Skip to main content

A Neuroscience of Dance: Potential for Therapeusis in Neurology

  • Chapter
  • First Online:
Brain and Art

Abstract

Dance possesses favorable effects on the brain and its ability to form connections as well as in its ability to stimulate substances that support neuroplasticity used to treat individuals with many forms of neurodegenerative conditions such as Parkinson’s disease and other neurodegenerative conditions by influencing the integratory function of movement and cognition. Elements of both discrete and rhythmic movements are present in dance, itself a gestural system. Activation patterns are largely consistent with subcortical system activation involved in the timing and coordination of discontinuous movements, and specific cortical systems are activated to support the control of the continuous movements. We conclude that the essential functions fundamental to the dance include the control of equilibrium, posture, and sway which are sensitive to training effects, and that, therefore, dance training has the potential to stabilize and align dancers’ performance via these functions. The roles of individual sensory modalities in multimodal integration, especially relative influences of vision and somatosensation, deserve further study. We conclude that there is potential therapeutic benefit for those with developmental delays, developmental coordination disorders, individuals post-stroke, and those suffering from a plethora of neurodegenerative conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Leisman G. Auditory, visual and spatial aesthetic and artistic training facilitates brain plasticity: the arts as a vehicle for rehabilitation. Funct Neurol Rehabil Ergon. 2012;2(3):251–66.

    Google Scholar 

  2. Leisman G. In: Leisman G, Merrick J, editors. Neuroplasticity in learning and rehabilitation. Nova series in functional neurology, vol. 2. Hauppauge, NY: Nova Scientific Publishers; 2016.

    Google Scholar 

  3. Brown S, Parsons LM. The neuroscience of dance. Sci Am. 2008;299(1):78–83.

    Article  PubMed  Google Scholar 

  4. Cross ES, Hamilton AFDC, Grafton ST. Building a motor simulation de novo: observation of dance by dancers. Neuroimage. 2006;31(3):1257–67.

    Article  PubMed  Google Scholar 

  5. Israely S, Leisman G, Carmeli E. Neuromuscular synergies in motor control in normal and post-stroke individuals. Rev Neurosci. 2018;29(6):593–612. https://doi.org/10.1515/revneuro-2017-0058.

    Article  PubMed  Google Scholar 

  6. Melillo R, Leisman G. Neurobehavioral disorders of childhood: an evolutionary perspective. New York, NY: Springer; 2010.

    Book  Google Scholar 

  7. Hillman CH, Pontifex MB, Raine LB, Castelli DM, Hall EE, Kramer AF. The effect of acute treadmill walking on cognitive control and academic achievement in preadolescent children. Neuroscience. 2009;159(3):1044–54.

    Article  CAS  PubMed  Google Scholar 

  8. Mualem R, Leisman G, Zbedat Y, Ganem S, Mualem O, Amaria M, Kozle A, Khayat-Moughrabi S, Ornai A. The effect of movement on cognitive performance. Front Public Health. 2018;6:100. https://doi.org/10.3389/fpubh.2018.00100.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Ehrsson HH, Geyer S, Naito E. Imagery of voluntary movement of fingers, toes, and tongue activates corresponding body-part-specific motor representations. J Neurophysiol. 2003;90(5):3304–16.

    Article  PubMed  Google Scholar 

  10. Jäncke L, Loose R, Lutz K, Specht K, Shah NJ. Cortical activations during paced finger-tapping applying visual and auditory pacing stimuli. Cogn Brain Res. 2000;10(1-2):51–66.

    Article  Google Scholar 

  11. Penhune VB, Zatorre RJ, Evans AC. Cerebellar contributions to motor timing: a PET study of auditory and visual rhythm reproduction. J Cogn Neurosci. 1998;10(6):752–65.

    Article  CAS  PubMed  Google Scholar 

  12. Sahyoun C, Floyer-Lea A, Johansen-Berg H, Mathews PM. Towards an understanding of gait control: brain activation during the anticipation, preparation, and execution of foot movements. Neuroimage. 2004;21:568–75.

