Skip to main content

Infections in Systemic Lupus Erythematosus

  • Chapter
  • First Online:
Infections and the Rheumatic Diseases

Abstract

Despite the progress made in the diagnosis and treatment of patients with systemic lupus erythematosus (SLE), infections remain the leading cause of morbidity and mortality in patients with SLE.

SLE is the same entity in all parts of the world; however genetic variants and environmental factors are different. Therefore, it is necessary that in each country and region risk factors should be adequately identified, in order to take preventive measures and diagnose and treat infections in patients with SLE in a timely manner.

The interaction between viruses, bacteria, parasites, and fungi, with the immune system of patients with SLE, is very complex. It is possible that each patient with SLE has a type of individual immune/inflammatory response. Knowledge of the mechanisms of this interaction helps to correctly diagnose and treat infections in these patients.

Many infectious agents have the ability to mimic active SLE. Therefore it is necessary to use the biomarkers to make a difference, without forgetting that the correct clinical judgment will define whether it is a reactivation of the SLE or a serious infection that endangers the life of the patient with SLE.

This chapter will review the current situation of infections in SLE, its impact in different regions of the world, the interactions between infectious agents and the immune system, and the strategies to be followed to decrease the morbidity and mortality in SLE patients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

cGAS:

Cyclic GMP-AMP synthase

CHIKV:

Chikungunya virus

CMA:

Cardiac muscle antibodies

DAH:

Diffuse alveolar hemorrhage

DC:

Dendritic cells

EBV:

Epstein-Barr virus

HAART:

Highly active antiretroviral therapy

HPV:

Human papillomavirus

IRIS:

Immune reconstitution inflammatory syndrome

MBL:

Mannose-binding lectin

MeSH:

Medical Subject Headings

SHS:

Strongyloidiasis hyperinfection syndrome

TLRs:

Toll-like receptors

ZIKV:

Zika virus

References

  1. Abramovich E, Barrett O, Dreiher J, Novack V, Abu-Shakra M. Incidence and variables associated with short and long-term mortality in patients with systemic lupus erythematosus and sepsis admitted in intensive care units. Lupus. 2018;27:961203318796288. https://doi.org/10.1177/0961203318796288.

    Article  Google Scholar 

  2. Bhattacharya J, Pappas K, Toz B, Aranow C, Mackay M, Gregersen PK, et al. Serologic features of cohorts with variable genetic risk for systemic lupus erythematosus. Mol Med. 2018;24:24. https://doi.org/10.1186/s10020-018-0019-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Wu XY, Yang M, Xie YS, Xiao WG, Lin J, Zhou B, et al. Causes of death in hospitalized patients with systemic lupus erythematosus: a 10-year multicenter nation wide Chinese cohort. Clin Rheumatol. 2018. https://doi.org/10.1007/s10067-018-4259-z.

    Article  Google Scholar 

  4. Méndez-Martínez S, García-Carrasco M, Jiménez-Herrera EA, Mendoza-Pinto C, Etchegaray-Morales I, Barahona-Rubio PW, et al. Factors of the epidemiological triad that influence the persistence of human papilloma virus infection in women with systemic lupus erythematosus. Lupus. 2018;27:1542–6. https://doi.org/10.1177/0961203318773176.

    Article  PubMed  Google Scholar 

  5. Mackay M, Oswald M, Sanchez-Guerrero J, Lichauco J, Aranow C, Kotkin S, Korsunsky I, Gregersen PK, Diamond B. Molecular signatures in systemic lupus erythematosus: distinction between disease flare and infection. Lupus Sci Med. 2016;3:e000159. https://doi.org/10.1136/lupus-2016-000159.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Jara LJ, Medina G, Saavedra MA. Autoimmune manifestations of infections. Curr Opin Rheumatol. 2018;30:373–9. https://doi.org/10.1097/BOR.0000000000000505.

    Article  CAS  PubMed  Google Scholar 

  7. Ginzler E, Diamond H, Kaplan D, Weiner M, Schlesinger M, Seleznick M. Computer analysis of factors influencing frequency of infection in systemic lupus erythematosus. Arthritis Rheum. 1978;21:37–44.

