Skip to main content

Ecohydrological Controls on the Deposition of Non-rainfall Water, N, and P to Dryland Ecosystems

  • Chapter
  • First Online:
Dryland Ecohydrology

Abstract

It is widely recognized that plant canopies can alter their local environment in ways that enhance their own productivity. “Islands of fertility” are associated with plant canopies in a variety of ecosystems (Kellman, J Ecol 67:565–577, 1979; Schlesinger and Pilmanis, Biogeochemistry 42:169–187, 1998; Matson, Oecologia 85:241–246, 1990; Schlesinger et al., Science 247:1043–1048, 1990; McGowan and Ledgard, J R Soc N Z 35:269–277, 2005) and are due in part to ecohydrological feedbacks (Charley and West, J Ecol 63:945–963, 1975; Wilson and Agnew, Adv Ecol Res 23:263–336, 1992; Rietkerk and van de Koppel, Oikos 79:69–76, 1997; Schlesinger et al., Science 247:1043–1048, 1990; D’Odorico et al., J Geophys Res 112:G04010, 2007; DeLonge, Hydrologically influenced feedbacks between phosphorus and vegetation in dry tropical forests, University of Virginia, Charlottesville, VA, 2007; Ridolfi et al., Water Resour Res 44:W01435, 2008; Das et al., J Geophys Res 116, 2011; Chap. 17). Plant canopies may enable a positive feedback between vegetation and either fog water or nutrient deposition by acting as a large trapping surface to scavenge moisture, dust, and aerosols from the atmosphere (Rea et al., Environ Sci Technol 34:2418–2425, 2000). In dryland ecosystems, such a phenomenon has been documented whereby moisture was observed on plants and artificial surfaces, yet no visible moistening of the bare soil surface was evident (Kidron, Atmos Res 55:257–270, 2000). Plants have developed many distinct strategies to allow the use of fog water through the canopy (Wang et al., Wiley Interdiscip Rev Water 30:2077–2086, 2017). For example, some bromeliads in Mexico develop specialized trichomes (Andrade, J Trop Ecol 19:479–488, 2003), and several Crassula species located in the Namib Desert take water up through hydathodes and into their leaves (Martin and Willert, Plant Biol 2:229–242, 2000). Besides providing water sources, fog water can also aid in modifying the vegetation’s energy balance (Sudmeyer et al., J Hydrol 154:255–269, 1994), decrease transpiration (Barradas and Glez-MedellÚn, Int J Biometeorol 43:1–7, 1999), increase stomata conductance, and increase CO2 uptake (Martin and Willert, Plant Biol 2:229–242, 2000). Thus, changes in land cover have the potential to significantly alter water and nutrient dynamics in some ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agam N, Berliner PR (2006) Dew formation and water vapor adsorption in semi-arid environments—a review. J Arid Environ 65(4):572–590

    Article  Google Scholar 

  • Agam N (2014) Comment on “Microlysimeter station for long term non-rainfall water input and evaporation studies” by Uclés et al. Agric For Meteorol 194:255–256

    Article  Google Scholar 

  • Andrade JL (2003) Dew deposition on epiphytic bromeliad leaves: an important event in a Mexican tropical dry deciduous forest. J Trop Ecol 19:479–488

    Article  Google Scholar 

  • Barbosa O, Marquet PA, Bacigalupe LD, Christie DA, Del-Val E, Gutierrez AG et al (2010) Interactions among patch area, forest structure and water fluxes in a fog-inundated forest ecosystem in semi-arid Chile. Funct Ecol 24(4):909–917

    Article  Google Scholar 

  • Barradas VL, Glez-Medellín MG (1999) Dew and its effect on two heliophile understorey species of a tropical dry deciduous forest in Mexico. Int J Biometeorol 43:1–7

    Article  Google Scholar 

  • Beiderwieden E, Schmidt A, Hsia YJ, Chang SC, Wrzesinsky T, Klemm O (2007) Nutrient input through occult and wet deposition into a subtropical montane cloud forest. Water Air Soil Pollut 186(1–4):273–288