    Article  CAS  PubMed  Google Scholar 

  13. Farnell B. Moving bodies, acting selves. Ann Rev Anthropol. 1999;28:341–73.

    Article  Google Scholar 

  14. Sachs C. World history of the dance. New York, NY: Norton; 1937. Berlin, 1933; English translation.

    Google Scholar 

  15. Appenzeller T. Evolution or revolution. Science. 1998;282:1451–4.

    Article  Google Scholar 

  16. Bramble DM, Lieberman DE. Endurance running and the evolution of homo. Nature. 2004;432:345–52.

    Article  CAS  PubMed  Google Scholar 

  17. Ward CV. Interpreting the posture and locomotion of Australopithecus afarensis: where do we stand? Am J Phys Anthropol. 2002;119(S35):185–215.

    Article  Google Scholar 

  18. Longstaff JS. Re-evaluating Rudolf Laban’s choreutics. Percept Mot Skills. 2000;91:191–210.

    Article  CAS  PubMed  Google Scholar 

  19. Haggard P, Wolpert DM. Disorders of body scheme. In: Freund H-J, Jeannerod M, Hallett M, Leiguarda RC, editors. Higher order motor disorders. Oxford: Oxford University Press; 2005. p. 261–72.

    Google Scholar 

  20. Hutchinson-Guest A. Labanotation: the system of analyzing and recording movement. Philadelphia, PA: Taylor and Francis; 1973.

    Google Scholar 

  21. Brown S, Martinez MJ, Parsons LM. The neural basis of human dance. Cereb Cortex. 2006;16(8):1157–67.

    Article  PubMed  Google Scholar 

  22. Schaal S, Sternad D, Osu R, Kawato M. Rhythmic arm movement is not discrete. Nat Neurosci. 2004;7:1137–44.

    Google Scholar 

  23. Miall RC, Ivry R. Moving to a different beat. Nat Neurosci. 2004;7:1025–6.

    Article  CAS  PubMed  Google Scholar 

  24. Gazzaniga MS. The mind’s past. Berkeley: Univ of California Press; 1998.

    Google Scholar 

  25. Leisman G, Melillo R. The basal ganglia: motor and cognitive relationships in a clinical neurobehavioral context. Rev Neurosci. 2013;24(1):9–25.

    Article  PubMed  Google Scholar 

  26. Leisman G, Braun-Benjamin O, Melillo R. Cognitive-motor interactions of the basal ganglia in development. Front Syst Neurosci. 2014;8:16.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Debaere F, Swinnen SP, Beatse E, Sunaert S, Van Hecke P, Duysens J. Brain areas involved in interlimb coordination: a distributed network. Neuroimage. 2001;14:947–58.

    Article  CAS  PubMed  Google Scholar 

  28. Fukuyama H, Ouchi Y, Matsuzaki S, Nagahama Y, Yamauchi H, Ogawa M, Kimura J, Shibasaki H. Brain functional activity during gait in normal subjects: a SPECT study. Neurosci Lett. 1997;228:183–6.

    Article  CAS  PubMed  Google Scholar 

  29. Schmahmann JD, Doyon JA, Toga AW, Petrides M, Evans AC. MRI atlas of the human cerebellum. San Diego, CA: Academic Press; 2000.

    Google Scholar 

  30. Parsons LM. Exploring the functional neuroanatomy of music performance, perception, and comprehension. In: Peretz I, Zatorre RJ, editors. The cognitive neuroscience of music. New York, NY: Oxford University Press; 2003. p. 247–68.

    Chapter  Google Scholar 

  31. Petacchi A, Laird AR, Fox PT, Bower JM. Cerebellum and auditory function: an ALE meta-analysis of functional neuroimaging studies. Hum Brain Mapp. 2005;25:118–28.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Bower JM, Parsons LM. Rethinking the lesser brain. Sci Am. 2003;289:50–7.

