Skip to main content

Current Status of Stem Cell Transplantation for Autoimmune Diseases

  • Chapter
  • First Online:
Stem Cell Transplantation for Autoimmune Diseases and Inflammation

Part of the book series: Stem Cells in Clinical Applications ((SCCA))

  • 473 Accesses

Abstract

Autoimmune diseases (ADs) are common conditions of human health. These diseases can significantly reduce the patients’ quality of life. Although most autoimmune diseases can be controlled by certain immunosuppressive drugs, after long-term treatment, the therapeutic efficacy of these drugs can be significantly decreased while side effects may be increased. Recent reports have shown that stem cell therapy could improve the symptoms of ADs. Both hematopoietic stem cells (HSCs) and mesenchymal stem cells (MSCs) have been evaluated for the treatment of ADs in both animal models and clinical trials. While HSC transplantation (HSCT) can replace the immune system via autologous HSCT or allogeneic HSCT, MSC transplantation (MSCT) can improve ADs by other mechanisms which modulate the host’s immune system to repair the injured tissues via secreted factors. This chapter reviews and highlights recent therapeutic approaches and, particularly, the efficacy of stem cell therapy in AD treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AD:

Autoimmune disease

ADSC:

Adipose-derived stem cell

BM:

Bone marrow

BUN:

Blood urea nitrogen

CD:

Crohn’s disease

CDAI:

Crohn’s Disease Activity Index

CYC:

Cyclophosphamide

G-CSF:

Granulocyte-colony stimulating factor

GvHD:

Graft-versus-host disease

HAQ:

Health Assessment Questionnaire

HSC:

Hematopoietic stem cell

HSCT:

Hematopoietic stem cell transplantation

IL:

Interleukin

IP:

Intraperitoneal injection

IV:

Intravenous infusion

mRSS:

Modified Rodnan skin score

MS:

Multiple sclerosis

MSC:

Mesenchymal stem cell

MSCT:

Mesenchymal stem cell transplantation

RA:

Rheumatoid arthritis

SC:

Stem cells

SLE:

Systemic lupus erythematosus

SLEDAI:

SLE disease activity index

SSc:

Systemic sclerosis

SVF:

Stromal vascular fraction

Th:

T helper

Treg:

Regulatory T cells

UC:

Umbilical cord

References

  1. Report, N.I.o.H.A.D.C.C. Bethesda, MD: The Institutes; 2002.

    Google Scholar 

  2. Jacobson DL, et al. Epidemiology and estimated population burden of selected autoimmune diseases in the United States. Clin Immunol Immunopathol. 1997;84(3):223–43.

    Article  CAS  PubMed  Google Scholar 

  3. Whitacre CC. Sex differences in autoimmune disease. Nat Immunol. 2001;2(9):777–80.

    Article  CAS  PubMed  Google Scholar 

  4. Jantunen E, Myllykangas-Luosujarvi R. Stem cell transplantation for treatment of severe autoimmune diseases: current status and future perspectives. Bone Marrow Transplant. 2000;25(4):351–6.

    Article  CAS  PubMed  Google Scholar 

  5. Wiesik-Szewczyk E, et al. Target therapies in systemic lupus erythematosus: current state of the art. Mini Rev Med Chem. 2010;10(10):956–65.

    Article  CAS  PubMed  Google Scholar 

  6. Kamen DL. Environmental influences on systemic lupus erythematosus expression. Rheum Dis Clin. 2014;40(3):401–12.

    Article  Google Scholar 

  7. Molokhia M, McKeigue P. Systemic lupus erythematosus: genes versus environment in high risk populations. Lupus. 2006;15(11):827–32.

    Article  CAS  PubMed  Google Scholar 

  8. Parks CG, et al. Understanding the role of environmental factors in the development of systemic lupus erythematosus. Best Pract Res Clin Rheumatol. 2017;31(3):306–20.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Brand O, Gough S, Heward J. HLA, CTLA-4 and PTPN22: the shared genetic master-key to autoimmunity? Expert Rev Mol Med. 2005;7(23):1–15.

    Article  PubMed  Google Scholar 

  10. Eriksson D, et al. Common genetic variation in the autoimmune regulator (AIRE) locus is associated with autoimmune Addison’s disease in Sweden. Sci Rep. 2018;8(1):8395.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Yang S-H, et al. The molecular basis of immune regulation in autoimmunity. Clin Sci. 2018;132(1):43–67.

    Article  CAS  Google Scholar 

  12. Wahren-Herlenius M, Dörner T. Immunopathogenic mechanisms of systemic autoimmune disease. Lancet. 2013;382(9894):819–31.