    Article  CAS  Google Scholar 

  8. Nived O, Sturfelt G, Wollheim F. Systemic lupus erythematosus and infection: a controlled and prospective study including an epidemiological group. Q J Med. 1985;55:271–87.

    CAS  PubMed  Google Scholar 

  9. Reveille JD, Bartolucci A, Alarcón GS. Prognosis in systemic lupus erythematosus. Negative impact of increasing age at onset, black race, and thrombocytopenia, as well as causes of death. Arthritis Rheum. 1990;33:37–48.

    Article  CAS  Google Scholar 

  10. Duffy KN, Duffy CM, Gladman DD. Infection and disease activity in systemic lupus erythematosus: a review of hospitalized patients. J Rheumatol. 1991;18:1180–4.

    CAS  PubMed  Google Scholar 

  11. Danza A, Ruiz-Irastorza G. Infection risk in systemic lupus erythematosus patients: susceptibility factors and preventive strategies. Lupus. 2013;22(12):1286–94. https://doi.org/10.1177/0961203313493032.

    Article  CAS  PubMed  Google Scholar 

  12. Rúa-Figueroa Í, López-Longo J, Galindo-Izquierdo M, Calvo-Alén J, Del Campo V, Olivé-Marqués A, et al. Incidence, associated factors and clinical impact of severe infections in a large, multicentric cohort of patients with systemic lupus erythematosus. Semin Arthritis Rheum. 2017;47(1):38–45.

    Article  Google Scholar 

  13. Hou C, Jin O, Zhang X. Clinical characteristics and risk factors of infections in patients with systemic lupus erythematosus. Clin Rheumatol. 2018;37:2699–705. https://doi.org/10.1007/s10067-018-4198-8.

    Article  PubMed  Google Scholar 

  14. Herrinton LJ, Liu L, Goldfien R, Michaels MA, Tran TN. Risk of serious infection for patients with systemic lupus erythematosus starting glucocorticoids with or without antimalarials. J Rheumatol. 2016;43(8):1503–9.

    Article  Google Scholar 

  15. Feldman CH, Marty FM, Winkelmayer WC, Guan H, Franklin JM, Solomon DH, Costenbader KH, Kim SC. Comparative rates of serious infections among patients with systemic lupus erythematosus receiving immunosuppressive medications. Arthritis Rheumatol. 2017;69(2):387–97.

    Article  CAS  Google Scholar 

  16. Liu P, Tan HZ, Li H, Lim CC, Choo JCJ. Infections in hospitalized lupus nephritis patients: characteristics, risk factors, and outcomes. Lupus. 2018;27(7):1150–8.

    Article  CAS  Google Scholar 

  17. Chen D, Xie J, Chen H, Yang Y, Zhan Z, Liang L, Yang X. Infection in Southern Chinese patients with systemic lupus erythematosus: spectrum, drug resistance, outcomes, and risk factors. J Rheumatol. 2016;43(9):1650–6.

    Article  CAS  Google Scholar 

  18. Singh JA, Hossain A, Kotb A, Wells G. Risk of serious infections with immunosuppressive drugs and glucocorticoids for lupus nephritis: a systematic review and network meta-analysis. BMC Med. 2016;14(1):137.

    Article  Google Scholar 

  19. Martinez-Martinez MU, Sturbaum AK, Alcocer-Varela J, Merayo-Chalico J, Gómez-Martin D, De Jesus Eduardo Gomez-Banuelos J, et al. Factors associated with mortality and infections in patients with systemic lupus erythematosus with diffuse alveolar hemorrhage. J Rheumatol. 2014;41(8):1656–61.

    Article  Google Scholar 

  20. Roberts JE, Mandl LA, Su EP, Mayman DJ, Figgie MP, Fein AW, Lee YY, Shah U, Goodman SM. Patients with systemic lupus erythematosus have increased risk of short-term adverse events after total hip arthroplasty. J Rheumatol. 2016;43(8):1498–502.

    Article  Google Scholar 

  21. Quintanilla-González L, Torres-Villalobos G, Hinojosa-Azaola A. Risk factors for development of early infectious and noninfectious complications in systemic lupus erythematosus patients undergoing major surgery. Lupus. 2018;27(12):1960–72.

    Article  Google Scholar 

  22. Barrett O, Abramovich E, Dreiher J, Novack V, Abu-Shakra M. Mortality due to sepsis in patients with systemic lupus erythematosus and rheumatoid arthritis. Isr Med Assoc J. 2014;16(10):634–5.

    PubMed  Google Scholar 

  23. Teh CL, Wan SA, Ling GR. Severe infections in systemic lupus erythematosus: disease pattern and predictors of infection-related mortality. Clin Rheumatol. 2018;37(8):2081–6.

    Article  CAS  Google Scholar 

  24. Barrera-Vargas A, Gómez-Martín D, Merayo-Chalico J, Ponce-de-León A, Alcocer-Varela J. Risk factors for drug-resistant bloodstream infections in patients with systemic lupuserythematosus. J Rheumatol. 2014;41(7):1311–6.

    Article  Google Scholar 

  25. Arce-Salinas CA, Villaseñor-Ovies P. Systemic lupus erythematosus and infections. In: Almoallin H, editor. Systemic lupus erythematosus. Rijeka: Intech (Open Access Publisher; 2011. IBSN 978-935-307-868-7.

    Google Scholar 

  26. Hsieh SC, Tsai CY, Sun KH, et al. Decreased spontaneous and lipopolysaccharide stimulated production of interleukin 8 by polymorphonuclear neutrophils of patients with active systemic lupuserythematosus. Clin Exp Rheumatol. 1994;12:627–33.

    CAS  PubMed  Google Scholar 

  27. Wu SA, Yeh KW, Lee WI, Yao TC, Kuo ML, Huang B, Huang JL. Impaired phagocytosis and susceptibility to infection in pediatric-onset systemic lupus erythematosus. Lupus. 2013;22(3):279–88.

    Article  Google Scholar 

  28. Bengtsson AA, Pettersson A, Wichert S, Gullstrand B, Hansson M, Hellmark T, et al. Low production of reactive oxygen species in granulocytes is associated with organ damage in systemic lupus erythematosus. Arthritis Res Ther. 2014;16:R120.

    Article  Google Scholar 

  29. Mitander A, Fei Y, Trysberg E, Mohammad M, Hu Z, Sakiniene E, Pullerits R, Jin T. Complement consumption in systemic lupus erythematosus leads to decreased opsonophagocytosis in vitro. J Rheumatol. 2018;45(11):1557–64.

    Article  CAS  Google Scholar 

  30. Mok MY, Ip WK, Lau CS, Lo Y, Wong WH, Lau YL. Mannose-binding lectin and susceptibility to infection in Chinese patients with systemic lupus erythematosus. J Rheumatol. 2007;34(6):1270–6.

    CAS  PubMed  Google Scholar 

  31. Merayo-Chalico J, Gómez-Martín D, Piñeirúa-Menéndez A, Santana-De Anda K, Alcocer-Varela J. Lymphopenia as risk factor for development of severe infections in patients with systemic lupus erythematosus: a case-control study. QJM. 2013;106(5):451–7. https://doi.org/10.1093/qjmed/hct046. Epub 2013 Mar 4.

    Article  CAS  PubMed  Google Scholar 

  32. Carli L, Tani C, Vagnani S, Signorini V, Mosca M. Leukopenia, lymphopenia, and neutropenia in systemic lupus erythematosus: prevalence and clinical impact—a systematic literature review. Semin Arthritis Rheum. 2015;45:190–4.

    Article  Google Scholar 

  33. Jansen AFM, Raijmakers RPH, Keijmel SP, van der Molen RG, Vervoort GM, van der Meer JWM, van Deuren M, Bleeker-Rovers CP. Autoimmunity and B-cell dyscrasia in acute and chronic Q fever: a review of the literature. Eur J Intern Med. 2018;54:6–12.

    Article  CAS  Google Scholar 

  34. Dar SA, Janahi EM, Haque S, Akhter N, Jawed A, Wahid M, Ramachandran VG, Bhattacharya SN, Banerjee BD, Das S. Superantigen influence in conjunction with cytokine polymorphism potentiates autoimmunity in systemic lupus erythematosus patients. Immunol Res. 2016;64(4):1001–12.

    Article  CAS  Google Scholar 

  35. Jog NR, Chakravarty EF, Guthridge JM, James JA. Epstein Barr virus interleukin 10 suppresses anti-inflammatory phenotype in human monocytes. Front Immunol. 2018;9:2198.

    Article  Google Scholar 

  36. Crow MK, Olferiev M, Kirou KA. Type I interferons in autoimmune disease. Annu Rev Pathol. 2018. https://doi.org/10.1146/annurev-pathol-020117-043952.

    Article  CAS  Google Scholar 

  37. Doonan J, Thomas D, Wong MH, Ramage HJ, Al-Riyami L, Lumb FE, et al. Failure of the anti-inflammatory parasitic worm product ES-62 to provide protection in mouse models of type i diabetes, multiple sclerosis, and inflammatory bowel disease. Molecules. 2018;23(10):2669.

    Article  Google Scholar 

  38. Katz-Agranov N, Zandman-Goddard G. Themicrobiome and systemic lupus erythematosus. Immunol Res. 2017;65(2):432–7.

    Article  CAS  Google Scholar 

  39. Hidalgo-Tenorio C, Jiménez-Alonso J, de Dios Luna J, Tallada M, Martínez-Brocal A, Sabio JM, Virgen de las Nieves Lupus Research Group. Urinary tract infections and lupus erythematosus. Ann Rheum Dis. 2004;63(4):431–7.

    Article  CAS  Google Scholar 

  40. Ruiz-Irastorza G, Olivares N, Ruiz-Arruza I, Martinez-Berriotxoa A, Egurbide M-V, Aguirre C. Predictors of major infections in systemic lupus erythematosus. Arthritis Res Ther. 2009;11:R109.

    Article  Google Scholar 

  41. Marcos M, Fernández C, Soriano A, et al. Epidemiology and clinical outcomes of bloodstream infections among lupus patients. Lupus. 2011;20:965–71.

    Article  CAS  Google Scholar 

  42. Jung JY, Suh CH. Infection in systemic lupus erythematosus, similarities, and differences with lupus flare. Korean J Intern Med. 2017;32(3):429–38. https://doi.org/10.3904/kjim.2016.234.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Fei Y, Shi X, Gan F, Li X, Zhang W, Li M, Hou Y, Zhang X, Zhao Y, Zeng X, Zhang F. Death causes and pathogens analysis of systemic lupus erythematosus during the past 26 years. Clin Rheumatol. 2014;33:57–63.

    Article  Google Scholar 

  44. Pons-Estel BA, Catoggio LJ, Cardiel MH, Soriano ER, Gentiletti S, Villa AR, Abadi I, Caeiro F, Alvarellos A, Alarcón-Segovia D, Grupo Latinoamericano de Estudio del Lupus, et al. The GLADEL multinational Latin American prospective inception cohort of 1,214 patients with systemic lupus erythematosus: ethnic and disease heterogeneity among “Hispanics”. Medicine (Baltimore). 2004;83:1–17.

    Article  Google Scholar 

  45. Balbi GGM, Machado-Ribeiro F, Marques CDL, Signorelli F, Levy RA. The interplay between tuberculosis and systemic lupus erythematosus. Curr Opin Rheumatol. 2018;30(4):395–402. https://doi.org/10.1097/BOR.0000000000000493.

    Article  PubMed  Google Scholar 

  46. Erdozain JG, Ruiz-Irastorza G, Egurbide MV, Martinez-Berriotxoa A, Aguirre C. High risk of tuberculosis in systemic lupus erythematosus? Lupus. 2006;15:232–5.

    Article  CAS  Google Scholar 

  47. Lao M, Chen D, Wu X, Chen H, Qiu Q, Yang X, Zhan Z. Active tuberculosis in patients with systemic lupus erythematosus from Southern China: a retrospective study. Clin Rheumatol. 2019;38:535–43. https://doi.org/10.1007/s10067-018-4303-z.

    Article  PubMed  Google Scholar 

  48. Torres-González P, Romero-Díaz J, Cervera-Hernández ME, Ocampo-Torres M, Chaires-Garza LG, Lastiri-González EA, Atisha-Fregoso Y, Bobadilla-Del-Valle M, Ponce-de-León A, Sifuentes-Osornio J. Tuberculosis and systemic lupus erythematosus: a case-control study in Mexico City. Clin Rheumatol. 2018;37(8):2095–102. https://doi.org/10.1007/s10067-018-4109-z.

    Article  PubMed  Google Scholar 

  49. Poole BD, Scofield RH, Harley JB, James JA. Epstein-Barr virus and molecular mimicry in systemic lupus erythematosus. Autoimmunity. 2006;39(1):63–70.

    Article  CAS  Google Scholar 

  50. Cui J, Yan W, Xu S, Wang Q, Zhang W, Liu W, Ni A. Anti-Epstein-Barr virus antibodies in Beijing during 2013–2017: what we have found in the different patients. PLoS One. 2018;13(3):e0193171. https://doi.org/10.1371/journal.pone.0193171.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Piroozmand A, Haddad Kashani H, Zamani B. Correlation between Epstein-Barr virus infection and disease activity of systemic lupus erythematosus: a cross-sectional study. Asian Pac J Cancer Prev. 2017;18(2):523–7.

    PubMed  PubMed Central  Google Scholar 

  52. Segal Y, Dahan S, Calabrò M, Kanduc D, Shoenfeld Y. HPV and systemic lupus erythematosus: a mosaic of potential crossreactions. Immunol Res. 2017;65(2):564–71. https://doi.org/10.1007/s12026-016-8890-y.

    Article  CAS  PubMed  Google Scholar 

  53. Silva KR, Bica BERG, Pimenta ES, Serafim RB, Abreu MM, Gonçalves JLS, Santana LS, Cabral-Castro MJ, Peralta JM, Cavalcanti MG. Fatal human case of zika and chikungunya virus co-infection with prolonged viremia and viruria. Diseases. 2018;6(3):pii: E53. https://doi.org/10.3390/diseases6030053.

    Article  Google Scholar 

  54. Chen HS, Tsai WP, Leu HS, Ho HH, Liou LB. Invasive fungal infection in systemic lupus erythematosus: an analysis of 15 cases and a literature review. Rheumatology. 2007;46:539–44.

    Article  CAS  Google Scholar 

  55. Martínez-Martínez MU, Herrera-Van Oosdam D, Roman-Acosta S, Magaña-Aquino M, Baranda-Cándido L, Abud-Mendoza C. Invasive fungal infections in patients with systemic lupus erythematosus. J Rheumatol. 2012;39:1814–8.

    Article  Google Scholar 

  56. Santamaría-Alza Y, Sánchez-Bautista J, Fajardo-Rivero JF, Figueroa CL. Invasive fungal infections in Colombian patients with systemic lupus erythematosus. Lupus. 2018;27(7):1116–22. https://doi.org/10.1177/0961203318763743.

    Article  PubMed  Google Scholar 

  57. Ge HF, Liu XQ, Zhu YQ, Chen HQ, Chen GZ. Invasive pulmonary fungal infections in patients with connective tissue disease: a retrospective study from northern China. Braz J Med Biol Res. 2016;49(10):e5531. https://doi.org/10.1590/1414-431X20165531.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Falagas ME, Manta KG, Betsi GI, Pappas G. Infection-related morbidity and mortality in patients with connective tissue diseases: a systematic review. Clin Rheumatol. 2007;26(5):663–70.

    Article  Google Scholar 

  59. Wolfe RM, Peacock JE Jr. Pneumocystis pneumonia and the rheumatologist: which patients are at risk and how can PCP be prevented? Curr Rheumatol Rep. 2017;19(6):35. https://doi.org/10.1007/s11926-017-0664-6.

    Article  PubMed  Google Scholar 

  60. Fang W, Chen M, Liu J, Hagen F, Ms A, Al-Hatmi, Zhang P, Guo Y, Boekhout T, Deng D, Xu J, Pan W, Liao W. Cryptococcal meningitis in systemic lupus erythematosus patients: pooled analysis and systematic review. Emerg Microbes Infect. 2016;5(9):e95. https://doi.org/10.1038/emi.2016.93.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Larocca Skare T, Scherer Dagostini J, Zanardi PI, MitsunoriNisihara R. Infections and systemic lupus erythematosus. Einstein (Sao Paulo). 2016;14(1):47–51. https://doi.org/10.1590/S1679-45082016AO3490.

    Article  Google Scholar 

  62. Senthilnayagam B, Kumar T, Sukumaran J, Jeya M, Rao RK. Automated measurement of immature granulocytes: performance characteristics and utility in routine clinical practice. Pathol Res Int. 2012;2012:483670.

    Article  Google Scholar 

  63. Ospina FE, Echeverri A, Zambrano D, Suso JP, Martínez-Blanco J, Cañas CA, Tobón GJ. Distinguishing infections vs flares in patients with systemic lupus erythematosus. Rheumatology (Oxford). 2017;56(suppl_1):i46–54. https://doi.org/10.1093/rheumatology/kew340.

    Article  CAS  Google Scholar 

  64. Russwurm S, Vickers J, Meier-Hellmann A, Spangenberg P, Bredle D, Reinhart K, Lösche W. Platelet and leukocyte activation correlate with the severity of septic organ dysfunction. Shock. 2002;17:263–8.

    Article  Google Scholar 

  65. Caza T, Oaks Z, Perl A. Interplay of infections, autoimmunity, and immunosuppression in systemic lupus erythematosus. Int Rev Immunol. 2014;33(4):330–63. https://doi.org/10.3109/08830185.2013.863305.

    Article  CAS  PubMed  Google Scholar 

  66. Holvast B, Huckriede A, Wilschut J, et al. Safety and efficacy of influenza vaccination in systemic lupus erythematosus patients with quiescent disease. Ann Rheum Dis. 2006;65:913–8.

    Article  CAS  Google Scholar 

  67. Ruiz-Irastorza G, Ramos-Casals M, Brito-Zeron P, Khamashta MA. Clinical efficacy and side effects of antimalarials in systemic lupus erythematosus: a systematic review. Ann Rheum Dis. 2010;69:20–8.

    Article  CAS  Google Scholar 

  68. Lertnawapan R1, Totemchokchyakarn K, Nantiruj K, Janwityanujit S. Risk factors of Pneumocystis jeroveci pneumonia in patients with systemic lupus erythematosus. Rheumatol Int. 2009;29(5):491–6. https://doi.org/10.1007/s00296-008-0721-6. 70.

    Article  PubMed  Google Scholar 

  69. Vega LE, Espinoza LR. HIV infection and its effects on the development of autoimmune disorders. Pharmacol Res. 2018;129:1–9. https://doi.org/10.1016/j.phrs.2018.01.005. Epub 2018 Jan 10.

    Article  CAS  PubMed  Google Scholar 

  70. Modjinou DV, Osman JL, Haberman RH, Izmirly PM, Belmont HM. Systemic lupus erythematosus onset seven years after initiation of highly active antiretroviral therapy in a patient with human immunodeficiency virus: literature review and update on disease mechanism of this unusual presentation. J Clin Rheumatol. 2016;22(6):338–40. https://doi.org/10.1097/RHU.0000000000000426.

    Article  PubMed  Google Scholar 

  71. Drake WP, Byrd VM, Olsen NJ. Reactivation of systemic lupus erythematosus after initiation of highly active antiretroviral therapy for acquired immunodeficiency syndrome. J Clin Rheumatol. 2003;9:176–80.

    Article  Google Scholar 

  72. French MA. Immune reconstitution inflammatory syndrome: immune restoration disease 20 years on. Med J Aust. 2012;196:318–21.

    Article  Google Scholar 

  73. Liao HY, Tao CM, Su J. Concomitant systemic lupus erythematosus and HIV infection: a rare case report and literature review. Medicine (Baltimore). 2017;96:e9337. https://doi.org/10.1097/MD.0000000000009337.

    Article  Google Scholar 

  74. Scowden EB, Schaffner W, Stone WJ. Overwhelming strongyloidiasis: an unappreciated opportunistic infection. Medicine (Baltimore). 1978;57:527–44.

    Article  CAS  Google Scholar 

  75. Rivera E, Maldonado N, Vélez-García E, Grillo AJ, Malaret G. Hyperinfection syndrome with Strongyloides stercoralis. Ann Intern Med. 1970;72:199–204.