    Article  PubMed  Google Scholar 

  33. Ivry RB, Fiez JA. Cerebellar contributions to cognition and imagery. In: Gazzaniga MS, editor. The new cognitive neurosciences. 2nd ed. Cambridge, MA: MIT Press; 2000. p. 999–1011.

    Google Scholar 

  34. Wolpert DM, Miall RC, Kawato M. Internal models in the cerebellum. Trends Cogn Sci. 1998;2:338–47.

    Article  CAS  PubMed  Google Scholar 

  35. Ivry R. Cerebellar timing systems. In: Schmahmann JD, editor. The cerebellum and cognition. New York, NY: Academic Press; 1997. p. 556–73.

    Google Scholar 

  36. Rao SM, Harrington DL, Haaland KY, Bobholz JA, Cox RW, Binder JR. Distributed neural systems underlying the timing of movements. J Neurosci. 1997;17(14):5528–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Leisman G, Melillo R, Mualem R, Machado C. The effect of music training and production on functional brain organization and cerebral asymmetry. In: Kravchuk T, Groysman A, Soddu C, Colabella E, Leisman G, editors. Art, science and technology, vol. 2012. Milano: Domus Argenia; 2012. p. 133–9.

    Google Scholar 

  38. Parsons LM, Sergent J, Hodges DA, Fox PT. The brain basis of piano Melliloperformance. Neuropsychologia. 2005;43(2):199–215.

    Article  PubMed  Google Scholar 

  39. Ehrsson HH, Naito E, Geyer S, Amunts K, Zilles K, Forssberg H, Roland PE. Simultaneous movements of upper and lower limbs are coordinated by motor representations that are shared by both limbs: a PET study. Eur J Neurosci. 2000;12(9):3385–98.

    Article  CAS  PubMed  Google Scholar 

  40. Dhamala M, Pagnoni G, Wiesenfeld K, Zink CF, Martin M, Berns GS. Neural correlates of the complexity of rhythmic finger tapping. Neuroimage. 2003;20(2):918–26.

    Article  PubMed  Google Scholar 

  41. Miyai I, Tanabe HC, Sase I, Eda H, Oda I, Konishi I, Tsunazawa Y, Suzuki T, Yanagida T, Kubota K. Cortical mapping of gait in humans: a near-infrared spectroscopic topography study. Neuroimage. 2001;14:1186–92.

    Article  CAS  PubMed  Google Scholar 

  42. Luft AR, Smith GV, Forrester L, Whitall J, Macko RF, Hauser T-K, Goldberg AP, Hanley DF. Comparing brain activation associated with isolated upper and lower limb movement across corresponding joints. Hum Brain Mapp. 2002;17:131–40.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Chaminade T, Meltzoff AN, Decety J. An fMRI study of imitation: action representation and body schema. Neuropsychologia. 2005;43:115–27.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Graziano MS, Taylor CS, Moore T, Cooke DF. The cortical control of movement revisited. Neuron. 2002;36:349–62.

    Article  CAS  PubMed  Google Scholar 

  45. Kajal DS, Braun C, Mellinger J, Sacchet MD, Ruiz S, Fetz E, Sitaram R. Learned control of inter‐hemispheric connectivity: effects on bimanual motor performance. Hum Brain Mapp. 2017;38(9):4353–69.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Manca A, Hortobagyi T, Rothwell JC, et al. Neurophysiological adaptations in the untrained side in conjunction with cross-education of muscle strength: a systematic review and meta-analysis. J Appl Physiol. 2018;124:1502. https://doi.org/10.1152/japplphysiol.01016.2017.

    Article  PubMed  Google Scholar 

  47. Kang N, Cauraugh JH. Bilateral synergy as an index of force coordination in chronic stroke. Exp Brain Res. 2017;235(5):1501–9.

    Article  PubMed  Google Scholar 

  48. Karpati FJ, Giacosa C, Foster NE, Penhune VB, Hyde KL. Dance and music share gray matter structural correlates. Brain Res. 2017;1657:62–73.

