Skip to main content

Safflower (Carthamus tinctorius L.) Breeding

  • Chapter
  • First Online:
Advances in Plant Breeding Strategies: Industrial and Food Crops

Abstract

As an oilseed source, safflower (Carthamus tinctorius L.) also contains natural dyes known for their pharmaceutical properties in the treatment of chronic disorders. The production of this herbaceous plant originated in China from which it was dispersed to the Mediterranean countries. The plant is recognized for its use in herbal medicine, birdseed, animal feed, protein-containing ingredients and cooking oil (full of linoleic and oleic fatty acids). Of the linoleic-acid content of safflower, nearly 75%, is vital for a healthy human diet. Due to its adaptability to simultaneously yield oleic and linoleic oils, it is among the substitutes for the common agricultural products raised in marginal farming lands all over the world. No consensus so far has been reached in studies done on safflower. However, it seems necessary to exploit the potentiality of this underutilized plant. The detection and development of novel safflower ideotypes will enhance the suitability of this plant to various prevailing conditions, thereby enabling it to be incorporated into different intercropping practices. Classic genetic studies have an important role in making an educated guess concerning the action of genes and heritability of various agronomic and pheno-morphologic characteristics. Recently, biotechnological developments have contributed to safflower breeding. These practices, however, have not been well supported molecularly. The present chapter articulates different aspects of safflower breeding including conventional breeding methodologies, agronomic performance and biotechnological tools for improving safflower cultivation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Al-Snafi AE (2015) The chemical constituents and pharmacological importance of Carthamus tinctorius – an overview. J Pharm Biol 5(3):143–166

    Google Scholar 

  • Ambreen H, Kumar S, Variath MT et al (2015) Development of genomic microsatellite markers in Carthamus tinctorius L. (safflower) using next generation sequencing and assessment of their cross-species transferability and utility for diversity analysis. PLoS One 10(8):e0135443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Amini F, Saeidi G, Arzani A (2008) Study of genetic diversity in safflower genotypes using agro-morphological traits and RAPD markers. Euphytica 163:21–30

    Article  CAS  Google Scholar 

  • Anjani K (2008) Development of an effective cytoplasmic genetic male sterility system through conventional breeding in safflower in India. In: Proceeding of the 7th international safflower conference, Wagga Wagga, Australia, p 3

    Google Scholar 

  • Ashri A (1975) Evaluation of the germ plasm collection of safflower, Carthamus tinctorius L. V. distribution and regional divergence for morphological characters. Euphytica 24(3):651–659

    Article  Google Scholar 

  • Ashri A, Knowles PF (1960) Cytogenetics of safflower (Carthamus L.) species and their hybrids. Agron J 52(1):11–17

    Article  Google Scholar 

  • Bassiri A (1977) Identification and polymorphism of cultivars and wild ecotypes of safflower based on isozyme patterns. Euphytica 26(3):709–719

    Article  CAS  Google Scholar 

  • Baydar H, Gökmen O, Friedt W (2003) Hybrid seed production in safflower (Carthamus tinctorius) following the induction of male sterility by gibberellic acid. Plant Breed 122(5):459–461

    Article  CAS  Google Scholar 

  • Belide S, Hac L, Singh SP et al (2011) Agrobacterium-mediated transformation of safflower and the efficient recovery of transgenic plants via grafting. Plant Methods 7:12. https://doi.org/10.1186/1746-4811-7-12

  • Bowers JE, Pearl SA, Burke JM (2016) Genetic mapping of millions of SNPs in safflower (Carthamus tinctorius L.) via whole-genome resequencing. G3: Genes, Genomes, Genetics 6(7):2203–2211

    Article  Google Scholar 

  • Bowles VG, Davis C, Mayerhofer R et al (2010) A phylogenetic investigation of Carthamus combining sequence and microsatellite data. Plant Syst Evol 287:85–97

    Article  CAS  Google Scholar 

  • Bradley VL, Guenthner RL, Johnson RC, Hannan RM (1999) Evaluation of safflower germplasm for ornamental use. In: Janick J (ed) Perspectives on new crops and new uses. ASHS Press, Alexandria, pp 433–435

    Google Scholar 

  • CamaÅŸ N, Esendal E (2006) Estimates of broad-sense heritability for seed yield and yield components of safflower (Carthamus tinctorius L.). Hereditas 143:55–57