    Article  CAS  Google Scholar 

  • Beswick KM, Hargreaves KJ, Gallagher MW, Choularton TW, Fowler D (1991) Size-resolved measurements of cloud droplet deposition velocity to a forest canopy using an eddy correlation technique. Q J R Meteorol Soc 117(499):623–645

    Article  Google Scholar 

  • Bruijnzeel LA, Veneklaas EL (1998) Climatic conditions in tropical montane forest productivity: the fog has not lifted yet. Ecology 79:3–9

    Article  Google Scholar 

  • Bruijnzeel LA (1991) Nutrient input-output budgets of tropical forest ecosystems: a review. J Trop Ecol 7(1):1–24

    Article  Google Scholar 

  • Bruijnzeel LA, Proctor J (1995) Hydrology and biochemistry of tropical montane cloud forests: what do we really know? In: Hamilton LS, Juvik JO, Scatena FN (eds) Tropical Montane Cloud Forests, Ecological studies, vol 110. Springer, New York, pp 38–78

    Chapter  Google Scholar 

  • Burgess SSO, Dawson TE (2004) The contribution of fog to the water relations of Sequoia sempervirens (D. Don): foliar uptake and prevention of dehydration. Plant Cell Environ 27(8):1023–1034

    Article  Google Scholar 

  • Campo J, Maass M, Jaramillo VJ, Martínez-Yrízar A, Sarukhán J (2001) Phosphorus cycling in a Mexican tropical dry forest ecosystem. Biogeochemistry 53:161–179

    Article  CAS  Google Scholar 

  • Chadwick OA, Derry LA, Vitousek PM, Heubert BJ, Hedin LO (1999) Changing sources of nutrients during four million years of ecosystem development. Nature 397:491–496

    Article  CAS  Google Scholar 

  • Chapin FS III, Kedrowski RA (1983) Seasonal changes in nitrogen and phosphorus fractions and autumn retranslocation in evergreen and deciduous taiga trees. Ecology 64(2):376–391

    Article  CAS  Google Scholar 

  • Chamberlain AC, Little P (1981) Transport and capture of particles by vegetation. In: Symposium-British Ecological Society, Edinburgh

    Google Scholar 

  • Chang SC, Lai IL, Wu JT (2002) Estimation of fog deposition on epiphytic bryophytes in a subtropical montane forest ecosystem in northeastern Taiwan. Atmos Res 64(1–4):159–167

    Article  CAS  Google Scholar 

  • Charley JL, West NE (1975) Plant-induced soil chemical patterns in some shrub-dominated semi-desert ecosystems of Utah. J Ecol 63:945–963

    Article  CAS  Google Scholar 

  • Clark KL, Nadkarni NM, Schaefer D, Gholz HL (1998) Cloud water and precipitation chemistry in a tropical montane forest, Monteverde, Costa Rica. Atmos Environ 32(9):1595–1603

    Article  CAS  Google Scholar 

  • Clarke RT (1986) The interception process in tropical rain forests: a literature review and critique. Acta Amazon 16:225–238

    Article  Google Scholar 

  • Corbin JD, Thomsen MA, Dawson TE, D’Antonio CM (2005) Summer water use by California coastal prairie grasses: fog, drought, and community composition. Oecologia 145(4):511–521

    Article  PubMed  Google Scholar 

  • Crews TE, Kitayama K, Fownes JH, Riley RH, Herbert DA, Mueller-Dombois D, Vitousek PM (1995) Changes in soil phosphorus fractions and ecosystem dynamics across a long chronosequence in Hawaii. Ecology 76(5):1407–1424

    Article  Google Scholar 

  • Das R, Lawrence D, D’Odorico P, DeLonge M (2011) Impact of land use change on atmospheric P inputs in a tropical dry forest. J Geophys Res 116. https://doi.org/10.1029/2010JG001403

  • Davidson CI, Wu YL (1990) Dry deposition of particles and vapors. In: Lindberg SE, Page AL, Norton SA (eds) Advances in environmental sciences, acid precipitation, Sources, depositions and canopy interactions, vol 3. Springer, New York, pp 104–216

    Google Scholar 

  • Dawson TE (1998) Fog in the California redwood forest: ecosystem inputs and use by plants. Oecologia 117:476–485