    Article  CAS  PubMed  Google Scholar 

  49. Grafton ST, Arbib MA, Fadiga L, Rizzolatti G. Localization of grasp representation in human by PET. 2. Observation versus imagination. Exp Brain Res. 1996;112:103–11.

    Article  CAS  PubMed  Google Scholar 

  50. Heiser M, Iacoboni M, Maeda F, Marcus J, Mazziotta JC. The essential role of Broca’s area in imitation. Eur J Neurosci. 2003;17:1123–8.

    Article  PubMed  Google Scholar 

  51. Kilintari M, Papanicolaou AC. Imaging the networks of motor cognition. The Oxford handbook of functional brain imaging in neuropsychology and cognitive neurosciences. New York, NY: Oxford University Press; 2017. p. 319.

    Google Scholar 

  52. Parsons LM, Fox PT, Downs JH, Glass T, Hirsch T, Martin C, Jerabek P, Lancaster JL. Use of implicit motor imagery for visual shape discrimination as revealed by PET. Nature. 1995;375:54–9.

    Article  CAS  PubMed  Google Scholar 

  53. Calvo-Merino B, Glaser DE, Grezes J, Passingham PE, Haggard P. Action observation and acquired motor skills: an fMRI study with expert dancers. Cereb Cortex. 2005;15:1243–9.

    Article  CAS  PubMed  Google Scholar 

  54. Bearss KA, DeSouza JF. Plasticity in damaged multisensory networks. In: Synaptic plasticity. Rijeka: InTech; 2017. p. 111–30.

    Google Scholar 

  55. Chauvignú LA, Belyk M, Brown S. Following during physically-coupled joint action engages motion area MT+/V5. J Integr Neurosci. 2017;16(3):307–18.

    Article  Google Scholar 

  56. Colby CL, Goldberg ME. Space and attention in parietal cortex. Annu Rev Neurosci. 1999;22:319–49.

    Article  CAS  PubMed  Google Scholar 

  57. Hwang EJ, Dahlen JE, Mukundan M, Komiyama T. History-based action selection bias in posterior parietal cortex. Nat Ccommun. 2017;8(1):1242.

    Article  CAS  Google Scholar 

  58. Parsons LM. Superior parietal cortices and varieties of mental rotation. Trends Cogn Sci. 2003;17:515–7.

    Article  Google Scholar 

  59. Berlucchi G, Aglioti S. The body in the brain: neural bases of corporeal awareness. Trends Neurosci. 1997;20:560–4.

    Article  CAS  PubMed  Google Scholar 

  60. Halligan PW, Fink GR, Marshall JC, Vallar G. Spatial cognition: evidence from visual neglect. Trends Cogn Sci. 2003;7:125–33.

    Article  PubMed  Google Scholar 

  61. Wood DK, Chouinard PA, Major AJ, Goodale MA. Sensitivity to biomechanical limitations during postural decision-making depends on the integrity of posterior superior parietal cortex. Cortex. 2017;97:202–20.

    Article  PubMed  Google Scholar 

  62. Burzynska AZ, Finc K, Taylor BK, Knecht AM, Kramer AF. The dancing brain: structural and functional signatures of expert dance training. Front Hum Neurosci. 2017;11:566.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Colby CL, Olson CR. Spatial cognition. In: Squire LR, Bloom FE, McConnell SK, Roberts JL, Spitzer NC, Zigmond MJ, editors. Fundamental neuroscience. 2nd ed. San Diego, CA: Academic Press; 2003. p. 1229–47.

    Google Scholar 

  64. Elliott C. The brain is primarily a visual-spatial processing device: altering visual-spatial cognitive processing via retinal stimulation can treat movement disorders. J Funct Neurol Rehabil Ergon. 2017;7(3):24–38.

    Google Scholar 

  65. Parsons LM. Imagined spatial transformation of one’s hands and feet. Cogn Psychol. 1987;19:178–241.

    Article  CAS  PubMed  Google Scholar 

  66. Garraux G, McKinney C, Wu T, Kansuku K, Nolte G, Hallett M. Shared brain areas but not functional connections controlling movement timing and order. J Neurosci. 2005;25:5290–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Kelly AMC, Garavan H. Human functional neuroimaging of brain changes associated with practice. Cereb Cortex. 2005;15:1089–102.