    Article  CAS  PubMed  Google Scholar 

  13. Bolon B. Cellular and molecular mechanisms of autoimmune disease. Toxicol Pathol. 2012;40(2):216–29.

    Article  CAS  PubMed  Google Scholar 

  14. Atassi MZ, et al. Molecular mechanisms of autoimmunity. Autoimmunity. 2008;41(2):123–32.

    Article  CAS  PubMed  Google Scholar 

  15. Kamradt T, Mitchison NA. Tolerance and autoimmunity. N Engl J Med. 2001;344(9):655–64.

    Article  CAS  PubMed  Google Scholar 

  16. Bach J-F. Immunosuppressive therapy of autoimmune diseases. Trends Pharmacol Sci. 1993;14(5):213–6.

    Article  CAS  PubMed  Google Scholar 

  17. Chandrashekara S. The treatment strategies of autoimmune disease may need a different approach from conventional protocol: a review. Indian J Pharmacol. 2012;44(6):665.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ogawa M, LaRue AC, Mehrotra M. Hematopoietic stem cells are pluripotent and not just “hematopoietic”. Blood Cells Mol Dis. 2013;51(1):3–8.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Wagers AJ, Weissman IL. Plasticity of adult stem cells. Cell. 2004;116(5):639–48.

    Article  CAS  PubMed  Google Scholar 

  20. Herzog EL, Chai L, Krause DS. Plasticity of marrow-derived stem cells. Blood. 2003;102(10):3483–93.

    Article  CAS  PubMed  Google Scholar 

  21. Caplan AI. Mesenchymal stem cells. J Orthop Res. 1991;9(5):641–50.

    Article  CAS  PubMed  Google Scholar 

  22. Jiang Y, et al. Pluripotency of mesenchymal stem cells derived from adult marrow. Nature. 2002;418(6893):41.

    Article  CAS  PubMed  Google Scholar 

  23. Caplan AI, Dennis JE. Mesenchymal stem cells as trophic mediators. J Cell Biochem. 2006;98(5):1076–84.

    Article  CAS  PubMed  Google Scholar 

  24. Corcione A, et al. Human mesenchymal stem cells modulate B-cell functions. Blood. 2006;107(1):367–72.

    Article  CAS  PubMed  Google Scholar 

  25. Bartholomew A, et al. Mesenchymal stem cells suppress lymphocyte proliferation in vitro and prolong skin graft survival in vivo. Exp Hematol. 2002;30(1):42–8.

    Article  PubMed  Google Scholar 

  26. Ford CE, et al. Cytological identification of radiation-chimaeras. Nature. 1956;177(4506):452–4.

    Article  CAS  PubMed  Google Scholar 

  27. Becker AJ, Mc CE, Till JE. Cytological demonstration of the clonal nature of spleen colonies derived from transplanted mouse marrow cells. Nature. 1963;197:452–4.

    Article  CAS  PubMed  Google Scholar 

  28. Morstyn G, Nicola NA, Metcalf D. Purification of hemopoietic progenitor cells from human marrow using a fucose-binding lectin and cell sorting. Blood. 1980;56(5):798–805.

    CAS  PubMed  Google Scholar 

  29. Sutherland HJ, et al. Functional characterization of individual human hematopoietic stem cells cultured at limiting dilution on supportive marrow stromal layers. Proc Natl Acad Sci U S A. 1990;87(9):3584–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Sutherland HJ, et al. Characterization and partial purification of human marrow cells capable of initiating long-term hematopoiesis in vitro. Blood. 1989;74(5):1563–70.

    CAS  PubMed  Google Scholar 

  31. Bhatia M, et al. A newly discovered class of human hematopoietic cells with SCID-repopulating activity. Nat Med. 1998;4(9):1038–45.

    Article  CAS  PubMed  Google Scholar 

  32. Guo Y, Lubbert M, Engelhardt M. CD34- hematopoietic stem cells: current concepts and controversies. Stem Cells. 2003;21(1):15–20.

    Article  CAS  PubMed  Google Scholar 

  33. Doi H, et al. Pluripotent hemopoietic stem cells are c-kit<low. Proc Natl Acad Sci U S A. 1997;94(6):2513–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Oliveira M, et al. Does ex vivo CD34+ positive selection influence outcome after autologous hematopoietic stem cell transplantation in systemic sclerosis patients? Bone Marrow Transplant. 2016;51(4):501.

    Article  CAS  PubMed  Google Scholar 

  35. Moore J, et al. A pilot randomized trial comparing CD34-selected versus unmanipulated hemopoietic stem cell transplantation for severe, refractory rheumatoid arthritis. Arthritis Rheum. 2002;46(9):2301–9.

    Article  CAS  PubMed  Google Scholar 

  36. Ayano M, et al. CD34-selected versus unmanipulated autologous haematopoietic stem cell transplantation in the treatment of severe systemic sclerosis: a post hoc analysis of a phase I/II clinical trial conducted in Japan. Arthritis Res Ther. 2019;21(1):30.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Burt RK, et al. Effect of disease stage on clinical outcome after syngeneic bone marrow transplantation for relapsing experimental autoimmune encephalomyelitis. Blood. 1998;91(7):2609–16.

    CAS  PubMed  Google Scholar 

  38. Karussis DM, et al. Prevention and reversal of adoptively transferred, chronic relapsing experimental autoimmune encephalomyelitis with a single high dose cytoreductive treatment followed by syngeneic bone marrow transplantation. J Clin Invest. 1993;92(2):765–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Pestronk A, et al. Combined short-term immunotherapy for experimental autoimmune myasthenia gravis. Ann Neurol. 1983;14(2):235–41.