    Article  CAS  PubMed  Google Scholar 

  • DeLonge MS (2007) Hydrologically influenced feedbacks between phosphorus and vegetation in dry tropical forests. M.S. Thesis. University of Virginia, Charlottesville, VA, pp 75

    Google Scholar 

  • DeLonge MS, D’Odorico P, Lawrence D (2008) Feedbacks between phosphorus deposition and canopy cover: the emergence of multiple stable states in tropical dry forests. Glob Chang Biol 14:154–160

    Google Scholar 

  • D’Odorico P, Caylor K, Okin GS, Scanlon TM (2007) On soil moisture-vegetation feedbacks and their possible effects on the dynamics of dryland ecosystems. J Geophys Res 112:G04010. https://doi.org/10.1029/2006JG000379

    Article  Google Scholar 

  • De Schrijver A, Geudens G, Augusto L, Staelens J, Mertens J, Wuyts K, Gielis L, Verheyen K (2007) The effect of forest type on throughfall deposition and seepage flux: a review. Oecologia 153(3):663–674

    Article  PubMed  Google Scholar 

  • De Schrijver A, Staelens J, Wuyts K, Van Hoydonck G, Janssen N, Mertens J, Gielis L, Geudens G, Augusto L, Verheyen K (2008) Effect of vegetation type on throughfall deposition and seepage flux. Environ Pollut 153(2):295–303

    Article  PubMed  CAS  Google Scholar 

  • Dingman SL (2002) Physical hydrology. Macmillan, New York, 646 p

    Google Scholar 

  • Dise NB, Matzner E, Gundersen P (1998) Synthesis of nitrogen pools and fluxes from European forest ecosystems. In: Biogeochemical investigations at watershed, landscape, and regional scales. Springer, Dordrecht, pp 143–154

    Chapter  Google Scholar 

  • Domínguez C, Garcia Vera M, Chaumont C, Tournebize J, Villacís M, d’Ozouville N, Violette S (2017) Quantification of cloud water interception in the canopy vegetation from fog gauge measurements. Hydrol Process 31:3191–3205

    Article  Google Scholar 

  • Duvdevani S (1947) An optical method of dew estimation. Q J Roy Meteorol Soc 73:282–296

    Article  Google Scholar 

  • Eberhardt PJ, Pritchett WL (1971) Foliar applications of nitrogen to slash pine seedlings. Plant Soil 34(1):731–739

    Article  Google Scholar 

  • Eugster W, Burkard R, Holwerda F, Scatena FN, Bruijnzeel LA (2006) Characteristics of fog and fogwater fluxes in a Puerto Rican elfin cloud forest. Agric For Meteorol 139:288–306

    Article  Google Scholar 

  • Evenari M, Shanan L, Tadmor N (1982) The Negev: the challenge of a desert. Harvard University Press, Cambridge

    Book  Google Scholar 

  • Filoso S, Williams MR, Melack JM (1999) Composition and deposition of throughfall in a flooded forest archipelago. Biogeochemistry 45(2):169–195

    Google Scholar 

  • Fischer D, Still C, Williams A (2009) Significance of summer fog and overcast for drought stress and ecological functioning of coastal California endemic plant species. J Biogeogr 36:783–799

    Article  Google Scholar 

  • Forti MC, Neal C (1992) Spatial variability of throughfall chemistry in a tropical rainforest (Central Amazonia, Brazil). Sci Total Environ 120:245–259

    Article  CAS  Google Scholar 

  • Foster P (2001) The potential negative impacts of global climate change on tropical montane cloud forests. Earth Sci Rev 55(1–2):73–106

    Article  Google Scholar 

  • Fowler D, Cape JN, Unsworth MH (1989) Deposition of atmospheric pollutants on forests. Philos Trans R Soc London B: Biol Sci 324(1223):247–265

    Article  Google Scholar 

  • Gutterman Y, Shem-Tov S (1997) Mucilaginous seed coat structure of Carrichtera annua and Anastatica hierochuntica from the Negev Desert highlands of Israel, and its adhesion to the soil crust. J Arid Environ 35(4):695–705