    Article  PubMed  Google Scholar 

  • Cao S, Zhou X-R, Wood CC, Green AG et al (2013) A large and functionally diverse family of Fad2 genes in safflower (Carthamus tinctorius L.). BMC Plant Biol 13(1):5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carlsson AS, Zhu L-H, Andersson M, Hofvander P (2014) Platform crops amenable to genetic engineering-a requirement for successful production of bio-industrial oils through genetic engineering. Biocatal Agric Biotechnol 3(1):58–64

    Article  Google Scholar 

  • Cervantes-Martínez J, Rey-Ponce M, Velázquez-Cágal M (2001) Evaluation of accessions from world collection of safflower for Alternaria incidence and seed oil content. In: Proceedings of the 5th international safflower conference, Williston, North Dakota and Sidney, MT, USA, pp 23–27

    Google Scholar 

  • Chapman MA, Chang J, Weisman D et al (2007) Universal markers for comparative mapping and phylogenetic analysis in the Asteraceae (Compositae). Theor Appl Genet 115:747–755

    Article  CAS  PubMed  Google Scholar 

  • Chapman MA, Hvala J, Strever J, Burke JM (2010) Population genetic analysis of safflower (Carthamus tinctorius; Asteraceae) reveals a near Eastern origin and five centers of diversity. Am J Bot 97:831–840

    Article  CAS  PubMed  Google Scholar 

  • Claassen C (1950) Natural and controlled crossing in safflower, Carthamus tinctorius L. Agron J 42:381–384

    Article  Google Scholar 

  • Claassen CE (1952) Inheritance of sterility, flower color, spinelessness, attached pappus and rust resistance in safflower, Carthamus tinctorius. Bull Agric Exp Stat Nebraska No. 171

    Google Scholar 

  • Collard BC, Mackill DJ (2008) Marker-assisted selection: an approach for precision plant breeding in the twenty-first century. Philos Trans R Soc B Biol Sci 363(1491):557–572

    Article  CAS  Google Scholar 

  • Collard BCY, Jahufer MZZ, Brouwer JB, Pang ECK (2005) An introduction to markers, quantitative trait loci (QTL) mapping and marker-assisted selection for crop improvement: the basic concepts. Euphytica 142:169–196

    Article  CAS  Google Scholar 

  • Dajue L, Mündel H-H (1996) Safflower, Carthamus tinctorius L, vol 7. Bioversity International, Rome

    Google Scholar 

  • Derakhshan E, Majidi M, Sharafi Y, Mirlohi A (2014) Discrimination and genetic diversity of cultivated and wild safflowers (Carthamus spp.) using EST-microsatellites markers. Biochem Syst Ecol 54:130–136

    Article  CAS  Google Scholar 

  • Deshmukh M, Patil B, Chopade P (1991) General evaluation of some selected lines of safflower (Carthamus tinctorius L.). Indian J Agric Res 25:181–188

    Google Scholar 

  • Dhumale D, Merat D, Deshmukh D (1998) Simplified triple test cross analysis in safflower (Carthamus tinctorius L.). Indian J Genet Plant Breed 58(3):323–326

    Google Scholar 

  • Dwiedi S, Upadhyaya H, Hegde D (2005) Development of core collection in safflower (Carthamus tinctorius L.) germplasm. Genet Resour Crop Evol 52:821–830

    Article  Google Scholar 

  • Ebert W, Knowles P (1966) Inheritance of pericarp types, sterility, and dwarfness in several safflower crosses. Crop Sci 6(6):579–582

    Article  Google Scholar 

  • Ebrahimi F, Majidi MM, Arzani A, Mohammadi-Nejad G (2017) Association analysis of molecular markers with traits under drought stress in safflower. Crop Pasture Sci 68(2):167–175

    Article  CAS  Google Scholar 

  • Elfadl E, Reinbrecht C, Frick C, Claupein W (2009) Optimization of nitrogen rate and seed density for safflower (Carthamus tinctorius L.) production under low-input farming conditions in temperate climate. Field Crop Res 114(1):2–13