    Article  CAS  PubMed  Google Scholar 

  40. van Bekkum DW, et al. Regression of adjuvant-induced arthritis in rats following bone marrow transplantation. Proc Natl Acad Sci U S A. 1989;86(24):10090–4.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Kamiya M, et al. Effective treatment of mice with type II collagen induced arthritis with lethal irradiation and bone marrow transplantation. J Rheumatol. 1993;20(2):225–30.

    CAS  PubMed  Google Scholar 

  42. Beilhack GF, et al. Purified allogeneic hematopoietic stem cell transplantation blocks diabetes pathogenesis in NOD mice. Diabetes. 2003;52(1):59–68.

    Article  CAS  PubMed  Google Scholar 

  43. Ikehara S. Treatment of autoimmune diseases by hematopoietic stem cell transplantation. Exp Hematol. 2001;29(6):661–9.

    Article  CAS  PubMed  Google Scholar 

  44. Smith-Berdan S, et al. Reversal of autoimmune disease in lupus-prone New Zealand black/New Zealand white mice by nonmyeloablative transplantation of purified allogeneic hematopoietic stem cells. Blood. 2007;110(4):1370–8.

    Article  CAS  PubMed  Google Scholar 

  45. Tyndall A, et al. Treatment of systemic sclerosis with autologous haemopoietic stem cell transplantation. Lancet. 1997;349(9047):254.

    Article  CAS  PubMed  Google Scholar 

  46. Snowden JA, et al. Evolution, trends, outcomes, and economics of hematopoietic stem cell transplantation in severe autoimmune diseases. Blood Adv. 2017;1(27):2742–55.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Gratwohl A, et al. Autologous hematopoietic stem cell transplantation for autoimmune diseases. Bone Marrow Transplant. 2005;35(9):869.

    Article  CAS  PubMed  Google Scholar 

  48. Farge D, et al. Autologous hematopoietic stem cell transplantation for autoimmune diseases: an observational study on 12 years’ experience from the European Group for Blood and Marrow Transplantation Working Party on Autoimmune Diseases. Haematologica. 2010;95(2):284–92.

    Article  PubMed  Google Scholar 

  49. Farge D, et al. Autologous stem cell transplantation in the treatment of systemic sclerosis: report from the EBMT/EULAR registry. Ann Rheum Dis. 2004;63(8):974–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Burt RK, et al. Autologous non-myeloablative haemopoietic stem-cell transplantation compared with pulse cyclophosphamide once per month for systemic sclerosis (ASSIST): an open-label, randomised phase 2 trial. Lancet. 2011;378(9790):498–506.

    Article  CAS  PubMed  Google Scholar 

  51. van Laar JM, et al. Autologous hematopoietic stem cell transplantation vs intravenous pulse cyclophosphamide in diffuse cutaneous systemic sclerosis: a randomized clinical trial. JAMA. 2014;311(24):2490–8.

    Article  PubMed  CAS  Google Scholar 

  52. Naraghi K, van Laar JM. Update on stem cell transplantation for systemic sclerosis: recent trial results. Curr Rheumatol Rep. 2013;15(5):326.

    Article  PubMed  CAS  Google Scholar 

  53. Del Papa N, et al. Autologous hematopoietic stem cell transplantation has better outcomes than conventional therapies in patients with rapidly progressive systemic sclerosis. Bone Marrow Transplant. 2017;52(1):53.

    Article  PubMed  CAS  Google Scholar 

  54. Ippolito A, Petri M. An update on mortality in systemic lupus erythematosus. Clin Exp Rheumatol. 2008;26(5):S72.

    CAS  PubMed  Google Scholar 

  55. Leone A, et al. Autologous hematopoietic stem cell transplantation in systemic lupus erythematosus and antiphospholipid syndrome: a systematic review. Autoimmun Rev. 2017;16(5):469–77.

    Article  PubMed  Google Scholar 

  56. Nelson J, et al. Pre-existing autoimmune disease in patients with long-term survival after allogeneic bone marrow transplantation. J Rheumatol Suppl. 1997;48:23–9.

    CAS  PubMed  Google Scholar 

  57. Lowenthal RM, Francis H, Gill DS. Twenty-year remission of rheumatoid arthritis in 2 patients after allogeneic bone marrow transplant. J Rheumatol. 2006;33(4):812–3.

    PubMed  Google Scholar 

  58. McKendry RJ, Huebsch L, Leclair B. Progression of rheumatoid arthritis following bone marrow transplantation. A case report with a 13‐year followup. Arthritis Rheum. 1996;39(7):1246–53.

    Article  CAS  PubMed  Google Scholar 

  59. Snowden J, et al. Allogeneic bone marrow transplantation from a donor with severe active rheumatoid arthritis not resulting in adoptive transfer of disease to recipient. Bone Marrow Transplant. 1997;20(1):71.

    Article  CAS  PubMed  Google Scholar 

  60. Cooley HM, et al. Outcome of rheumatoid arthritis and psoriasis following autologous stem cell transplantation for hematologic malignancy. Arthritis Rheum. 1997;40(9):1712–5.