    Article  Google Scholar 

  • Hambuckers A, Remacle J (1993) Relative importance of factors controlling the leaching and uptake of inorganic ions in the canopy of a spruce forest. Biogeochemistry 23(2):99–117

    Article  CAS  Google Scholar 

  • Heusinkveld BG, Berkowicz SM, Jacobs AF, Holtslag AA, Hillen WC (2006) An automated microlysimeter to study dew formation and evaporation in arid and semiarid regions. J Hydrometeorol 7:825–832

    Article  Google Scholar 

  • Holder CD (2003) Fog precipitation in the Sierra de las Minas Biosphere, Reserve, Guatemala. Hydrol Process 17:2001–2010

    Article  Google Scholar 

  • Holwerda F, Burkard R, Eugster W, Scatena F, Meesters A, Bruijnzeel L (2006) Estimating fog deposition at a Puerto Rican elfin cloud forest site: comparison of the water budget and eddy covariance methods. Hydrol Process 20:2669–2692

    Article  Google Scholar 

  • Houle D, Ouimet R, Paquin R, Lafamme JG (1999) Interactions of atmospheric deposition with a mixed hardwood and a coniferous forest canopy at the Lake Clair Watershed (Duchesnay, Quebec). Can J For Res 29:1944–1957

    Article  CAS  Google Scholar 

  • Houston J (2002) Groundwater recharge through an alluvial fan in the Atacama Desert, northern Chile: mechanisms, magnitudes and causes. Hydrol Process 16:3019–3035

    Article  Google Scholar 

  • Ignatova N, Dambrine E (2000) Canopy uptake of N deposition in spruce (Picea abies L. Karst.) stands. Ann For Sci 57:113–120

    Article  Google Scholar 

  • Ingraham NL, Matthews RA (1995) The importance of fog-drip water to vegetation: Point Reyes Peninsula, California. J Hydrol 164:269–285

    Article  CAS  Google Scholar 

  • Jacobs AFG, Van Pul WAJ, Van Dijken A (1990) Similarity moisture dew profiles within a corn canopy. J Appl Meteorol 29(12):1300–1306

    Article  Google Scholar 

  • Jacobs AF, Heusinkveld BG, Berkowicz SM (1999) Dew deposition and drying in a desert system: a simple simulation model. J Arid Environ 42(3):211–222

    Article  Google Scholar 

  • Jacobs AF, Heusinkveld BG, Berkowicz SM (2000) Dew measurements along a longitudinal sand dune transect, Negev Desert, Israel. Int J Biometeorol 43(4):184–190

    Article  CAS  PubMed  Google Scholar 

  • Jacobs AF, Heusinkveld BG, Berkowicz SM (2002) A simple model for potential dewfall in an arid region. Atmos Res 64(1):285–295

    Article  Google Scholar 

  • Johnson DW, Lindberg SE (1992) Processing of acidic deposition. In: Atmospheric deposition and forest nutrient cycling. Springer, New York, pp 426–466

    Chapter  Google Scholar 

  • Jordan C, Golley F, Hall J, Hall J (1980) Nutrient scavenging of rainfall by the canopy of an Amazonian rain forest. Biotropica 12:61–66

    Article  Google Scholar 

  • Kaseke KF, Wang L, Seely MK (2017) Nonrainfall water origins and formation mechanisms. Sci Adv 3:e1603131

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Katata G, Nagai H, Kajino M, Ueda H, Hozumi Y (2010) Numerical study of fog deposition on vegetation for atmosphere–land interactions in semi-arid and arid regions. Agric For Meteorol 150(3):340–353

    Article  Google Scholar 

  • Kauffman JB, Sanford RL Jr, Cummings DL, Salcedo IH, Sampaio EV (1993) Biomass and nutrient dynamics associated with slash fires in neotropical dry forests. Ecology 74(1):140–151

    Article  Google Scholar 

  • Kellman M, Hudson J, Sanmugadas K (1982) Temporal variability in atmospheric nutrient influx to a tropical ecosystem. Biotropica 14(1):1–9

    Article  Google Scholar 

  • Kellman M (1979) Soil enrichment by neotropical savanna trees. J Ecol 67:565–577