    Article  Google Scholar 

  • Estilai A, Knowles P (1980) Aneuploids in safflower. Crop Sci 20(4):516–518

    Article  Google Scholar 

  • Falconer DS, Mackay TFC (1996) Introduction to quantitative genetics. Longman, Harlow

    Google Scholar 

  • FAOSTAT (2016). http://faostat.fao.org

  • Fernandez-Martinez J, Del Rio M, De Haro A (1993) Survey of safflower (Carthamus tinctorius L.) germplasm for variants in fatty acid composition and other seed characters. Euphytica 69(1–2):115–122

    Article  CAS  Google Scholar 

  • Garcia-Moreno MJ, Fernandez-Martinez JM, Velasco L, Perez-Vich B (2011) Molecular tagging and candidate gene analysis of the high gamma tocopherol trait in safflower (Carthamus tinctorius L.). Mol Breed 28(3):367–379

    Article  CAS  Google Scholar 

  • Golkar P (2010) Genetic analysis of quantitative and qualitative characters of oil, seed yield components in safflower via diallel crosses. Dissertation, Isfahan University of Technology, Isfahan

    Google Scholar 

  • Golkar P (2011) Genetic analysis of earliness and its components in safflower (Carthamus tinctorius L.). Afr J Agric Res 6(14):3264–3271

    Google Scholar 

  • Golkar P (2014) Breeding improvements in safflower (Carthamus tinctorius L.): a review. Aust J Crop Sci 8(7):1079–1085

    Google Scholar 

  • Golkar P, Arzani A, Rezaei A et al (2009) Genetic variation of leaf antioxidants and chlorophyll content in safflower. Afr J Agric Res 4(12):1475–1482

    Google Scholar 

  • Golkar P, Arzani A, Rezaei A (2010) Inheritance of flower colour and spinelessness in safflower (Carthamus tinctorius L.). J Genet 89(2):259–262

    Article  CAS  PubMed  Google Scholar 

  • Golkar P, Arzani A, Rezaei AM (2011a) Genetic variation in safflower (Carthamus tinctorious L.) for seed quality-related traits and inter-simple sequence repeat (ISSR) markers. Int J Mol Sci 12:2664–2677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Golkar P, Arzani A, Rezaei R (2011b) Genetic analysis of oil content and fatty acid composition in safflower (Carthamus tinctorius L.). J Am Oil Chem Soc 88(7):975–982

    Article  CAS  Google Scholar 

  • Golkar P, Arzani A, Rezaei A (2012) Genetic analysis of agronomic traits in safflower (Carthamus tinctorious L.). Not Bot Hortic Agrobo 40(1):276–281

    Article  Google Scholar 

  • Gupta SK (2015) Breeding oilseed crops for sustainable production: opportunities and constraints. Academic, Cambridge MA

    Google Scholar 

  • Gupta R, Singh S (1988a) Diallel analysis for seed yield, oil content and other economic traits in safflower (Carthamus tinctorius L.). Genetika-Yugosl 20:161–173

    Google Scholar 

  • Gupta R, Singh S (1988b) Genetic analysis for earliness in safflower (Carthamus tinctorius L.). Genetika-Yugosl 20:219–227

    Google Scholar 

  • Hamdan YAS, Pérez-Vich B, Fernández-Martínez JM, Velasco L (2008) Inheritance of very high linoleic acid content and its relationship with nuclear male sterility in safflower. Plant Breed 127(5):507–509

    Article  Google Scholar 

  • Hamdan YAS, Pérez-Vich B, Fernández-Martínez JM, Velasco L (2009) Novel safflower germplasm with increased saturated fatty acid content. Crop Sci 49:127–132

    Article  CAS  Google Scholar 

  • Hamdan YAS, García-Moreno MJ, Redondo-Nevado J, Velasco L, Pérez-Vich B (2011) Development and characterization of genomic microsatellite markers in safflower (Carthamus tinctorius L.). Plant Breed 130(2):237–241

    Google Scholar 

  • Hamdan YAS, Garcia-Moreno MJ, Fernandez-Martinez JM, Velasco L, Perez-Vich B (2012) Mapping of major and modifying genes for high oleic acid content in safflower. Mol Breed 30:1279–1293

    Google Scholar 

  • Hamedi M (2014) In vitro callus induction and plant regeneration in Safflower (Carthamus tinctorius) and salt tolerance evaluation via in vitro condition. Dissertation, Isfahan University of Technology