    Article  CAS  PubMed  Google Scholar 

  61. Snowden JA, et al. Autologous hemopoietic stem cell transplantation in severe rheumatoid arthritis: a report from the EBMT and ABMTR. J Rheumatol. 2004;31(3):482–8.

    PubMed  Google Scholar 

  62. Pasquini MC, et al. Transplantation for autoimmune diseases in north and South America: a report of the Center for International Blood and Marrow Transplant Research. Biol Blood Marrow Transplant. 2012;18(10):1471–8.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Snowden JA, et al. A phase I/II dose escalation study of intensified cyclophosphamide and autologous blood stem cell rescue in severe, active rheumatoid arthritis. Arthritis Rheum. 1999;42(11):2286–92.

    Article  CAS  PubMed  Google Scholar 

  64. Burt RK, et al. Autologous hematopoietic stem cell transplantation in refractory rheumatoid arthritis: sustained response in two of four patients. Arthritis Rheum. 1999;42(11):2281–5.

    Article  CAS  PubMed  Google Scholar 

  65. Bingham SJ, et al. Autologous stem cell transplantation for rheumatoid arthritis--interim report of 6 patients. J Rheumatol Suppl. 2001;64:21–4.

    CAS  PubMed  Google Scholar 

  66. Roord ST, et al. Autologous bone marrow transplantation in autoimmune arthritis restores immune homeostasis through CD4+CD25+Foxp3+ regulatory T cells. Blood. 2008;111(10):5233–41.

    Article  CAS  PubMed  Google Scholar 

  67. Alexander T, et al. Depletion of autoreactive immunologic memory followed by autologous hematopoietic stem cell transplantation in patients with refractory SLE induces long-term remission through de novo generation of a juvenile and tolerant immune system. Blood. 2009;113(1):214–23.

    Article  CAS  PubMed  Google Scholar 

  68. Muraro PA, et al. Thymic output generates a new and diverse TCR repertoire after autologous stem cell transplantation in multiple sclerosis patients. J Exp Med. 2005;201(5):805–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Zand MS, et al. Apoptosis and complement-mediated lysis of myeloma cells by polyclonal rabbit antithymocyte globulin. Blood. 2006;107(7):2895–903.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Hoyer BF, et al. How to cope with pathogenic long-lived plasma cells in autoimmune diseases. Ann Rheum Dis. 2008;67 Suppl 3:iii87–9.

    CAS  PubMed  Google Scholar 

  71. Allam R, Anders HJ. The role of innate immunity in autoimmune tissue injury. Curr Opin Rheumatol. 2008;20(5):538–44.

    Article  CAS  PubMed  Google Scholar 

  72. Tehlirian CV, et al. High-dose cyclophosphamide without stem cell rescue in scleroderma. Ann Rheum Dis. 2008;67(6):775–81.

    Article  CAS  PubMed  Google Scholar 

  73. Friedenstein A, Piatetzky-Shapiro I, Petrakova K. Osteogenesis in transplants of bone marrow cells. J Embryol Exp Morphol. 1966;16(3):381–90.

    CAS  PubMed  Google Scholar 

  74. Zuk PA, et al. Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng. 2001;7(2):211–28.

    Article  CAS  PubMed  Google Scholar 

  75. Zuk PA, et al. Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell. 2002;13(12):4279–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Fernandez M, et al. Detection of stromal cells in peripheral blood progenitor cell collections from breast cancer patients. Bone Marrow Transplant. 1997;20(4):265–71.

    Article  CAS  PubMed  Google Scholar 

  77. Purton LE, Mielcarek M, Torok-Storb B. Monocytes are the likely candidate ‘stromal’ cell in G-CSF-mobilized peripheral blood. Bone Marrow Transplant. 1998;21(10):1075–6.

    Article  CAS  PubMed  Google Scholar 

  78. Huss R, et al. Evidence of peripheral blood-derived, plastic-adherent CD34(-/low) hematopoietic stem cell clones with mesenchymal stem cell characteristics. Stem Cells. 2000;18(4):252–60.

    Article  CAS  PubMed  Google Scholar 

  79. Erices A, Conget P, Minguell JJ. Mesenchymal progenitor cells in human umbilical cord blood. Br J Haematol. 2000;109(1):235–42.

    Article  CAS  PubMed  Google Scholar 

  80. Mareschi K, et al. Isolation of human mesenchymal stem cells: bone marrow versus umbilical cord blood. Haematologica. 2001;86(10):1099–100.

    CAS  PubMed  Google Scholar 

  81. Lee OK, et al. Isolation of multipotent mesenchymal stem cells from umbilical cord blood. Blood. 2004;103(5):1669–75.

    Article  CAS  PubMed  Google Scholar 

  82. Phuc PV, et al. Differentiating of banked human umbilical cord blood-derived mesenchymal stem cells into insulin-secreting cells. In Vitro Cell Dev Biol Anim. 2011;47(1):54–63.

    Article  CAS  PubMed  Google Scholar 

  83. Phuc PV, et al. Isolation of three important types of stem cells from the same samples of banked umbilical cord blood. Cell Tissue Bank. 2012;13(2):341–51.