    Article  CAS  Google Scholar 

  • Kidron GJ (2000) Analysis of dew precipitation in three habitats within a small arid drainage basin, Negev highlands, Israel. Atmos Res 55(3–4):257–270

    Article  Google Scholar 

  • Klemm O, Wrzesinsky T, Scheer C (2005) Fog water flux at a canopy top: direct measurement versus one-dimensional model. Atmos Environ 39:5375–5386

    Article  CAS  Google Scholar 

  • Lawton RO, Nair US, Pielke RA Sr, Welch RM (2001) Climatic impact of tropical lowland deforestation on nearby montane cloud forests. Science 294:584–587

    CAS  PubMed  Google Scholar 

  • Liu WJ, Liu WY, Li PJ, Gao L, Shen YX, Wang PY, Zhang YP, Li HM (2007) Using stable isotopes to determine sources of fog drip in a tropical seasonal rain forest of Xishuangbanna, SW China. Agric For Meteorol 143:80–91

    Article  Google Scholar 

  • Lloyd CR, Gash JHC, Shuttleworth WJU, Marques F, De O F (1988) The measurement and modelling of rainfall interception by Amazonian rain forest. Agric For Meteorol 43:277–294

    Article  Google Scholar 

  • Lovett GM (1984) Rates and mechanisms of cloud water deposition to a subalpine balsam fir forest. Atmos Environ (1967) 18(2):361–371

    Article  Google Scholar 

  • Lovett GM, Lindberg SM (1984) Mixed oak forest as determined by analysis of throughfall. J Appl Ecol 21:1013–1027

    Article  Google Scholar 

  • Lovett GM, Lindberg SE (1993) Atmospheric deposition and canopy interactions of nitrogen in forests. Can J For Res 23(8):1603–1616

    Article  CAS  Google Scholar 

  • Lovett GM, Nolan SS, Driscoll CT, Fahey TJ (1996) Factors regulating throughfall flux in a New Hampshire forested landscape. Can J For Res 26(12):2134–2144

    Article  Google Scholar 

  • Malek E, McCurdy G, Giles B (1999) Dew contribution to the annual water balances in semi-arid desert valleys. J Arid Environ 42(2):71–80

    Article  Google Scholar 

  • Martin C, Willert D v (2000) Leaf epidermal hydathodes and the ecophysiological consequences of foliar water uptake in species of Crassula from the Namib Desert in southern Africa. Plant Biol 2:229–242

    Article  Google Scholar 

  • Matson P (1990) Plant-soil interactions in primary succession at Hawaii Volcanoes National Park. Oecologia 85:241–246

    Article  PubMed  Google Scholar 

  • Mayer R, Ulrich B (1974) Conclusions on the filtering action of forests from ecosystem analysis. Oecol Plant 9(2):157–168

    Google Scholar 

  • McGowan H, Ledgard N (2005) Enhanced dust deposition by trees recently established on degraded rangeland. J R Soc N Z 35(3):269–277

    Article  Google Scholar 

  • Miller EC, Panek JA, Friedland AJ, Kadlecek J, Mohnen VA (1993) Atmospheric deposition to a high-elevation forest at Whiteface Mountain, New York, USA. Tellus B Chem Phys Meteorol 45(3):209–227

    Article  Google Scholar 

  • Morris DM, Gordon AG, Gordon AM (2003) Patterns of canopy interception and throughfall along a topographic sequence for black spruce dominated forest ecosystems in northwestern Ontario. Can J For Res 33(6):1046–1060

    Article  Google Scholar 

  • Newman EI (1995) Phosphorus inputs to terrestrial ecosystems. J Ecol 83:713–726

    Article  Google Scholar 

  • Parker AR, Lawrence CR (2001) Water capture by a desert beetle. Nature 414(6859):33

    Article  CAS  PubMed  Google Scholar 

  • Parker GG (1983) Throughfall and stemflow in the forest nutrient cycle. In: Macfayden A, Ford ED (eds) Advances in ecological research, vol 13. Academic, New York, pp 57–134

    Google Scholar 

  • Potter CS, Ragsdale HL, Swank WT (1991) Atmospheric deposition and foliar leaching in a regenerating southern Appalachian forest canopy. J Ecol 79(1):97–115

    Article  Google Scholar 

  • Rea AW, Lindberg SE, Keeler GJ (2000) Assessment of dry deposition and foliar leaching of mercury and selected trace elements based on washed foliar and surrogate surfaces. Environ Sci Technol 34:2418–2425

    Article  CAS  Google Scholar 

  • Richards BN, Charley JL (1983) Mineral cycling processes and system stability in the eucalypt forest. For Ecol Manag 7(1):31–47

    Article  Google Scholar 

  • Ridolfi L, D’Odorico P, Laio F, Tamea S, Rodriguez-Iturbe I (2008) Coupled stochastic dynamics of water table and soil moisture in bare soil conditions. Water Resour Res 44:W01435. https://doi.org/10.1029/2007WR006707

    Article  Google Scholar 

  • Rietkerk M, van de Koppel J (1997) Alternate stable states and threshold effects in semiarid grazing systems. Oikos 79:69–76

    Article  Google Scholar 

  • Ritter A, Regalado CM, Aschan G (2008) Fog water collection in a subtropical elfin laurel forest of the Garajonay National Park (Canary Islands): a combined approach using artificial fog catchers and a physically based impaction model. J Hydrometeorol 9(5):920–935

    Article  Google Scholar 

  • Roberts TM (1975) A review of some biological effects of lead emissions from primary and secondary smelters. In: International conference on heavy metals in the environment, vol II, Part 2. University of Toronto, Toronto, pp 503–532

    Google Scholar 

  • Runyan CW, D’Odorico P, Lawrence D (2012a) Physical and biological feedbacks of deforestation. Rev Geophys 50(4):RG4006

    Article  Google Scholar 

  • Runyan CW, D’Odorico P, Lawrence D (2012b) Effect of repeated deforestation on vegetation dynamics for phosphorus-limited tropical forests. J Geophys Res Biogeo 117:G01008

    Article  Google Scholar 

  • Runyan CW, D’Odorico P, Vandecar KL, Das R, Schmook B, Lawrence D (2013a) Positive feedbacks between phosphorus deposition and forest canopy trapping, evidence from Southern Mexico. J Geophys Res Biogeo 118(4):1521–1531

    Article  Google Scholar 

  • Runyan CW, Lawrence D, Vandecar KL, D’odorico P (2013b) Experimental evidence for limited leaching of phosphorus from canopy leaves in a tropical dry forest. Ecohydrology 6(5):806–817

    CAS  Google Scholar 

  • Runyan CW, D’Odorico P, Lawrence D (2012c) The effect of repeated deforestation on vegetation dynamics for phosphorus limited tropical forests. J Geophys Res 117:G01008. https://doi.org/10.1029/2011JG001841

    Article  Google Scholar 

  • Scherbatskoy T, Tyree MT (1990) Kinetics of exchange of ions between artificial precipitation and maple leaf surfaces. New Phytol 114(4):703–712

    Article  CAS  Google Scholar 

  • Schlesinger WH, Reynolds JF, Cunningham GF et al (1990) Biological feedbacks in global desertification. Science 247:1043–1048

    Article  CAS  PubMed  Google Scholar 

  • Schlesinger WH, Pilmanis AM (1998) Plant–soil interactions in deserts. Biogeochemistry 42:169–187

    Article  Google Scholar 

  • Slinn WGN (1982) Predictions for particle deposition to vegetative canopies. Atmos Environ (1967) 16(7):1785–1794

    Article  Google Scholar 

  • Staelens J, Houle D, De Schrijver A, Neirynck J, Verheyen K (2008) Calculating dry deposition and canopy exchange with the canopy budget model: review of assumptions and application to two deciduous forests. Water Air Soil Pollut 191:149–169

    Article  CAS  Google Scholar 

  • Sudmeyer R, Nulsen R, Scott W (1994) Measured dewfall and potential condensation on grazed pasture in the Collie River basin, southwestern Australia. J Hydrol 154:255–269

    Article  Google Scholar 

  • Tobón C, Sevink J, Verstraten JM (2004) Solute fluxes in throughfall and stemflow in four forest ecosystems in northwest Amazonia. Biogeochemistry 70:1–25

    Article  Google Scholar 

  • Uclés O, Villagarcía L, Cantón Y, Domingo F (2013) Microlysimeter station for long term non-rainfall water input and evaporation studies. Agric For Meteorol 182:13–20

    Article  Google Scholar 

  • Vandecar KL, Runyan CW, D’Odorico P, Lawrence D, Schmook B, Das R (2015) Phosphorus input through fog deposition in a dry tropical forest. J Geophys Res Biogeosci 120(12):2493–2504

    Article  CAS  Google Scholar 

  • Veneklaas EJ (1990) Nutrient fluxes in bulk precipitation and throughfall in two montane tropical forests, Colombia. J Ecol 78(4):974–992

    Article  Google Scholar 

  • Verry ES, Timmons DR (1977) Precipitation nutrients in the open and under two forests in Minnesota. Can J For Res 7(1):112–119

    Article  CAS  Google Scholar 

  • Vetaas OR (1992) Micro-site effects of trees and shrubs in dry savannas. J Veg Sci 3:337–344

    Article  Google Scholar 

  • Viles HA (2008) Understanding dryland landscape dynamics: do biological crusts hold the key? Geogr Compass 2(3):899–919

    Article  Google Scholar 

  • Vitousek PM, Sanford RL Jr (1986) Nutrient cycling in moist tropical forest. Annu Rev Ecol Syst 17:137–167

    Article  Google Scholar 

  • Walmsley JL, Schemenauer R, Bridgman HA (1996) A method for estimating the hydrologic input from fog in mountainous terrain. J Appl Meteorol 35:2237–2249

    Article  Google Scholar 

  • Wang L, Kaseke KF, Seely M (2017) The effects of non-rainfall water inputs on ecosystem functions. Wiley Interdiscip Rev Water 30:2077–2086

    Google Scholar 

  • Weathers KC, Likens GE (1997) Clouds in southern Chile: an important source of nitrogen to nitrogen-limited ecosystems? Environ Sci Tech 31(1):210–213

    Article  CAS  Google Scholar 

  • Weathers KC, Likens GE, Bormann FH, Bicknell SH, Bormann BT, Daube BC, Eaton JS, Galloway JN, Keene WC (1988) Cloudwater chemistry from ten sites in North America. Environ Sci Technol 22(9):1018–1026

    Article  CAS  Google Scholar 

  • Weathers KC, Simkin SM, Lovett GM, Lindberg SE (2006) Empirical modeling of atmospheric deposition in mountainous landscapes. Ecol Appl 16(4):1590–1607

    Article  PubMed  Google Scholar 

  • Weaver PL (1972) Cloud moisture interception in the Luquillo Mountains of Puerto Rico. Carrib J Sci 12:129–144

    Google Scholar 

  • Wedding JB, Carlson RW, Stukel JJ, Bazzaz FA (1975) Aerosol deposition on plant leaves. Environ Sci Technol 9(2):151–153

    Article  CAS  Google Scholar 

  • Willis AJ (1985) Dune water and nutrient regimes—their ecological relevance. In: Sand Dunes and Their Management Report of a meeting, Swansea, 1984 Nature Conservancy Council; Focus on Nature Conservation. vol 13, pp 159–174

    Google Scholar 

  • Wilson JB, Agnew ADQ (1992) Positive-feedback switches in plant communities. Adv Ecol Res 23:263–336

    Article  Google Scholar 

  • Yang X, Ma N, Dong J, Zhu B, Xu B, Ma Z, Liu J (2010) Recharge to the inter-dune lakes and Holocene climatic changes in the Badain Jaran Desert, western China. Quatern Res 73:10–19

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Runyan, C., Wang, L., Lawrence, D., D’Odorico, P. (2019). Ecohydrological Controls on the Deposition of Non-rainfall Water, N, and P to Dryland Ecosystems. In: D'Odorico, P., Porporato, A., Wilkinson Runyan, C. (eds) Dryland Ecohydrology. Springer, Cham. https://doi.org/10.1007/978-3-030-23269-6_6

Download citation

Publish with us

Policies and ethics