    Article  PubMed  Google Scholar 

  68. Daprati E, Iosa M, Haggard P. A dance to the music of time: aesthetically-relevant changes in body posture in performing art. PLoS One. 2009;4(3):e5023.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Rein S, Fabian T, Zwipp H, Rammelt S, Weindel S. Postural control and functional ankle stability in professional and amateur dancers. Clin Neurophysiol. 2011;122(8):1602–10.

    Article  PubMed  Google Scholar 

  70. Crotts D, Thompson B, Nahom M, Ryan S, Newton RA. Balance abilities of professional dancers on select balance tests. J Orthoped Sports Phys Ther. 1996;23(1):12–7.

    Article  CAS  Google Scholar 

  71. Chatfield SJ, Krasnow DH, Herman A, Blessing G. A descriptive analysis of kinematic and electromyographic relationships of the core during forward stepping in beginning and expert dancers. J Dance Med Sci. 2007;11(3):9.

    Google Scholar 

  72. Golomer E, Dupui P, Monod H. Sex-linked differences in equilibrium reactions among adolescents performing complex sensorimotor tasks. J Physiol Paris. 1997;91(2):49–55.

    Article  CAS  PubMed  Google Scholar 

  73. Golomer E, Dupui P, Monod H. The effects of maturation on self induced dynamic body sway frequencies of girls performing acrobatics or classical dance. Eur J Appl Physiol Occup Physiol. 1997;76(2):140–4.

    Article  CAS  PubMed  Google Scholar 

  74. Golomer E, Cremieux J, Dupui P, Isableu B, Ohlmann T. Visual contribution to self-induced body sway frequencies and visual perception of male professional dancers. Neurosci Lett. 1999;267(3):189–92.

    Article  CAS  PubMed  Google Scholar 

  75. Bruyneel AV, Mesure S, Paré JC, Bertrand M. Organization of postural equilibrium in several planes in ballet dancers. Neurosci Lett. 2010;485(3):228–32.

    Article  CAS  PubMed  Google Scholar 

  76. Ricotti L, Ravaschio A. Break dance significantly increases static balance in 9 years-old soccer players. Gait Posture. 2011;33(3):462–5.

    Article  PubMed  Google Scholar 

  77. Jola C, Pollick FE, Grosbras MH. Arousal decrease in sleeping beauty: audiences’ neurophysiological correlates to watching a narrative dance performance of two-and-a-half hours. Dance Res. 2011;29(supplement):378–403.

    Article  Google Scholar 

  78. Boucher M. A study on proprioception and peripheral vision in synesthesia and immersion. Leonardo. 2017;50(2):144–51.

    Article  Google Scholar 

  79. Golomer E, Dupui P. Spectral analysis of adult dancers’ sways: sex and interaction vision-proprioception. Int J Neurosci. 2000;105(1-4):15–26.

    Article  CAS  PubMed  Google Scholar 

  80. Ramsay JR, Riddoch MJ. Position-matching in the upper limb: professional ballet dancers perform with outstanding accuracy. Clin Rehabil. 2001;15(3):324–30.

    Article  CAS  PubMed  Google Scholar 

  81. Golomer E, Dupui P, Sereni P, Monod H. The contribution of vision in dynamic spontaneous sways of male classical dancers according to student or professional level. J Physiol Paris. 1999;93(3):233–7.

    Article  CAS  PubMed  Google Scholar 

  82. Hugel F, Cadopi M, Kohler F, Perrin P. Postural control of ballet dancers: a specific use of visual input for artistic purposes. Int J Sports Med. 1999;20(2):86–92.

    Article  CAS  PubMed  Google Scholar 

  83. Ponzo S, Kirsch LP, Fotopoulou A, Jenkinson PM. Balancing body ownership: visual capture of proprioception and affectivity during vestibular stimulation. Neuropsychologia. 2018;11:311–21.