    Article  CAS  PubMed  Google Scholar 

  84. Romanov YA, Svintsitskaya VA, Smirnov VN. Searching for alternative sources of postnatal human mesenchymal stem cells: candidate MSC-like cells from umbilical cord. Stem Cells. 2003;21(1):105–10.

    Article  PubMed  Google Scholar 

  85. Kestendjieva S, et al. Characterization of mesenchymal stem cells isolated from the human umbilical cord. Cell Biol Int. 2008;32(7):724–32.

    Article  CAS  PubMed  Google Scholar 

  86. Kita K, et al. Isolation and characterization of mesenchymal stem cells from the sub-amniotic human umbilical cord lining membrane. Stem Cells Dev. 2010;19(4):491–502.

    Article  CAS  PubMed  Google Scholar 

  87. Covas DT, et al. Isolation and culture of umbilical vein mesenchymal stem cells. Braz J Med Biol Res. 2003;36(9):1179–83.

    Article  CAS  PubMed  Google Scholar 

  88. Hou T, et al. Umbilical cord Wharton’s Jelly: a new potential cell source of mesenchymal stromal cells for bone tissue engineering. Tissue Eng Part A. 2009;15(9):2325–34.

    Article  CAS  PubMed  Google Scholar 

  89. Rylova YV, et al. Characteristics of Multipotent Mesenchymal Stromal Cells from Human Terminal Placenta. Bull Exp Biol Med. 2015;159(2):253–7.

    Article  CAS  PubMed  Google Scholar 

  90. Lu. G.H., et al., [Isolation and multipotent differentiation of human decidua basalis-derived mesenchymal stem cells]. Nan Fang Yi Ke Da Xue Xue Bao. 2011;31(2):262–5.

    PubMed  Google Scholar 

  91. Chen YT, et al. Isolation of mesenchymal stem cells from human ligamentum flavum: implicating etiology of ligamentum flavum hypertrophy. Spine (Phila Pa 1976). 2011;36(18):E1193–200.

    Article  Google Scholar 

  92. Savickiene J, et al. Human amniotic fluid mesenchymal stem cells from second- and third-trimester amniocentesis: differentiation potential, molecular signature, and proteome analysis. Stem Cells Int. 2015;2015:319238.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Peng HH, et al. Isolation and differentiation of human mesenchymal stem cells obtained from second trimester amniotic fluid; experiments at Chang Gung Memorial Hospital. Chang Gung Med J. 2007;30(5):402–7.

    PubMed  Google Scholar 

  94. Shaer A, et al. Isolation and characterization of human mesenchymal stromal cells derived from placental decidua basalis; umbilical cord Wharton’s Jelly and amniotic membrane. Pak J Med Sci. 2014;30(5):1022–6.

    PubMed  PubMed Central  Google Scholar 

  95. Pirjali T, et al. Isolation and characterization of human mesenchymal stem cells derived from human umbilical cord Wharton’s Jelly and amniotic membrane. Int J Organ Transplant Med. 2013;4(3):111–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Pierdomenico L, et al. Multipotent mesenchymal stem cells with immunosuppressive activity can be easily isolated from dental pulp. Transplantation. 2005;80(6):836–42.

    Article  PubMed  Google Scholar 

  97. Jo YY, et al. Isolation and characterization of postnatal stem cells from human dental tissues. Tissue Eng. 2007;13(4):767–73.

    Article  CAS  PubMed  Google Scholar 

  98. Poloni A, et al. Characterization and expansion of mesenchymal progenitor cells from first-trimester chorionic villi of human placenta. Cytotherapy. 2008;10(7):690–7.

    Article  CAS  PubMed  Google Scholar 

  99. Soncini M, et al. Isolation and characterization of mesenchymal cells from human fetal membranes. J Tissue Eng Regen Med. 2007;1(4):296–305.

    Article  CAS  PubMed  Google Scholar 

  100. Gargett CE, Masuda H. Adult stem cells in the endometrium. Mol Hum Reprod. 2010;16(11):818–34.

    Article  CAS  PubMed  Google Scholar 

  101. Musina RA, et al. Endometrial mesenchymal stem cells isolated from the menstrual blood. Bull Exp Biol Med. 2008;145(4):539–43.

    Article  CAS  PubMed  Google Scholar 

  102. Sani M, et al. Origins of the breast milk-derived cells; an endeavor to find the cell sources. Cell Biol Int. 2015;39(5):611–8.

    Article  CAS  PubMed  Google Scholar 

  103. Patki S, et al. Human breast milk is a rich source of multipotent mesenchymal stem cells. Hum Cell. 2010;23(2):35–40.

    Article  CAS  PubMed  Google Scholar 

  104. Qin D, et al. Urine-derived stem cells for potential use in bladder repair. Stem Cell Res Ther. 2014;5(3):69.

    Article  PubMed  PubMed Central  Google Scholar 

  105. Fu Y, et al. Human urine-derived stem cells in combination with polycaprolactone/gelatin nanofibrous membranes enhance wound healing by promoting angiogenesis. J Transl Med. 2014;12:274.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  106. Dominici M, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The international society for cellular therapy position statement. Cytotherapy. 2006;8(4):315–7.

    CAS  PubMed  Google Scholar 

  107. Simmons PJ, Torok-Storb B. CD34 expression by stromal precursors in normal human adult bone marrow. Blood. 1991;78(11):2848–53.

    CAS  PubMed  Google Scholar 

  108. Yoshimura K, et al. Characterization of freshly isolated and cultured cells derived from the fatty and fluid portions of liposuction aspirates. J Cell Physiol. 2006;208(1):64–76.

    Article  CAS  PubMed  Google Scholar 

  109. Ferraro GA, et al. Human adipose CD34+ CD90+ stem cells and collagen scaffold constructs grafted in vivo fabricate loose connective and adipose tissues. J Cell Biochem. 2013;114(5):1039–49.

    Article  CAS  PubMed  Google Scholar 

  110. De Francesco F, et al. Human CD34+/CD90+ ASCs are capable of growing as sphere clusters, producing high levels of VEGF and forming capillaries. PLoS One. 2009;4(8):e6537.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  111. Mark P, et al. Human mesenchymal stem cells display reduced expression of CD105 after culture in serum-free medium. Stem Cells Int. 2013;2013:698076.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  112. Tani C, et al. Treatment with allogenic mesenchymal stromal cells in a murine model of systemic lupus erythematosus. Int J Stem Cells. 2017;10(2):160.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Yang X, et al. Bone marrow-derived mesenchymal stem cells inhibit T follicular helper cell in lupus-prone mice. Lupus. 2018;27(1):49–59.

    Article  CAS  PubMed  Google Scholar 

  114. He X, et al. Suppression of interleukin 17 contributes to the immunomodulatory effects of adipose-derived stem cells in a murine model of systemic lupus erythematosus. Immunol Res. 2016;64(5-6):1157–67.

    Article  CAS  PubMed  Google Scholar 

  115. Wei S, et al. Allogeneic adipose-derived stem cells suppress mTORC1 pathway in a murine model of systemic lupus erythematosus. Lupus. 2019;28(2):199–209.

    Article  CAS  PubMed  Google Scholar 

  116. Choi EW, et al. Transplantation of adipose tissue-derived mesenchymal stem cells prevents the development of lupus dermatitis. Stem Cells Dev. 2015;24(17):2041–51.

    Article  CAS  PubMed  Google Scholar 

  117. Liu J, et al. Xenogeneic transplantation of human placenta-derived mesenchymal stem cells alleviates renal injury and reduces inflammation in a mouse model of lupus nephritis. Biomed Res Int. 2019;2019:11.

    Google Scholar 

  118. Choi EW, et al. Mesenchymal stem cell transplantation can restore lupus disease-associated miRNA expression and Th1/Th2 ratios in a murine model of SLE. Sci Rep. 2016;6:38237.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Park JS, et al. Therapeutic effects of mouse bone marrow-derived clonal mesenchymal stem cells in a mouse model of inflammatory bowel disease. J Clin Biochem Nutr. 2015;57(3): 192–203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. de la Portilla F, et al. Local mesenchymal stem cell therapy in experimentally induced colitis in the rat. Int J Stem Cells. 2018;11(1):39.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  121. Anderson P, et al. Adipose-derived mesenchymal stromal cells induce immunomodulatory macrophages which protect from experimental colitis and sepsis. Gut. 2013;62(8):1131–41.

    Article  CAS  PubMed  Google Scholar 

  122. Tang J, et al. Aspirin treatment improved mesenchymal stem cell immunomodulatory properties via the 15d-PGJ2/PPARγ/TGF-β1 pathway. Stem Cells Dev. 2014;23(17):2093–103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Liao L, et al. Heparin improves BMSC cell therapy: anticoagulant treatment by heparin improves the safety and therapeutic effect of bone marrow-derived mesenchymal stem cell cytotherapy. Theranostics. 2017;7(1):106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Simovic Markovic B, et al. Pharmacological inhibition of Gal-3 in mesenchymal stem cells enhances their capacity to promote alternative activation of macrophages in dextran sulphate sodium-induced colitis. Stem Cells Int. 2016;2016:2640746.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  125. Robinson A, et al. Mesenchymal stem cells and conditioned medium avert inflammation-induced enteric neuropathy. Neurogastroenterol Motil. 2014;307(11):G1115–29

    Google Scholar 

  126. Yu Y, et al. Knockdown of MicroRNA Let-7a improves the functionality of bone marrow-derived mesenchymal stem cells in immunotherapy. Mol Ther. 2017;25(2):480–93.

    Article  CAS  PubMed  Google Scholar 

  127. Wu T, et al. miR‐21 modulates the immunoregulatory function of bone marrow mesenchymal stem cells through the PTEN/Akt/TGF‐β1 pathway. Stem Cells. 2015;33(11):3281–90.

    Article  CAS  PubMed  Google Scholar 

  128. Qiu Y, et al. TLR3 preconditioning enhances the therapeutic efficacy of umbilical cord mesenchymal stem cells in TNBS-induced colitis via the TLR3-Jagged-1-Notch-1 pathway. Mucosal Immunol. 2017;10(3):727.

    Article  CAS  PubMed  Google Scholar 

  129. Molendijk I, et al. Intraluminal injection of mesenchymal stromal cells in spheroids attenuates experimental colitis. J Crohns Colitis. 2016;10(8):953–64.

    Article  PubMed  Google Scholar 

  130. Yu Y, Zhao T, Yang D. Cotransfer of regulatory T cells improve the therapeutic effectiveness of mesenchymal stem cells in treating a colitis mouse model. Exp Anim. 2017;66(2):167–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Tang Y, et al. Combinatorial intervention with mesenchymal stem cells and granulocyte colony-stimulating factor in a rat model of ulcerative colitis. Dig Dis Sci. 2015;60(7):1948–57.

    Article  CAS  PubMed  Google Scholar 

  132. Liu X, et al. Over-expression of CXCR4 on mesenchymal stem cells protect against experimental colitis via immunomodulatory functions in impaired tissue. J Mol Histol. 2014;45(2):181–93.

    Article  PubMed  CAS  Google Scholar 

  133. Tang R-j, et al. Mesenchymal stem cells-regulated Treg cells suppress colitis-associated colorectal cancer. Stem Cell Res Ther. 2015;6(1):71.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  134. Liu S, et al. Efficacy of mesenchymal stem cells on systemic lupus erythematosus: a meta-analysis. Beijing Da Xue Xue Bao Yi Xue Ban. 2018;50(6):1014–21.

    CAS  PubMed  Google Scholar 

  135. Carrion F, et al. Autologous mesenchymal stem cell treatment increased T regulatory cells with no effect on disease activity in two systemic lupus erythematosus patients. Lupus. 2010;19(3):317–22.

    Article  CAS  PubMed  Google Scholar 

  136. Gu F, et al. Allogeneic mesenchymal stem cell transplantation for lupus nephritis patients refractory to conventional therapy. Clin Rheumatol. 2014;33(11):1611–9.

    Article  PubMed  Google Scholar 

  137. Li X, et al. Mesenchymal SCT ameliorates refractory cytopenia in patients with systemic lupus erythematosus. Bone Marrow Transplant. 2013;48(4):544–50.

    Article  CAS  PubMed  Google Scholar 

  138. Liang J, et al. Allogeneic mesenchymal stem cells transplantation in treatment of multiple sclerosis. Mult Scler J. 2009;15(5):644–6.

    Article  CAS  Google Scholar 

  139. Gu Z, et al. Endoplasmic reticulum stress participates in the progress of senescence of bone marrow-derived mesenchymal stem cells in patients with systemic lupus erythematosus. Cell Tissue Res. 2015;361(2):497–508.

    Article  CAS  PubMed  Google Scholar 

  140. Li X, et al. Enhanced apoptosis and senescence of bone-marrow-derived mesenchymal stem cells in patients with systemic lupus erythematosus. Stem Cells Dev. 2012;21(13):2387–94.

    Article  CAS  PubMed  Google Scholar 

  141. Wang D, et al. Umbilical cord mesenchymal stem cell transplantation in active and refractory systemic lupus erythematosus: a multicenter clinical study. Arthritis Res Ther. 2014;16(2):R79.

    Article  PubMed  PubMed Central  Google Scholar 

  142. Wang D, et al. Allogeneic mesenchymal stem cell transplantation in severe and refractory systemic lupus erythematosus: 4 years of experience. Cell Transplant. 2013;22(12):2267–77.

    Article  PubMed  Google Scholar 

  143. Barbado J, et al. Therapeutic potential of allogeneic mesenchymal stromal cells transplantation for lupus nephritis. Lupus. 2018;27(13):2161–5.

    Article  CAS  PubMed  Google Scholar 

  144. Baumgart DC, Sandborn WJ. Crohn’s disease. Lancet. 2012;380(9853):1590–605.

    Article  PubMed  Google Scholar 

  145. Garcia-Olmo D, et al. A phase I clinical trial of the treatment of Crohn’s fistula by adipose mesenchymal stem cell transplantation. Dis Colon Rectum. 2005;48(7):1416–23.

    Article  PubMed  Google Scholar 

  146. Mannon PJ. Remestemcel-L: human mesenchymal stem cells as an emerging therapy for Crohn’s disease. Expert Opin Biol Ther. 2011;11(9):1249–56.

    Article  PubMed  CAS  Google Scholar 

  147. Lightner AL, et al. A systematic review and meta-analysis of mesenchymal stem cell injections for the treatment of perianal Crohn’s disease: progress made and future directions. Dis Colon Rectum. 2018;61(5):629–40.

    Article  PubMed  Google Scholar 

  148. Garcia-Olmo D, et al. Expanded adipose-derived stem cells for the treatment of complex perianal fistula: a phase II clinical trial. Dis Colon Rectum. 2009;52(1):79–86.

    Article  PubMed  Google Scholar 

  149. Ciccocioppo R, et al. Autologous bone marrow-derived mesenchymal stromal cells in the treatment of fistulising Crohn’s disease. Gut. 2011;60(6):788–98.

