238(6):1226–1248. https://doi.org/10.1002/dvdy.21890

    Article  CAS  PubMed  Google Scholar 

  97. Galliot B, Crescenzi M, Jacinto A, Tajbakhsh S (2017) Trends in tissue repair and regeneration. Development 144(3):357–364. https://doi.org/10.1242/dev.144279

    Article  CAS  PubMed  Google Scholar 

  98. Niethammer P, Grabher C, Look AT, Mitchison TJ (2009) A tissue-scale gradient of hydrogen peroxide mediates rapid wound detection in zebrafish. Nature 459(7249):996–999. https://doi.org/10.1038/nature08119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Romero MMG, McCathie G, Jankun P, Roehl HH (2018) Damage-induced reactive oxygen species enable zebrafish tail regeneration by repositioning of Hedgehog expressing cells. Nat Commun 9(1):4010. https://doi.org/10.1038/s41467-018-06460-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Gauron C, Rampon C, Bouzaffour M, Ipendey E, Teillon J, Volovitch M, Vriz S (2013) Sustained production of ROS triggers compensatory proliferation and is required for regeneration to proceed. Sci Rep 3:2084. https://doi.org/10.1038/srep02084

    Article  PubMed  PubMed Central  Google Scholar 

  101. Li F, Huang Q, Chen J, Peng Y, Roop DR, Bedford JS, Li CY (2010) Apoptotic cells activate the “phoenix rising” pathway to promote wound healing and tissue regeneration. Sci Signal 3(110):ra13. https://doi.org/10.1126/scisignal.2000634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Goessling W, North TE, Loewer S, Lord AM, Lee S, Stoick-Cooper CL, Weidinger G, Puder M, Daley GQ, Moon RT, Zon LI (2009) Genetic interaction of PGE2 and Wnt signaling regulates developmental specification of stem cells and regeneration. Cell 136(6):1136–1147. https://doi.org/10.1016/j.cell.2009.01.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. North TE, Babu IR, Vedder LM, Lord AM, Wishnok JS, Tannenbaum SR, Zon LI, Goessling W (2010) PGE2-regulated wnt signaling and N-acetylcysteine are synergistically hepatoprotective in zebrafish acetaminophen injury. Proc Natl Acad Sci U S A 107(40):17315–17320. https://doi.org/10.1073/pnas.1008209107

    Article  PubMed  PubMed Central  Google Scholar 

  104. Jung Y, Witek RP, Syn WK, Choi SS, Omenetti A, Premont R, Guy CD, Diehl AM (2010) Signals from dying hepatocytes trigger growth of liver progenitors. Gut 59(5):655–665. https://doi.org/10.1136/gut.2009.204354

    Article  CAS  PubMed  Google Scholar 

  105. Nishina T, Komazawa-Sakon S, Yanaka S, Piao X, Zheng DM, Piao JH, Kojima Y, Yamashina S, Sano E, Putoczki T, Doi T, Ueno T, Ezaki J, Ushio H, Ernst M, Tsumoto K, Okumura K, Nakano H (2012) Interleukin-11 links oxidative stress and compensatory proliferation. Sci Signal 5(207):ra5. https://doi.org/10.1126/scisignal.2002056

    Article  CAS  PubMed  Google Scholar 

  106. Sakurai T, He G, Matsuzawa A, Yu GY, Maeda S, Hardiman G, Karin M (2008) Hepatocyte necrosis induced by oxidative stress and IL-1 alpha release mediate carcinogen-induced compensatory proliferation and liver tumorigenesis. Cancer Cell 14(2):156–165. https://doi.org/10.1016/j.ccr.2008.06.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Yonish-Rouach E, Resnitzky D, Lotem J, Sachs L, Kimchi A, Oren M (1991) Wild-type p53 induces apoptosis of myeloid leukaemic cells that is inhibited by interleukin-6. Nature 352(6333):345–347. https://doi.org/10.1038/352345a0

    Article  CAS  PubMed  Google Scholar 

  108. Ichikawa A, Kinoshita T, Watanabe T, Kato H, Nagai H, Tsushita K, Saito H, Hotta T (1997) Mutations of the p53 gene as a prognostic factor in aggressive B-cell lymphoma. N Engl J Med 337(8):529–534. https://doi.org/10.1056/NEJM199708213370804

    Article  CAS  PubMed  Google Scholar 

  109. Moller MB, Gerdes AM, Skjodt K, Mortensen LS, Pedersen NT (1999) Disrupted p53 function as predictor of treatment failure and poor prognosis in B- and T-cell non-Hodgkin’s lymphoma. Clin Cancer Res 5(5):1085–1091

    CAS  PubMed  Google Scholar 

  110. Llambi F, Green DR (2011) Apoptosis and oncogenesis: give and take in the BCL-2 family. Curr Opin Genet Dev 21(1):12–20. https://doi.org/10.1016/j.gde.2010.12.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. de Jong JS, van Diest PJ, Baak JP (2000) Number of apoptotic cells as a prognostic marker in invasive breast cancer. Br J Cancer 82(2):368–373. https://doi.org/10.1054/bjoc.1999.0928

    Article  PubMed  PubMed Central  Google Scholar 

  112. Naresh KN, Lakshminarayanan K, Pai SA, Borges AM (2001) Apoptosis index is a predictor of metastatic phenotype in patients with early stage squamous carcinoma of the tongue: a hypothesis to support this paradoxical association. Cancer 91(3):578–584

    Article  CAS  PubMed  Google Scholar 

  113. Jalalinadoushan M, Peivareh H, Azizzadeh Delshad A (2004) Correlation between apoptosis and histological grade of transitional cell carcinoma of urinary bladder. Urol J 1(3):177–179

    PubMed  Google Scholar 

  114. Sun B, Sun Y, Wang J, Zhao X, Wang X, Hao X (2006) Extent, relationship and prognostic significance of apoptosis and cell proliferation in synovial sarcoma. Eur J Cancer Prev 15(3):258–265. https://doi.org/10.1097/01.cej.0000198896.02185.68

    Article  CAS  PubMed  Google Scholar 

  115. Gregory CD, Pound JD (2010) Microenvironmental influences of apoptosis in vivo and in vitro. Apoptosis 15(9):1029–1049. https://doi.org/10.1007/s10495-010-0485-9

    Article  CAS  PubMed  Google Scholar 

  116. Jager R, Zwacka RM (2010) The enigmatic roles of caspases in tumor development. Cancers (Basel) 2(4):1952–1979. https://doi.org/10.3390/cancers2041952

    Article  CAS  Google Scholar 

  117. Alcaide J, Funez R, Rueda A, Perez-Ruiz E, Pereda T, Rodrigo I, Covenas R, Munoz M, Redondo M (2013) The role and prognostic value of apoptosis in colorectal carcinoma. BMC Clin Pathol 13(1):24. https://doi.org/10.1186/1472-6890-13-24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Huang Q, Li F, Liu X, Li W, Shi W, Liu FF, O’Sullivan B, He Z, Peng Y, Tan AC, Zhou L, Shen J, Han G, Wang XJ, Thorburn J, Thorburn A, Jimeno A, Raben D, Bedford JS, Li CY (2011) Caspase 3-mediated stimulation of tumor cell repopulation during cancer radiotherapy. Nat Med 17(7):860–866. https://doi.org/10.1038/nm.2385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Kurtova AV, Xiao J, Mo Q, Pazhanisamy S, Krasnow R, Lerner SP, Chen F, Roh TT, Lay E, Ho PL, Chan KS (2015) Blocking PGE2-induced tumour repopulation abrogates bladder cancer chemoresistance. Nature 517(7533):209–213. https://doi.org/10.1038/nature14034

    Article  CAS  PubMed  Google Scholar 

  120. Bubici C, Papa S (2014) JNK signalling in cancer: in need of new, smarter therapeutic targets. Br J Pharmacol 171(1):24–37. https://doi.org/10.1111/bph.12432

    Article  CAS  PubMed  Google Scholar 

  121. Tournier C (2013) The 2 faces of JNK signaling in Cancer. Genes Cancer 4(9–10):397–400. https://doi.org/10.1177/1947601913486349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Wagner EF, Nebreda AR (2009) Signal integration by JNK and p38 MAPK pathways in cancer development. Nat Rev Cancer 9(8):537–549. https://doi.org/10.1038/nrc2694

    Article  CAS  PubMed  Google Scholar 

  123. Qiu W, Wang X, Leibowitz B, Yang W, Zhang L, Yu J (2011) PUMA-mediated apoptosis drives chemical hepatocarcinogenesis in mice. Hepatology 54(4):1249–1258. https://doi.org/10.1002/hep.24516

    Article  CAS  PubMed  Google Scholar 

  124. Maeda S, Kamata H, Luo JL, Leffert H, Karin M (2005) IKKbeta couples hepatocyte death to cytokine-driven compensatory proliferation that promotes chemical hepatocarcinogenesis. Cell 121(7):977–990. https://doi.org/10.1016/j.cell.2005.04.014

    Article  CAS  PubMed  Google Scholar 

  125. Kamata H, Honda S, Maeda S, Chang L, Hirata H, Karin M (2005) Reactive oxygen species promote TNFalpha-induced death and sustained JNK activation by inhibiting MAP kinase phosphatases. Cell 120(5):649–661. https://doi.org/10.1016/j.cell.2004.12.041

    Article  CAS  PubMed  Google Scholar 

  126. Luedde T, Beraza N, Kotsikoris V, van Loo G, Nenci A, De Vos R, Roskams T, Trautwein C, Pasparakis M (2007) Deletion of NEMO/IKKgamma in liver parenchymal cells causes steatohepatitis and hepatocellular carcinoma. Cancer Cell 11(2):119–132. https://doi.org/10.1016/j.ccr.2006.12.016

    Article  CAS  PubMed  Google Scholar 

  127. Pagliarini RA, Xu T (2003) A genetic screen in Drosophila for metastatic behavior. Science 302(5648):1227–1231. https://doi.org/10.1126/science.1088474

    Article  CAS  PubMed  Google Scholar 

  128. Brumby AM, Richardson HE (2003) Scribble mutants cooperate with oncogenic Ras or Notch to cause neoplastic overgrowth in Drosophila. EMBO J 22(21):5769–5779. https://doi.org/10.1093/emboj/cdg548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Perez E, Lindblad JL, Bergmann A (2017) Tumor-promoting function of apoptotic caspases by an amplification loop involving ROS, macrophages and JNK in Drosophila. elife 6. https://doi.org/10.7554/eLife.26747

  130. Ogrunc M, Di Micco R, Liontos M, Bombardelli L, Mione M, Fumagalli M, Gorgoulis VG, d’Adda di Fagagna F (2014) Oncogene-induced reactive oxygen species fuel hyperproliferation and DNA damage response activation. Cell Death Differ 21(6):998–1012. https://doi.org/10.1038/cdd.2014.16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Myant KB, Cammareri P, McGhee EJ, Ridgway RA, Huels DJ, Cordero JB, Schwitalla S, Kalna G, Ogg EL, Athineos D, Timpson P, Vidal M, Murray GI, Greten FR, Anderson KI, Sansom OJ (2013) ROS production and NF-kappaB activation triggered by RAC1 facilitate WNT-driven intestinal stem cell proliferation and colorectal cancer initiation. Cell Stem Cell 12(6):761–773. https://doi.org/10.1016/j.stem.2013.04.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Moloney JN, Cotter TG (2018) ROS signalling in the biology of cancer. Semin Cell Dev Biol 80:50–64. https://doi.org/10.1016/j.semcdb.2017.05.023

    Article  CAS  PubMed  Google Scholar 

  133. Bordonaro M, Drago E, Atamna W, Lazarova DL (2014) Comprehensive suppression of all apoptosis-induced proliferation pathways as a proposed approach to colorectal cancer prevention and therapy. PLoS One 9(12):e115068. https://doi.org/10.1371/journal.pone.0115068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Cheng J, Tian L, Ma J, Gong Y, Zhang Z, Chen Z, Xu B, Xiong H, Li C, Huang Q (2015) Dying tumor cells stimulate proliferation of living tumor cells via caspase-dependent protein kinase Cdelta activation in pancreatic ductal adenocarcinoma. Mol Oncol 9(1):105–114. https://doi.org/10.1016/j.molonc.2014.07.024

    Article  CAS  PubMed  Google Scholar 

  135. Donato AL, Huang Q, Liu X, Li F, Zimmerman MA, Li CY (2014) Caspase 3 promotes surviving melanoma tumor cell growth after cytotoxic therapy. J Invest Dermatol 134(6):1686–1692. https://doi.org/10.1038/jid.2014.18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Feng X, Tian L, Zhang Z, Yu Y, Cheng J, Gong Y, Li CY, Huang Q (2015) Caspase 3 in dying tumor cells mediates post-irradiation angiogenesis. Oncotarget 6(32):32353–32367. https://doi.org/10.18632/oncotarget.5898

    Article  PubMed  PubMed Central  Google Scholar 

  137. Feng X, Yu Y, He S, Cheng J, Gong Y, Zhang Z, Yang X, Xu B, Liu X, Li CY, Tian L, Huang Q (2017) Dying glioma cells establish a proangiogenic microenvironment through a caspase 3 dependent mechanism. Cancer Lett 385:12–20. https://doi.org/10.1016/j.canlet.2016.10.042

    Article  CAS  PubMed  Google Scholar 

  138. Hu Q, Peng J, Liu W, He X, Cui L, Chen X, Yang M, Liu H, Liu S, Wang H (2014) Elevated cleaved caspase-3 is associated with shortened overall survival in several cancer types. Int J Clin Exp Pathol 7(8):5057–5070

    PubMed  PubMed Central  Google Scholar 

  139. Mao P, Smith L, Xie W, Wang M (2013) Dying endothelial cells stimulate proliferation of malignant glioma cells via a caspase 3-mediated pathway. Oncol Lett 5(5):1615–1620. https://doi.org/10.3892/ol.2013.1223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Zhang Z, Wang M, Zhou L, Feng X, Cheng J, Yu Y, Gong Y, Zhu Y, Li C, Tian L, Huang Q (2015) Increased HMGB1 and cleaved caspase-3 stimulate the proliferation of tumor cells and are correlated with the poor prognosis in colorectal cancer. J Exp Clin Cancer Res 34:51. https://doi.org/10.1186/s13046-015-0166-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Miles WO, Dyson NJ, Walker JA (2011) Modeling tumor invasion and metastasis in Drosophila. Dis Model Mech 4(6):753–761. https://doi.org/10.1242/dmm.006908

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Rudrapatna VA, Bangi E, Cagan RL (2013) Caspase signalling in the absence of apoptosis drives Jnk-dependent invasion. EMBO Rep 14(2):172–177. https://doi.org/10.1038/embor.2012.217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Hua H, Li M, Luo T, Yin Y, Jiang Y (2011) Matrix metalloproteinases in tumorigenesis: an evolving paradigm. Cell Mol Life Sci 68(23):3853–3868. https://doi.org/10.1007/s00018-011-0763-x

    Article  CAS  PubMed  Google Scholar 

  144. Gdynia G, Grund K, Eckert A, Bock BC, Funke B, Macher-Goeppinger S, Sieber S, Herold-Mende C, Wiestler B, Wiestler OD, Roth W (2007) Basal caspase activity promotes migration and invasiveness in glioblastoma cells. Mol Cancer Res 5(12):1232–1240. https://doi.org/10.1158/1541-7786.MCR-07-0343

    Article  CAS  PubMed  Google Scholar 

  145. Liu YR, Sun B, Zhao XL, Gu Q, Liu ZY, Dong XY, Che N, Mo J (2013) Basal caspase-3 activity promotes migration, invasion, and vasculogenic mimicry formation of melanoma cells. Melanoma Res 23(4):243–253. https://doi.org/10.1097/CMR.0b013e3283625498

    Article  CAS  PubMed  Google Scholar 

  146. Zhao X, Wang D, Zhao Z, Xiao Y, Sengupta S, Xiao Y, Zhang R, Lauber K, Wesselborg S, Feng L, Rose TM, Shen Y, Zhang J, Prestwich G, Xu Y (2006) Caspase-3-dependent activation of calcium-independent phospholipase A2 enhances cell migration in non-apoptotic ovarian cancer cells. J Biol Chem 281(39):29357–29368. https://doi.org/10.1074/jbc.M513105200

    Article  CAS  PubMed  Google Scholar 

  147. Mukai M, Kusama T, Hamanaka Y, Koga T, Endo H, Tatsuta M, Inoue M (2005) Cross talk between apoptosis and invasion signaling in cancer cells through caspase-3 activation. Cancer Res 65(20):9121–9125. https://doi.org/10.1158/0008-5472.CAN-04-4344

    Article  CAS  PubMed  Google Scholar 

  148. Whiteside TL (2008) The tumor microenvironment and its role in promoting tumor growth. Oncogene 27(45):5904–5912. https://doi.org/10.1038/onc.2008.271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Wang M, Zhao J, Zhang L, Wei F, Lian Y, Wu Y, Gong Z, Zhang S, Zhou J, Cao K, Li X, Xiong W, Li G, Zeng Z, Guo C (2017) Role of tumor microenvironment in tumorigenesis. J Cancer 8(5):761–773. https://doi.org/10.7150/jca.17648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Schafer M, Werner S (2008) Cancer as an overhealing wound: an old hypothesis revisited. Nat Rev Mol Cell Biol 9(8):628–638. https://doi.org/10.1038/nrm2455

    Article  CAS  PubMed  Google Scholar 

  151. Mantovani A, Allavena P, Sica A, Balkwill F (2008) Cancer-related inflammation. Nature 454(7203):436–444. https://doi.org/10.1038/nature07205

    Article  CAS  PubMed  Google Scholar 

  152. Balkwill FR, Mantovani A (2012) Cancer-related inflammation: common themes and therapeutic opportunities. Semin Cancer Biol 22(1):33–40. https://doi.org/10.1016/j.semcancer.2011.12.005

    Article  CAS  PubMed  Google Scholar 

  153. Biswas SK, Allavena P, Mantovani A (2013) Tumor-associated macrophages: functional diversity, clinical significance, and open questions. Semin Immunopathol 35(5):585–600. https://doi.org/10.1007/s00281-013-0367-7

    Article  CAS  PubMed  Google Scholar 

  154. Cordero JB, Macagno JP, Stefanatos RK, Strathdee KE, Cagan RL, Vidal M (2010) Oncogenic Ras diverts a host TNF tumor suppressor activity into tumor promoter. Dev Cell 18(6):999–1011. https://doi.org/10.1016/j.devcel.2010.05.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Institute of General Medical Sciences (NIGMS) under award number R35GM118330. The content is solely the responsibility of the authors and does not necessarily represent the official views of the NIH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Bergmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Diwanji, N., Bergmann, A. (2019). Two Sides of the Same Coin – Compensatory Proliferation in Regeneration and Cancer. In: Deng, WM. (eds) The Drosophila Model in Cancer. Advances in Experimental Medicine and Biology, vol 1167. Springer, Cham. https://doi.org/10.1007/978-3-030-23629-8_4

Download citation

Publish with us

Policies and ethics