    Article  Google Scholar 

  84. Golomer E, Mbongo F, Toussaint Y, Cadiou M, Israel I. Right hemisphere in visual regulation of complex equilibrium: the female ballet dancers’ experience. Neurol Res. 2010;32(4):409–15.

    Article  PubMed  Google Scholar 

  85. Thullier F, Moufti H. Multi-joint coordination in ballet dancers. Neurosci Lett. 2004;369(1):80–4.

    Article  CAS  PubMed  Google Scholar 

  86. Wilson M, Lim B, Kwon Y. 3-Dimensional kinematic analysis of grand rond de jambe en l’air: skilled versus novice dancers. J Dance Med Sci. 2004;8:108–15.

    Google Scholar 

  87. Krasnow D, Wilmerding MV, Stecyk S, Wyon M, Koutedakis Y. Biomechanical research in dance: a literature review. Med Probl Perform Art. 2011;26(1):3–23.

    PubMed  Google Scholar 

  88. Leonard P, Foxcroft C, Kroukamp T. Are visual-perceptual and visual-motor skills separate abilities? Percept Mot Skills. 1988;67(2):423–6.

    Article  CAS  PubMed  Google Scholar 

  89. Brass M, Heyes C. Imitation: is cognitive neuroscience solving the correspondence problem? Trends Cogn Sci. 2005;9(10):489–95.

    Article  PubMed  Google Scholar 

  90. Rizzolatti G, Craighero L. The mirror-neuron system. Annu Rev Neurosci. 2004;27:169–92.

    Article  CAS  PubMed  Google Scholar 

  91. Karpati FJ, Giacosa C, Foster NE, Penhune VB, Hyde KL. Dance and the brain: a review. Ann N Y Acad Sci. 2015;1337(1):140–6.

    Article  PubMed  Google Scholar 

  92. Krüger B, Bischoff M, Blecker C, Langhanns C, Kindermann S, Sauerbier I, Pilgramm S. Parietal and premotor cortices: activation reflects imitation accuracy during observation, delayed imitation and concurrent imitation. Neuroimage. 2014;100:39–50.

    Article  PubMed  Google Scholar 

  93. Buccino G, Binkofski F, Fink GR, Fadiga L, Fogassi L, Gallese V, Freund HJ. Action observation activates premotor and parietal areas in a somatotopic manner: an fMRI study. Eur J Neurosci. 2001;13(2):400–4.

    CAS  PubMed  Google Scholar 

  94. Buccino G, Vogt S, Ritzl A, Fink GR, Zilles K, Freund HJ, Rizzolatti G. Neural circuits underlying imitation learning of hand actions: an event-related fMRI study. Neuron. 2004;42(2):323–34.

    Article  CAS  PubMed  Google Scholar 

  95. Tachibana A, Noah JA, Bronner S, Ono Y, Onozuka M. Parietal and temporal activity during a multimodal dance video game: an fNIRS study. Neurosci Lett. 2011;503(2):125–30.

    Article  CAS  PubMed  Google Scholar 

  96. Warburton EC. The dance on paper: effect of notation-use on learning and development in dance. J Anthropol Study Hum Mov. 2005;13(3):121.

    Google Scholar 

  97. Al-Dor N. Motor coordination for all: a learning process based on Eshkol-Wachman movement notation (EWMN). International yearbook for research in arts education 3/2015: the wisdom of the many-key issues in arts education. Münster: Waxmann Verlag GmbH; 2015. p. 129.

    Google Scholar 

  98. Cohen NJ, Squire LR. Preserved learning and retention of pattern-analyzing skill in amnesia: dissociation of knowing how and knowing that. Science. 1980;210(4466):207–10.

    Article  CAS  PubMed  Google Scholar 

  99. Leonard CT. The neuroscience of human movement. Mosby: St. Louis, MO; 1998.

    Google Scholar 

  100. Willingham DB, Salidis J, Gabrieli JD. Direct comparison of neural systems mediating conscious and unconscious skill learning. J Neurophysiol. 2002;88(3):1451–60.