    Google Scholar 

  • Hamedi M, Golkar P, Arzani A (2016) In vitro salt tolerance of safflower (Carthamus tinctorius L.) genotypes using different explants. Plant Tiss Cult Biotechnol 26(2):231–242

    Article  Google Scholar 

  • Harlan JR (1992) Crops and man, 2nd edn. American Society of Agronomy, Madison

    Google Scholar 

  • Heaton T, Knowles P (1980) Registration of UC-148 and UC-149 male-sterile safflower germplasm (Reg. Nos. GP 16 and GP 17). Crop Sci 20(4):554

    Article  Google Scholar 

  • Hill A (1989) Hybrid safflower breeding. In: Proceedings second international safflower conference, Hyderabad, India, pp 9–13

    Google Scholar 

  • Hussain MI, Lyra DA, Farooq M et al (2016) Salt and drought stresses in safflower: a review. Agron Sustain Dev 36(1):4

    Article  CAS  Google Scholar 

  • Jaradat A, Shahid M (2006) Patterns of phenotypic variation in a germplasm collection of Carthamus tinctorius L. from the Middle East. Genet Resour Crop Evol 53(2):225–244

    Article  Google Scholar 

  • Johnson RC, Bergman JW, Flynn CR (1999) Oil and meal characteristics of core and non-core safflower accessions from the USDA collection. Genet Resour Crop Evol 46(6):611–618

    Article  Google Scholar 

  • Johnson R, Ghorpade P, Bradley V (2001) Evaluation of the USDA core safflower collection for seven quantitative traits. In: Proceedings of the 5th international safflower conference, Williston, North Dakota and Sidney, Montana, USA, 2001. Safflower: a multipurpose species with unexploited potential and world adaptability, pp 149–152

    Google Scholar 

  • Johnson RC, Kisha TJ, Evans MA (2007) Characterizing safflower germplasm with AFLP molecular markers. Crop Sci 47:1728–1736

    Article  CAS  Google Scholar 

  • Joshi B, Nerkar Y, Jambhale N (1983) Induced male sterility in safflower. J Maharashtra Agric Univ 8:194–196

    Google Scholar 

  • Karimi S (2015) Study of physiological traits and microsatellite markers associated with salt tolerance in safflower (Carthamus tinctorius L.). Dissertation, Isfahan University of Technology

    Google Scholar 

  • Khan MA, Witzke-Ehbrecht S von, Maass BL, Becker HC (2009) Relationships among different geographical groups, agro-morphology, fatty acid composition and RAPD marker diversity in safflower (Carthamus tinctorius). Genet Resour Crop Evol 56:19–30

    Article  CAS  Google Scholar 

  • Kizil S, Çakmak Ö, Kirici S, Ä°nan M (2008) A comprehensive study on safflower (Carthamus tinctorius L.) in semi-arid conditions. Biotechnol Biotechnol Equip 22(4):947–953

    Article  Google Scholar 

  • Knowles PF (1969) Centers of plant diversity and conservation of crop germplasm: safflower. Econ Bot 23:324–329

    Article  Google Scholar 

  • Knowles PF (1989) Safflower. Oil crops of the world, their breeding and utilization. McGraw Hill, Inc., New York

    Google Scholar 

  • Knutzon D, Bleibaum J, Nelsen J, Kridi J (1992) Isolation and characterization of two safflower oleoyl-acyl carrier protein thioesterase cDNA clones. Plant Physiol 100(4):1751–1759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kotecha A (1979) Inheritance and association of six traits in safflower. Crop Sci 19(4):523–527

    Article  Google Scholar 

  • Kotecha A, Zimmerman L (1978) Inheritance of seed weight, pappus, and striped hull in safflower species. Crop Sci 18(6):999–1003

    Article  Google Scholar 

  • Kumar H, Pillai R, Singh R (1981) Cytogenetic studies in safflower. In: Proceedings of the 1st international safflower conference, Davis, CA, pp 126–136

    Google Scholar 

  • Lee GA, Sung JS, Lee SY et al (2014) Genetic assessment of safflower (Carthamus tinctorius L.) collection with microsatellite markers acquired via pyrosequencing method. Mol Ecol Resour 14(1):69–78