    Article  PubMed  Google Scholar 

  150. Guadalajara H, et al. Long-term follow-up of patients undergoing adipose-derived adult stem cell administration to treat complex perianal fistulas. Int J Colorectal Dis. 2012;27(5):595–600.

    Article  PubMed  Google Scholar 

  151. Cho YB, et al. Autologous adipose tissue-derived stem cells for the treatment of Crohn’s fistula: a phase I clinical study. Cell Transplant. 2013;22(2):279–85.

    Article  PubMed  Google Scholar 

  152. Lee WY, et al. Autologous adipose tissue-derived stem cells treatment demonstrated favorable and sustainable therapeutic effect for Crohn’s fistula. Stem Cells. 2013;31(11):2575–81.

    Article  CAS  PubMed  Google Scholar 

  153. de la Portilla F, et al. Expanded allogeneic adipose-derived stem cells (eASCs) for the treatment of complex perianal fistula in Crohn’s disease: results from a multicenter phase I/IIa clinical trial. Int J Colorectal Dis. 2013;28(3):313–23.

    Article  PubMed  Google Scholar 

  154. Ciccocioppo R, et al. Long-term follow-up of crohn disease fistulas after local injections of bone marrow-derived mesenchymal stem cells. Mayo Clin Proc. 2015;90(6):747–55.

    Article  PubMed  Google Scholar 

  155. Cho YB, et al. Long-term results of adipose-derived stem cell therapy for the treatment of Crohn’s fistula. Stem Cells Transl Med. 2015;4(5):532–7.

    Article  PubMed  PubMed Central  Google Scholar 

  156. Garcia-Olmo D, et al. Recurrent anal fistulae: limited surgery supported by stem cells. World J Gastroenterol. 2015;21(11):3330–6.

    Article  PubMed  PubMed Central  Google Scholar 

  157. Molendijk I, et al. Allogeneic bone marrow-derived mesenchymal stromal cells promote healing of refractory perianal fistulas in patients with Crohn’s disease. Gastroenterology. 2015;149(4):918–27.. e6

    Article  PubMed  Google Scholar 

  158. Zhang J, et al. Umbilical cord mesenchymal stem cell treatment for Crohn’s disease: a randomized controlled clinical trial. Gut Liver. 2018;12(1):73.

    Article  CAS  PubMed  Google Scholar 

  159. Mohyeddin Bonab M, et al. Does mesenchymal stem cell therapy help multiple sclerosis patients? Report of a pilot study. Iran J Immunol. 2007;4(1):50–7.

    PubMed  Google Scholar 

  160. Yamout B, et al. Bone marrow mesenchymal stem cell transplantation in patients with multiple sclerosis: a pilot study. J Neuroimmunol. 2010;227(1-2):185–9.

    Article  CAS  PubMed  Google Scholar 

  161. Karussis D, et al. Safety and immunological effects of mesenchymal stem cell transplantation in patients with multiple sclerosis and amyotrophic lateral sclerosis. Arch Neurol. 2010;67(10):1187–94.

    Article  PubMed  PubMed Central  Google Scholar 

  162. Christopeit M, et al. Marked improvement of severe progressive systemic sclerosis after transplantation of mesenchymal stem cells from an allogeneic haploidentical-related donor mediated by ligation of CD137L. Leukemia. 2008;22(5):1062.

    Article  CAS  PubMed  Google Scholar 

  163. Keyszer G, et al. Treatment of severe progressive systemic sclerosis with transplantation of mesenchymal stromal cells from allogeneic related donors: report of five cases. Arthritis Rheum. 2011;63(8):2540–2.

    Article  PubMed  Google Scholar 

  164. Scuderi N, et al. Human adipose-derived stromal cells for cell-based therapies in the treatment of systemic sclerosis. Cell Transplant. 2013;22(5):779–95.

    Article  PubMed  Google Scholar 

  165. Onesti MG, et al. Improvement of mouth functional disability in systemic sclerosis patients over one year in a trial of fat transplantation versus adipose-derived stromal cells. Stem Cells Int. 2016;2016:2416192.

    Article  PubMed  PubMed Central  Google Scholar 

  166. Guillaume-Jugnot P, et al. State of the art. Autologous fat graft and adipose tissue-derived stromal vascular fraction injection for hand therapy in systemic sclerosis patients. Curr Res Transl Med. 2016;64(1):35–42.

    Article  CAS  PubMed  Google Scholar 

  167. Daumas A, et al. Long-term follow-up after autologous adipose-derived stromal vascular fraction injection into fingers in systemic sclerosis patients. Curr Res Transl Med. 2017;65(1):40–3.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

This research was funded and supported by Fostering Innovation through Research, Science and Technology (FIRST), Viet Nam via project 15/FIRST/2a/SCI.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Phuc Van Pham .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Vu, N.B., Van Pham, P. (2019). Current Status of Stem Cell Transplantation for Autoimmune Diseases. In: Pham, P. (eds) Stem Cell Transplantation for Autoimmune Diseases and Inflammation. Stem Cells in Clinical Applications. Springer, Cham. https://doi.org/10.1007/978-3-030-23421-8_1

Download citation

Publish with us

Policies and ethics