    Article  PubMed  Google Scholar 

  101. Brown RM, Robertson EM. Inducing motor skill improvements with a declarative task. Nat Neurosci. 2007;10(2):148.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Squire LR. Declarative and nondeclarative memory: multiple brain systems supporting learning and memory. J Cogn Neurosci. 1992;4(3):232–43.

    Article  CAS  PubMed  Google Scholar 

  103. Kantak SS, Winstein CJ. Learning–performance distinction and memory processes for motor skills: a focused review and perspective. Behav Brain Res. 2012;228(1):219–31.

    Article  PubMed  Google Scholar 

  104. Hagendoorn I. Cognitive dance improvisation: how study of the motor system can inspire dance (and vice versa). Leonardo. 2003;36(3):221–8.

    Article  Google Scholar 

  105. Torrents C, Castañer M, Dinušová M, Anguera MT. Discovering new ways of moving: observational analysis of motor creativity while dancing contact improvisation and the influence of the partner. J Creat Behav. 2010;44(1):53–69.

    Article  Google Scholar 

  106. Fink A, Graif B, Neubauer AC. Brain correlates underlying creative thinking: EEG alpha activity in professional vs. novice dancers. Neuroimage. 2009;46(3):854–62.

    Article  PubMed  Google Scholar 

  107. Verghese J, Lipton RB, Katz MJ, Hall CB, Derby CA, Kuslansky G, Buschke H. Leisure activities and the risk of dementia in the elderly. N Engl J Med. 2003;348(25):2508–16.

    Article  PubMed  Google Scholar 

  108. Hanna JL. Dancing to resist, reduce, and escape stress. In: The Oxford handbook of dance and wellbeing. Oxford: Oxford University Press; 2017. p. 99.

    Google Scholar 

  109. Christensen JF, Cela‐Conde CJ, Gomila A. Not all about sex: neural and biobehavioral functions of human dance. Ann N Y Acad Sci. 2017;1400(1):8–32.

    Article  PubMed  Google Scholar 

  110. Parkinson’s Disease Foundation. Statistics. New York, NY: Parkinson’s Disease Foundation; 2018. Accessed on 1 Nov 2018.

    Google Scholar 

  111. Forno LS. Neuropathology of Parkinson’s disease. J Neuropathol Exp Neurol. 1996;55(3):259–72.

    Article  CAS  PubMed  Google Scholar 

  112. Hausdorff JM, Lowenthal J, Herman T, Gruendlinger L, Peretz C, Giladi N. Rhythmic auditory stimulation modulates gait variability in Parkinson’s disease. Eur J Neurosci. 2007;26(8):2369–75.

    Article  PubMed  Google Scholar 

  113. Sohliya L, Thomas R. Rhythmic auditory stimulation for gait training in persons with unilateral transtibial amputation: a randomized-controlled trial. Ann Phys Rehabil Med. 2018;61:e377.

    Article  Google Scholar 

  114. Thaut MH, Abiru M. Rhythmic auditory stimulation in rehabilitation of movement disorders: a review of current research. Mus Percep. 2010;27(4):263–9.

    Article  Google Scholar 

  115. Sandrini G, Tassorelli C, Berra E, De Icco R. Cues and body-weight-supported (BWS) gait training in Parkinson’s disease. In: Schauer T, Seele T, editors. Advanced technologies for the rehabilitation of gait and balance disorders. New York, NY: Springer; 2018. p. 357–66.

    Chapter  Google Scholar 

  116. Wayne PM, Gagnon MM, Macklin EA, Travison TG, Manor B, Lachman M, Lipsitz LA. The mind body-wellness in supportive housing (Mi-WiSH) study: design and rationale of a cluster randomized controlled trial of Tai Chi in senior housing. Contemp Clin Trials. 2017;60:96–104.