    Article  CAS  Google Scholar 

  76. Mora CS, Segami MI, Hidalgo JA. Strongyloides stercoralis hyperinfection in systemic lupus erythematosus and the antiphospholipid syndrome. Semin Arthritis Rheum. 2006;36:135–43.

    Article  Google Scholar 

  77. Narata R, Wangkaew S, Kasitanon N, Louthrenoo W. Community-acquired pneumonia in Thai patients with systemic lupus erythematosus. Southeast Asian J Trop Med Public Health. 2007;38:528–36.

    PubMed  Google Scholar 

  78. Hunter CJ, Petrosyan M, Asch M. Dissemination of Strongyloides stercoralis in a patient with systemic lupus erythematosus after initiation of albendazole: a case report. J Med Case Rep. 2008;14:156.

    Article  Google Scholar 

  79. Rojo-Marcos G, Cuadros-González J, González-Juárez MJ, Gómez-Ayerbe C. Strongyloides stercoralis hyperinfection syndrome in a Colombian patient receiving immunosuppressive treatment. Enferm Infecc Microbiol Clin. 2009;27:432–4.

    Article  Google Scholar 

  80. Mohanasundaram K, Rajasekaran K, Selvaraj J, Balasubramanian A. Successful treatment of Strongyloides stercoralis hyperinfection in a case of systemic lupus erythematosus – review of the literature regarding various treatment schedules. Trop Dr. 2012;42:223–5.

    Article  Google Scholar 

  81. Gonzalez-Ibarra F, Chevli P, Schachter L, Kaur M, Eivaz-Mohammadi S, Tashtoush B, Matta J, Syed AK, Marian V. Strongyloidiasis and diffuse alveolar hemorrhage in a patient with systemic lupus erythematosus. Case Rep Med. 2014;2014:278390. https://doi.org/10.1155/2014/278390.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Yung EE, Lee CM, Boys J, Grabo DJ, Buxbaum JL, Chandrasoma PT. Strongyloidiasis hyperinfection in a patient with a history of systemic lupus erythematosus. Am J Trop Med Hyg. 2014;91:806–9.

    Article  Google Scholar 

  83. de Souza JN, Inês Ede J, Santiago M, Teixeira MC, Soares NM. Strongyloides stercoralis infection in patients with systemic lupus erythematosus: diagnosis and prevention of severe strongyloidiasis. Int J Rheum Dis. 2016;19:700–5.

    Article  Google Scholar 

  84. González-Echavarri C, Capdevila O, Espinosa G, Suárez S, Marín-Ballvé A, González-León R, Rodríguez-Carballeira M, Fonseca-Aizpuru E, Pinilla B, Pallarés L, Ruiz-Irastorza G, RELES, Autoimmune Diseases Study Group GEAS. Infections in newly diagnosed Spanish patients with systemic lupus erythematosus: data from the RELES cohort. Lupus. 2018;27:2253–61. https://doi.org/10.1177/0961203318811598.

    Article  PubMed  Google Scholar 

  85. Ocampo-Piraquive V, Nieto-Aristizábal I, Cañas CA, Tobón GJ. Mortality in systemic lupus erythematosus: causes, predictors and interventions. Expert Rev Clin Immunol. 2018;14:1043–53. https://doi.org/10.1080/1744666X.2018.1538789.

    Article  CAS  PubMed  Google Scholar 

  86. Ajmani S, Singh H, Chaturvedi S, Mishra R, Rai MK, Jain A, Misra DP, Agarwal V. Utility of neutrophil CD64 and serum TREM-1 in distinguishing bacterial infection from disease flare in SLE and ANCA-associated vasculitis. Clin Rheumatol. 2018. https://doi.org/10.1007/s10067-018-4334-5.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jara, L.J., Medina, G., Cruz-Domínguez, M.d.P., Martinez Bencomo, M.A., Lira Tecpa, J., Saavedra, M.A. (2019). Infections in Systemic Lupus Erythematosus. In: Espinoza, L. (eds) Infections and the Rheumatic Diseases. Springer, Cham. https://doi.org/10.1007/978-3-030-23311-2_38

Download citation

Publish with us

Policies and ethics