Skip to main content

Voronoi Finite Volumes and Pressure Robust Finite Elements for Electrolyte Models with Finite Ion Sizes

  • Conference paper
  • First Online:
Numerical Geometry, Grid Generation and Scientific Computing

Abstract

Liquid electrolytes—fluids containing electrically-charged ions—occur in electrochemical energy conversion systems, nanofluidic devices, biological tissues and other systems. Numerical modeling provides a valuable tool to understand the strongly coupled nonlinear effects occurring in these systems. This paper reviews a recently developed strategy to simulate electro-osmotic flows with finite ion size constraints, which uses a Voronoi finite volume method to discretize charge distribution and ion transport. It demonstrates the demand for improved automatic mesh generation that is capable to provide problem dependent anisotropic meshes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dreyer, W., Guhlke, C., Müller, R.: Overcoming the shortcomings of the Nernst–Planck model. Phys. Chem. Chem. Phys. 15(19), 7075–7086 (2013)

    Article  Google Scholar 

  2. Landstorfer, M., Guhlke, C., Dreyer, W.: Theory and structure of the metal-electrolyte interface incorporating adsorption and solvation effects. Electrochim. Acta 201, 187–219 (2016)

    Article  Google Scholar 

  3. Fuhrmann, J.: Comparison and numerical treatment of generalised Nernst–Planck models. Comput. Phys. Commun. 196, 166–178 (2015)

    Article  MathSciNet  Google Scholar 

  4. Fuhrmann, J.: A numerical strategy for Nernst–Planck systems with solvation effect. Fuel Cells 16(6), 704–714 (2016)

    Article  Google Scholar 

  5. Linke, A.: On the role of the Helmholtz decomposition in mixed methods for incompressible flows and a new variational crime. Comput. Methods Appl. Mech. Eng. 268, 782–800 (2014)

    Article  MathSciNet  Google Scholar 

  6. John, V., Linke, A., Merdon, C., Neilan, M., Rebholz, L.G.: On the divergence constraint in mixed finite element methods for incompressible flows. SIAM Rev. 59(3), 492–544 (2017)

    Article  MathSciNet  Google Scholar 

  7. Fuhrmann, J., Linke, A., Langmach, H.: A numerical method for mass conservative coupling between fluid flow and solute transport. Appl. Numer. Math. 61(4), 530–553 (2011)

    Article  MathSciNet  Google Scholar 

  8. Fuhrmann, J., Guhlke, C., Linke, A., Merdon, Ch., Müller, R.: Models and numerical methods for electrolyte flows. Preprint 2525, WIAS, Berlin (2018)

    Google Scholar 

  9. Si, H., Gärtner, K., Fuhrmann, J.: Boundary conforming Delaunay mesh generation. Comput. Math. Math. Phys. 50, 38–53 (2010)

    Article  MathSciNet  Google Scholar 

  10. Gajewski, H., Gärtner, K.: On the discretization of van Roosbroeck’s equations with magnetic field. ZAMM 76(5), 247–264 (1996)

    Article  MathSciNet  Google Scholar 

  11. Farrell, P., Rotundo, N., Doan, D.H., Kantner, M., Fuhrmann, J., Koprucki, Th.: Numerical methods for drift-diffusion models. In: Piprek, J. (ed.) Handbook of optoelectronic device modeling and simulation: lasers, modulators, photodetectors, solar cells, and numerical methods, vol. 2, chapter 50, pp. 733–771. CRC Press, Boca Raton (2017)

    Google Scholar 

  12. Dreyer, W., Guhlke, C., Landstorfer, M.: A mixture theory of electrolytes containing solvation effects. Electrochem. Commun. 43, 75–78 (2014)

    Article  Google Scholar 

  13. Scharfetter, D.L., Gummel, H.K.: Large-signal analysis of a silicon Read diode oscillator. IEEE Trans. Electron. Devices 16(1), 64–77 (1969)

    Article  Google Scholar 

  14. Bank, R.E., Rose, D.J., Fichtner, W.: Numerical methods for semiconductor device simulation. SIAM J. Sci. Stat. Comput. 4(3), 416–435 (1983)

    Article  MathSciNet  Google Scholar 

  15. Eymard, R., Gallouët, Th., Herbin, R.: Finite volume methods. In: Handbook of Numerical Analysis, vol. 7, pp. 713–1018. Elsevier, Amsterdam (2000)

    Google Scholar 

  16. John, V.: Finite Element Methods for Incompressible Flow Problems. Springer, Cham (2016)

    Book  Google Scholar 

  17. Schenk, O., Gärtner, K.: Solving unsymmetric sparse systems of linear equations with PARDISO. Future Gener. Comput. Syst. 20(3), 475–487 (2004)

    Article  Google Scholar 

  18. Siwy, Z., Fuliński, A.: Fabrication of a synthetic nanopore ion pump. Phys. Rev. Lett. 89(19), 198103 (2002)

    Article  Google Scholar 

  19. Wolfram, M.T., Burger, M., Siwy, Z.S.: Mathematical modeling and simulation of nanopore blocking by precipitation. J. Phys. Condens. Matter 22(45), 454101 (2010)

    Article  Google Scholar 

  20. Fuhrmann, J., Streckenbach, T., et al.: pdelib. http://pdelib.org (2018)

  21. Shewchuk, J.: Triangle: a two-dimensional quality mesh generator and Delaunay triangulator. http://www.cs.cmu.edu/~quake/triangle.html. Accessed 01 Jan 2017

Download references

Acknowledgements

The research described in this paper has been supported by the German Federal Ministry of Education and Research Grant 03EK3027D (Network “Perspectives for Rechargeable Magnesium-Air batteries”) and Einstein Foundation Berlin within the Matheon Project CH11 “Sensing with Nanopores”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jürgen Fuhrmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Fuhrmann, J., Guhlke, C., Linke, A., Merdon, C., Müller, R. (2019). Voronoi Finite Volumes and Pressure Robust Finite Elements for Electrolyte Models with Finite Ion Sizes. In: Garanzha, V., Kamenski, L., Si, H. (eds) Numerical Geometry, Grid Generation and Scientific Computing. Lecture Notes in Computational Science and Engineering, vol 131. Springer, Cham. https://doi.org/10.1007/978-3-030-23436-2_5

Download citation

Publish with us

Policies and ethics