    Article  CAS  PubMed  Google Scholar 

  • Li H, Dong Y, Sun Y et al (2011) Investigation of the microRNAs in safflower seed, leaf, and petal by high-throughput sequencing. Planta 233(3):611–619

    Article  CAS  PubMed  Google Scholar 

  • Li H, Dong Y, Yang J et al (2012) De novo transcriptome of safflower and the identification of putative genes for oleosin and the biosynthesis of flavonoids. PLoS One 7(2):e30987

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lijiao F, Meili G (2013) Progress of safflower (Carthamus tinctorius L.) regeneration through tissue culture. J Med Coll PLA 28(5):289–301

    Article  Google Scholar 

  • Lulin H, Xiao Y, Pei S et al (2012) The first Illumina-based de novo transcriptome sequencing and analysis of safflower flowers. PLoS One 7(6):e38653

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mandal A, Banerjee S (1997) Diallel analysis of yield and yield components in safflower [Carthamus tinctorius]. J Genet Breed 51:211–215

    Google Scholar 

  • Markley N, Nykiforuk C, Boothe J, Moloney M (2006) Producing proteins using transgenic oilbody-oleosin technology. BioPharm Int 19(6):34–46

    CAS  Google Scholar 

  • Mayerhofer R, Archibald C, Bowles V, Good AG (2010) Development of molecular markers and linkage maps for the Carthamus species C. tinctorius and C. oxyacanthus. Genome 53(4):266–276

    Article  CAS  PubMed  Google Scholar 

  • Mirzahashemi M, Golkar P, Mohamadinejad G (2014) Gene effects for agronomic traits in safflower (Carthamus tinctorius L.) under drought stress. Ethno-Pharma Prod 1(1):23–28

    Google Scholar 

  • Mirzahashemi M, Mohammadi-Nejad G, Golkar P (2015) A QTL linkage map of safflower for yield under drought stress at reproductive stage. Iran J Genet Plant Breed 4(2):18–25

    Google Scholar 

  • Mizukami H, Inagaki C, Okabe Y, Okuyama H (2000) cDNA cloning and characterization of a novel gene differentially expressed in developing seeds of high-oleate safflower (Carthamus tinctorius L.). Plant Biotechnol 17(4):315–319

    Article  CAS  Google Scholar 

  • Mokhtari N, Rahimmalek M, Talebi M, Khorrami M (2013) Assessment of genetic diversity among and within Carthamus species using sequence-related amplified polymorphism (SRAP) markers. Plant Syst Evol 299(7):1285–1294

    Article  Google Scholar 

  • Mukta N (2012) Global strategies for safflower germplasm resource management. In: Murthy IYLN, Basappa H, Varaprasad KS, Padmavathi P (eds) Safflower research and development in the world: status and strategies. Indian Society of Oilseeds Research, Hyderabad, pp 29–44

    Google Scholar 

  • Mündel HH, Centre LR (2004) Safflower production on the Canadian prairies: revisited in 2004. Lethbridge Research Station, Agriculture and Agri-Food Canada, Lethbridge

    Google Scholar 

  • Mündel HH, Huang HC, Kozub GC (1985) Sclerotinia head rot in safflower: assessment of resistance and effects on yield and oil content. Can J Plant Sci 65:259–265

    Article  Google Scholar 

  • Muñoz-Ruz J, Velasco L, Fernández-Martínez J (2000) Registration of the dwarf safflower genetic stock ‘Enana’. Crop Sci 40(4):1207–1207

    Article  Google Scholar 

  • Naik VR, Bentur M, Parameshwarappa K (2009) Impact of biparental mating on genetic variability and path analysis in safflower. Karnataka J Agric Sci 22(1):44–46

    Google Scholar 

  • Nakhaei M, Baghizadeh A, Mohammadi-Nejad G, Golkar P (2014) Genetic analysis of salt tolerance in safflower (Carthamus tinctorius L.). Ann Res Rev Biol 4(1):337

    Article  Google Scholar 

  • Naresh V, Yamini KN, Rajendrakumar P, Dinesh Kumar V (2009) EST-SSR marker-based assay for the genetic purity assessment of safflower hybrids. Euphytica 170:347–353

    Article  CAS  Google Scholar 

  • Narkhede B, Deokar A (1990) Inheritance of spininess and pericarp types in safflower. J Maharashtra Agric Univ 15:279–279

    Google Scholar 

  • Narkhede B, Patil A, Deokar A (1987) Gene action of some characters in safflower. J Maharashtra Agric Univ 17(1):4–6

    Google Scholar 

  • Nikam T, Shitole M (1998) In vitro culture of safflower L. cv. Bhima: initiation, growth optimization and organogenesis. Plant Cell Tiss Org 55(1):15–22

    Article  CAS  Google Scholar 

  • Nykiforuk CL, Shen Y, Murray EW et al (2011) Expression and recovery of biologically active recombinant Apolipoprotein AlMilano from transgenic safflower (Carthamus tinctorius) seeds. Plant Biotechnol 9:250–263

    Google Scholar 

  • Pearl SA, Bowers JE, Reyes-Chin-Wo S et al (2014) Genetic analysis of safflower domestication. BMC Plant Biol 14(1):43

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peng S, Feng N, Guo M et al (2008) Genetic variation of Carthamus tinctorius L. and related species revealed by SRAP analysis. Biochem Syst Ecol 36(7):531–538

    Article  CAS  Google Scholar 

  • Ragab A, Kassem M, Moustafa H (2008) Assessment of spineless safflower (Carthamus tinctorius L.) mutant lines for seed oil content and fatty acid profiles. In: Proceedings of the 9th international conference for nuclear sciences and applications, Sharm Al Sheikh, Egypt, p 1239

    Google Scholar 

  • Raina S, Sharma S, Sasakuma T et al (2005) Novel repeated DNA sequences in safflower (Carthamus tinctorius L.) (Asteraceae): cloning, sequencing, and physical mapping by fluorescence in situ hybridization. J Hered 96(4):424–429

    Article  CAS  PubMed  Google Scholar 

  • Ramachandram M, Goud J (1983) Mutagenesis in safflower (Carthamus tinctorius L.). 1: differential radiosensitivity. Genet Agrar 37:309–318

    Google Scholar 

  • Ramachandram M, Sujatha M (1991) Development of genetic male sterile lines in safflower. Indian J Genet Plant Breed 51(2):268–269

    Google Scholar 

  • Rampure NH, Choudhary AD, Jambhulkar SJ, Badere RS (2015) Ethyl methanesulphonate-induced high oleic acid mutants in safflower (Carthamus tinctorius L.). J Crop Improv 29(6):720–727

    Article  CAS  Google Scholar 

  • Rampure N, Choudhary A, Jambhulkar S, Badere R (2017) Isolation of desirable mutants in safflower for crop improvement. Indian J Genet Plant Breed 77(1):134–144

    Article  CAS  Google Scholar 

  • Rapson S, Wu M, Okada S, Das A et al (2015) A case study on the genetic origin of the high oleic acid trait through FAD2-1 DNA sequence variation in safflower (Carthamus tinctorius L.). Front Plant Sci 6:691

    Article  PubMed  PubMed Central  Google Scholar 

  • Rohini VK, Sankara Rao K (2000) Embryo transformation, a practical approach for realizing transgenic plants of safflower (Carthamus tinctorius L.). Ann Bot 86(5):1043–1049

    Article  CAS  Google Scholar 

  • Rubis D (1969) Development of hybrid safflower. In: Proceedings, third safflower research conference, University of California, Davis, pp 27–32

    Google Scholar 

  • Sahu G, Kumar H (1978) Biological response of safflower to treatment with ethylmethane sulfonate. Indian J Agric Sci 48:162–164

    CAS  Google Scholar 

  • Sahu G, Tewari V (1993) Combining ability for yield traits in safflower. J Res Birsa Agric Univ 5:37–40

    Google Scholar 

  • Sankarar Rao K, Rohini V (1999) Gene transfer into Indian cultivars of safflower (Carthamus tinctorius L.) using Agrobacterium tumefaciens. Plant Biotechnol 16(3):201–206

    Article  Google Scholar 

  • Seeta P, Talat K, Anwar S (2000) Somaclonal variation – an alternative source of genetic variability in safflower. J Cytol Genet 1:127–135

    Google Scholar 

  • Sehgal D, Raina SN (2005) Genotyping safflower (Carthamus tinctorius) cultivars by DNA fingerprints. Euphytica 146:67–76

    Article  CAS  Google Scholar 

  • Sehgal D, Rajpal VR, Raina SN (2009) Assaying polymorphism at DNA level for genetic diversity diagnostics of the safflower (Carthamus tinctorius L.) world germplasm resources. Genetica 135:457–470

    Article  CAS  PubMed  Google Scholar 

  • Shahbazi E, Saeidi G (2007) Genetic analysis for yield components and other agronomic characters in safflower (Carthamus tinctorius L.). Genet Breed 36:11–20

    Google Scholar 

  • Singh V (1997) Identification of genetic linkage between male sterility and dwarfness in safflower. Indian J Genet Plant Breed 57(3):327–332

    Google Scholar 

  • Singh V, Nimbkar N (1993) Genetics of aphid resistance in safflower (Carthamus tinctorius L.). Sesame Saffl Newsl 8:101–106

    Google Scholar 

  • Singh RJ, Nimbkar N (2006) Safflower (Carthamus tinctorius L.). In: Singh RJ (ed) Genetic resources, chromosome engineering, and crop improvement. CRC Press, New York, pp 167–194

    Google Scholar 

  • Singh V, Galande M, Deshmukh S et al (2001) Identification of male sterile cytoplasm in safflower. In: Proceedings of the 5th international safflower conference, Williston, North Dakota and Sidney, Montana, USA, pp 123–126

    Google Scholar 

  • Singh V, Deshpande M, Nimbkar N (2003) NARI-NH-1: the first non-spiny hybrid safflower released in India. Sesame Saffl Newsl 18:77–79

    Google Scholar 

  • Singh V, Kolekar N, Nimbkar N (2008) Breeding strategy for improvement of flower and seed yields in safflower. In: Knights S, Potter T (eds) 7th international safflower conference, Wagga Wagga, New South Wales, Australia, pp 3–9

    Google Scholar 

  • Srivastava P, Kumar G (2011) EMS-induced cytomictic variability in safflower (Carthamus tinctorius L.). Cytol Genet 45(4):240–244

    Article  Google Scholar 

  • Sujatha M (2008) Biotechnological interventions for genetic improvement of safflower. In: Knights S, Potter T (eds) 7th international safflower conference, Wagga Wagga, New South Wales, Australia, pp 3–6

    Google Scholar 

  • Temple S, Knowles P (1975) Inheritance of brittle stems in safflower. Crop Sci 15(5):694–697

    Article  Google Scholar 

  • Urie A (1986) Inheritance of partial hull in safflower. Crop Sci 26(3):493–498

    Article  Google Scholar 

  • Velasco L, Pérez-Vich B, Muñoz-Ruz J, Fernández-Martínez J (2000) Inheritance of plant height in the dwarf mutant ‘Enana’of safflower. Plant Breed 119(6):525–527

    Article  Google Scholar 

  • Velasco L, Pérez-Vich B, Fernández-Martínez J (2005) Identification and genetic characterization of a safflower mutant with a modified tocopherol profile. Plant Breed 124(5):459–463

    Article  CAS  Google Scholar 

  • Vilatersana R, Garnatje T, Susanna A, Garcia-Jacas N (2005) Taxonomic problems in Carthamus (Asteraceae): RAPD markers and sectional classification. Bot J Linn Soc 147(3):375–383

    Article  Google Scholar 

  • Weiss E (2000) Safflower: oilseed crops. Blackwell Science Ltd, Victoria

    Google Scholar 

  • Yang Y-X, Wu W, Zheng Y-L et al (2007) Genetic diversity and relationships among safflower (Carthamus tinctorius L.) analyzed by inter-simple sequence repeats (ISSRs). Genet Resour Crop Evol 54(5):1043–1051

    Article  CAS  Google Scholar 

  • Ying M, Dyer WE, Bergman JW (1992) Agrobacterium tumefaciens-mediated transformation of safflower (Carthamus tinctorius L.) cv.‘Centennial’. Plant Cell Rep 11(11):581–585

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pooran Golkar .

Editor information

Editors and Affiliations

Appendices

Appendices

1.1 Appendix I: Research Institutes Relevant to Safflower

Institution

Specialization research activities

Contact information and website

Directorate of Oilseeds Research (DOR)

It is now known as Indian Institute of Oilseeds Research (IIOR), coordinate and monitor the research programs of oilseed crops from all over the India.

Rajendra Nagar, Hyderabad, India

http://www.icar-iior.org.in

FAO

Food and Agriculture Organization of the United Nations is a specialized agency of the United Nations that leads international efforts to defeat hunger.

Rome, Italy

http://www.fao.org

National Crop Gene Bank, Institute of Crop Germplasm Resources, Chinese Academy of Sciences

It is the long-term preservation center of crop germplasm resources and the research center of germplasm preservation technologies in China.

Beijing, China

http://ics.caas.cn

USDA

United States Department of Agriculture is the U.S. federal executive department responsible for developing and executing federal laws related to farming, agriculture, forestry and food.

Washington, D.C., United States

https://www.usda.gov/

Western Regional Plant Introduction Station (WRPIS)

It has the responsibility of maintaining seed and clonal germplasm of over 2600 plant species from 376 genera.

Pullman, Washington, United States

http://grbio.org/institutional-collection/western-regional-plant-introduction-station-collection

1.2 Appendix II: Genetic Resources of Safflower

Cultivar

Important traits

Cultivation location

A1

Suitable under scanty and assured moisture regions

India

A-300

Moderately salt tolerance

India

AC Stirling

Early maturity and Sclerotinia head rot resistant

Canada

AC Sunset

Early maturity and Sclerotinia head rot resistant

Canada

AC1

early maturing, high linoleic content, wilt resistant

United States

AKS-207

High yield and high oil content

India

Alameda

High oleic acid

Spain

APRR-3

Resistant to rust

India

Bhima

High yield, moderately tolerant to aphids

India

Centennial

Resistance to Alternaria leaf spot and Pseudomonas bacterial blight

United States

CO-1

Non-spiny

India

DSH-129

High yield, resistant to wilt, moderately tolerant to Alternaria and aphids

India

Girard

High oil, high oleic acid, Alternaria resistance

United States

Girna

Moderately resistant to wilt

India

Hartman

Resistance to leaf blight, high oleic content

United States

HUS-305

Moderately tolerant to wilt

India

JSF-1

Resistant to pest infestation

India

JSI-7

High yielding spineless variety

India

K-1

Moderately high yield

India

Leed

The first high oleic variety

United States

Manjira

High oil content

India

Merced

High linoleic acid

Spain

MKH-11

High yield, moderately tolerant to wilt, Alternaria and aphids

India

N-62-8

High yield

India

N-630

High yield

India

Nagpur-7

Salt tolerance

India

NARI-38

Spiny variety, tolerant to wilt

India

NARI-57

High oil, high yield, highly resistant to wilt

India

NARI-6

A non-spiny hybrid, moderately resistant to wilt

India

NARI-H-15

Moderately tolerant to aphids

India

NARI-NH-1

Non-spiny hybrid, moderately tolerant to Alternaria and aphids

India

Nebraska-10 (N-10)

Early maturity, high yield

United States

Nebraska-5

High yield

United States

Oker

High oil, high oleic acid, Alternaria resistance

United States

Pacific 7

Lower crude fiber, higher protein content

United States

PBNS-12

Moderately tolerant to aphids

India

Phule Kusuma

High yield

India

Rancho

High linoleic acid

Spain

Rinconda

High oleic acid

Spain

S-144

Tolerant to aphids

India

Saffire

Early maturity, high yield, rot resistance

Canada

Sharda

Moderately tolerant to aphids and wilt

India

Th5

High oil yield, early maturity

Canada

Tomejil

High linoleic acid

Spain

Type-65

Non-spiny

India

UC-148

Male sterile safflower line

United States

UC-149

Male sterile safflower line

United States

US 104

High yield and high oil content

United States

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Golkar, P., Karimi, S. (2019). Safflower (Carthamus tinctorius L.) Breeding. In: Al-Khayri, J., Jain, S., Johnson, D. (eds) Advances in Plant Breeding Strategies: Industrial and Food Crops. Springer, Cham. https://doi.org/10.1007/978-3-030-23265-8_14

Download citation

Publish with us

Policies and ethics