Skip to main content

Optimal Control of a Delayed Hepatitis B Viral Infection Model with DNA-Containing Capsids and Cure Rate

  • Chapter
  • First Online:
Trends in Biomathematics: Mathematical Modeling for Health, Harvesting, and Population Dynamics

Abstract

We present in this paper a delay-differential equation model that describes the interactions between hepatitis B virus (HBV) with DNA-containing capsids and liver cells (hepatocytes). Both the treatments, the intracellular delay and the cure rate of infected cells, are incorporated into the model. The first treatment represents the efficiency of drug treatment in preventing new infections, whereas the second stands for the efficiency of drug treatment in inhibiting viral production. Existence for the optimal control pair is established, Pontryagin’s maximum principle is used to characterize these two optimal controls. The optimality system is derived and solved numerically using the forward and backward difference approximation. Finally, numerical simulations are established to show the role of optimal therapy in controlling viral replication.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. S.M. Ciupe, R.M. Ribeiro, P.W. Nelson, A.S. Perelson, Modeling the mechanisms of acute hepatitis B virus infection. J. Theor. Biol. 247(1), 23–35 (2007)

    Article  MathSciNet  Google Scholar 

  2. L. Min, Y. Su, Y. Kuang, Mathematical analysis of a basic virus infection model with application to HBV infection. Rocky Mt. J. Math. 38, 1573–1585 (2008)

    Article  MathSciNet  Google Scholar 

  3. M.A. Nowak, S. Bonhoeffer, A.M. Hill, R. Boehme, H.C. Thomas, H. McDade, Viral dynamics in hepatitis B virus infection. Proc. Natl. Acad. Sci. 93(9), 4398–4402 (1996)

    Article  Google Scholar 

  4. K. Wang, A. Fan, A. Torres, Global properties of an improved hepatitis B virus model. Nonlinear Anal. Real World Appl. 11(4), 3131–3138 (2010)

    Article  MathSciNet  Google Scholar 

  5. K. Manna, S.P. Chakrabarty, Chronic hepatitis B infection and HBV DNA-containing capsids: modeling and analysis’. Commun. Nonlinear Sci. Numer. Simul. 22, 383–395 (2015)

    Article  MathSciNet  Google Scholar 

  6. K. Manna, S.P. Chakrabarty, Global stability and a non-standard finite difference scheme for a diffusion driven HBV model with capsids’. J. Differ. Equ. Appl. 21, 918–933 (2015)

    Article  MathSciNet  Google Scholar 

  7. K. Manna, S.P. Chakrabarty, Global stability of one and two discrete delay models for chronic hepatitis B infection with HBV DNA-containing capsids’. Comput. Appl. Math. 36, 525–536 (2017)

    Article  MathSciNet  Google Scholar 

  8. V. Bruss, Envelopment of the hepatitis B virus nucleocapsid. Virus Res. 106, 199–209 (2004)

    Article  Google Scholar 

  9. D. Ganem, A.M. Prince, Hepatitis B virus infection: natural history and clinical consequences. N. Engl. J. Med. 350, 1118–1129 (2004)

    Article  Google Scholar 

  10. J. Danane, A. Meskaf, K. Allali, Optimal control of a delayed hepatitis B viral infection model with HBV DNA-containing capsids and CTL immune response. Optimal Control Appl. Methods 39(3), 1262-1272 (2018)

    Article  MathSciNet  Google Scholar 

  11. K. Hattaf, N. Yousfi, Dynamics of HIV infection model with therapy and cure rate. Int. J. Tomogr. Stat. 16(11), 74-80 (2011)

    MATH  Google Scholar 

  12. X. Zhou, X. Song, X. Shi, A differential equation model of HIV infection of CD4+ T-cells with cure rate. J. Math. Anal. Appl. 342,(2), 1342–1355 (2008)

    Google Scholar 

  13. W.H. Fleming, R.W. Rishel, Deterministic and Stochastic Optimal Control (Springer, New York, 1975)

    Book  Google Scholar 

  14. D.L. Lukes Differential Equations: Classical to Controlled. Mathematics in Science and Engineering (Academic Press, New York, 1982), p. 162

    Google Scholar 

  15. L. Göllmann, D. Kern, H. Maurer, Optimal control problems with delays in state and control variables subject to mixed control-state constraints. Optimal Control Appl. Methods 30, 341–365 (2009)

    Article  MathSciNet  Google Scholar 

  16. K. Hattaf, N. Yousfi, Optimal control of a delayed HIV infection model with immune response using an efficient numerical method. ISRN Biomath. 2012 (2012). https://doi.org/10.5402/2012/215124

  17. H. Laarabi, A. Abta, K. Hattaf, Optimal control of a delayed SIRS epidemic model with vaccination and treatment. Acta Biotheor. 63(2), 87–97 (2015)

    Article  Google Scholar 

  18. L. Chen, K. Hattaf, J. Sun, Optimal control of a delayed SLBS computer virus model. Phys. A 427, 244–250 (2015)

    Article  MathSciNet  Google Scholar 

  19. K. Manna, Global properties of a HBV infection model with HBV DNA-containing capsids and CTL immune response. Int. J. Appl. Comput. Math. (2016). https://doi.org/10.1007/s40819-016-0205-4

  20. A. Meskaf, K. Allali, Y. Tabit. Optimal control of a delayed hepatitis B viral infection model with cytotoxic T-lymphocyte and antibody responses. Int. J. Dyn. Control (2016). https://doi.org/10.1007/s40435-016-0231-4

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Meskaf, A., Allali, K. (2019). Optimal Control of a Delayed Hepatitis B Viral Infection Model with DNA-Containing Capsids and Cure Rate. In: Mondaini, R. (eds) Trends in Biomathematics: Mathematical Modeling for Health, Harvesting, and Population Dynamics. Springer, Cham. https://doi.org/10.1007/978-3-030-23433-1_2

Download citation

Publish with us

Policies and ethics