    Article  PubMed  PubMed Central  Google Scholar 

  117. Li F, Harmer P, Fitzgerald K, Eckstrom E, Stock R, Galver J, Maddalozzo G, Batya SS. Tai chi and postural stability in patients with Parkinson’s disease. N Engl J Med. 2012;366(6):511–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Rehfeld K, Lüders A, Hökelmann A, Lessmann V, Kaufmann J, Brigadski T, Müller P, Müller NG. Dance training is superior to repetitive physical exercise in inducing brain plasticity in the elderly. PLoS One. 2018;13(7):e0196636. https://doi.org/10.1371/journal.pone.019663.

    Article  PubMed  PubMed Central  Google Scholar 

  119. Kim SH, Kim M, Ahn YB, Lim HK, Kang SG, Cho JH, et al. Effect of dance exercise on cognitive function in elderly patients with metabolic syndrome: a pilot study. J Sports Sci Med. 2011;10(4):671.

    PubMed  PubMed Central  Google Scholar 

  120. Komulainen P, Lakka TA, Kivipelto M, Hassinen M, Helkala EL, Haapala I, Nissinen A, Rauramaa R. Metabolic syndrome and cognitive function: a population based follow-up study in elderly women. Dement Geriatr Cogn Disord. 2007;23:29–34.

    Article  PubMed  Google Scholar 

  121. Solfrizzi V, Scafato E, Capurso C, D’Introno A, Colacicco AM, Frisardi V, Vendemiale G, Baldereschi M, Crepaldi G, Di Carlo A, Galluzzo L, Gandin C, Inzitari D, Maggi S, Capurso A, Panza F. Metabolic syndrome, mild cognitive impairment, and progression to dementia. The Italian longitudinal study on aging. Neurobiol Aging. 2009;32:1932–41.

    Article  PubMed  Google Scholar 

  122. Yaffe K, Kanaya A, Lindquist K, Simonsick EM, Harris T, Shorr RI, Tylavsky FA, Newman AB. The metabolic syndrome, inflammation, and risk of cognitive decline. JAMA. 2004;292:2237–42.

    Article  CAS  PubMed  Google Scholar 

  123. Hackney ME, Earhart GM. Effects of dance on gait and balance in Parkinson’s disease: a comparison of partnered and nonpartnered dance movement. Neurorehabil Neural Repair. 2010;24(4):384–92.

    Article  PubMed  Google Scholar 

  124. de Natale ER, Paulus KS, Aiello E, Sanna B, Manca A, Sotgiu G, et al. Dance therapy improves motor and cognitive functions in patients with Parkinson’s disease. NeuroRehabilitation. 2017;40(1):141–4.

    Article  PubMed  Google Scholar 

  125. Al-Qudah ZA, Yacoub HA, Souayah N. Disorders of the autonomic nervous system after hemispheric cerebrovascular disorders: an update. J Vasc Interv Neurol. 2015;8(4):43.

    PubMed  PubMed Central  Google Scholar 

  126. Sampaio LMM, Subramaniam S, Arena R, Bhatt T. Does virtual reality-based kinect dance training paradigm improve autonomic nervous system modulation in individuals with chronic stroke? J Casc Interv Neurol. 2016;9(2):21.

    Google Scholar 

  127. Patterson KK, Wong JS, Prout EC, Brooks D. Dance for the rehabilitation of balance and gait in adults with neurological conditions other than Parkinson’s disease: a systematic review. Heliyon. 2018;4(3):e00584.

    Article  PubMed  PubMed Central  Google Scholar 

  128. Shanahan J, Morris ME, Bhriain ON, Saunders J, Clifford AM. Dance for people with Parkinson disease: what is the evidence telling us? Arch Phys Med Rehabil. 2015;96(1):141–53. https://doi.org/10.1016/j.apmr.2014.08.017.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerry Leisman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Leisman, G., Aviv, V. (2020). A Neuroscience of Dance: Potential for Therapeusis in Neurology. In: Colombo, B. (eds) Brain and Art. Springer, Cham. https://doi.org/10.1007/978-3-030-23580-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-23580-2_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-23579-6

  • Online ISBN: 978-3-030-23580-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics