Skip to main content

Role of Intracellular Transport in the Centriole-Dependent Formation of Golgi Ribbon

  • Chapter
  • First Online:
The Golgi Apparatus and Centriole

Part of the book series: Results and Problems in Cell Differentiation ((RESULTS,volume 67))

Abstract

The intracellular transport is the most confusing issue in the field of cell biology. The Golgi complex (GC) is the central station along the secretory pathway. It contains Golgi glycosylation enzymes, which are responsible for protein and lipid glycosylation, and in many cells, it is organized into a ribbon. Position and structure of the GC depend on the position and function of the centriole. Here, we analyze published data related to the role of centriole and intracellular transport (ICT) for the formation of Golgi ribbon and specifically stress the importance of the delivery of membranes containing cargo and membrane proteins to the cell centre where centriole/centrosome is localized. Additionally, we re-examined the formation of Golgi ribbon from the point of view of different models of ICT.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Apo B:

Apolipoprotein B

ArfGAP:

Arf GTPase activating protein

Bet3:

Trafficking protein particle complex subunit BET3

CMC:

Cis-most cisterna

CMPM:

Compartment (cisterna) maturation progression model

COP:

Coatomer

DM:

Diffusion model

EGC:

ER-Golgi carrier

EGT:

ER-Golgi transport

ER:

Endoplasmic reticulum

ERES:

ER exit site

GC:

Golgi complex

GFP:

Green fluorescent protein

GMAP210:

Golgi microtubule-associated protein 210 KDa

GTP:

Guanosine-5′-triphosphate

ICC:

Inter-cisternal connections

ICT:

Intracellular transport

IGT:

Intra-Golgi transport

KARM:

Kiss-and-run model

KIFC3:

Kinesin family member C3

Man:

Mannosidase

MT:

Microtubule

NSF:

N-ethylmaleimide-sensitive factor

PM:

Plasma membrane

Rab:

Ras-related in the brain

Sar1:

Secretion-associated RAS superfamily-related gene

Sec:

Secretory clone

SNAP:

Synaptosomal-associated protein

SNARE:

Soluble NSF attachment receptor

TGN:

Trans-Golgi network

TMC:

Trans-most cisterna

TRIP11:

Thyroid receptor-interacting protein 11

VLDL:

Very low-density lipoprotein

VM:

Vesicular model

References

  • Antonny B, Gounon P, Schekman R, Orci L (2003) Self-assembly of minimal COPII cages. EMBO Rep 4:419–424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bacia K, Futai E, Prinz S, Meister A, Daum S, Glatte D, Briggs JA, Schekman R (2011) Multibudded tubules formed by COPII on artificial liposomes. Sci Rep 1:17

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bannykh SI, Rowe T, Balch WE (1996) The organization of endoplasmic reticulum export complexes. J Cell Biol 135:19–35

    Article  CAS  PubMed  Google Scholar 

  • Bard F, Casano L, Mallabiabarrena A, Wallace E, Saito K, Kitayama H, Guizzunti G, Hu Y, Wendler F, Dasgupta R, Perrimon N, Malhotra V (2006) Functional genomics reveals genes involved in protein secretion and Golgi organization. Nature 439:604–607

    Article  CAS  PubMed  Google Scholar 

  • Barlowe C, Orci L, Yeung T, Hosobuchi M, Hamamoto S, Salama N, Rexach MF, Ravazzola M, Amherdt M, Schekman R (1994) COPII: a membrane coat formed by Sec proteins that drive vesicle budding from the endoplasmic reticulum. Cell 77:895–907

    Article  CAS  PubMed  Google Scholar 

  • Bednarek SY, Ravazzola M, Hosobuchi M, Amherdt M, Perrelet A, Schekman R, Orci L (1995) COPI- and COPII-coated vesicles bud directly from the endoplasmic reticulum in yeast. Cell 83:1183–1196

    Article  CAS  PubMed  Google Scholar 

  • Beznoussenko GV, Mironov AA (2002) Models of intracellular transport and evolution of the Golgi complex. Anat Rec 268:226–238

    Article  CAS  PubMed  Google Scholar 

  • Beznoussenko GV, Dolgikh VV, Seliverstova EV, Semenov PB, Tokarev YS, Trucco A, Micaroni M, Di Giandomenico D, Auinger P, Senderskiy IV, Skarlato SO, Snigirevskaya ES, Komissarchik YY, Pavelka M, De Matteis MA, Luini A, Sokolova YY, Mironov AA (2007) Analogs of the Golgi complex in microsporidia, structure and avesicular mechanisms of function. J Cell Sci 120:1288–1298

    Article  CAS  PubMed  Google Scholar 

  • Beznoussenko GV, Parashuraman S, Rizzo R, Polishchuk R, Martella O, Di Giandomenico D, Fusella A, Spaar A, Sallese M, Capestrano MG, Pavelka M, Vos MR, Rikers YG, Helms V, Mironov AA, Luini A (2014) Transport of soluble proteins through the Golgi occurs by diffusion via continuities across cisternae. Elife 3. https://doi.org/10.7554/eLife.02009

  • Beznoussenko GV, Pilyugin SS, Geerts WJ, Kozlov MM, Burger KN, Luini A, Derganc J, Mironov AA (2015) Trans-membrane area asymmetry controls the shape of cellular organelles. Int J Mol Sci 16:5299–5333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beznoussenko GV, Ragnini-Wilson A, Wilson C, Mironov AA (2016) Three-dimensional and immune electron microscopic analysis of the secretory pathway in Saccharomyces cerevisiae. Histochem Cell Biol 146(5):515–527. https://doi.org/10.1007/s00418-016-1483-y

    Article  CAS  PubMed  Google Scholar 

  • Boisvieux-Ulrich E, Laine MC, Sandoz D (1990) Cytochalasin D inhibits basal body migration and ciliary elongation in quail oviduct epithelium. Cell Tissue Res 259:443–454

    Article  CAS  PubMed  Google Scholar 

  • Bonfanti L, Mironov AA Jr, Martínez-Menárguez JA, Martella O, Fusella A, Baldassarre M, Buccione R, Geuze HJ, Mironov AA, Luini A (1998) Procollagen traverses the Golgi stack without leaving the lumen of cisternae: evidence for cisternal maturation. Cell 95:993–1003

    Article  CAS  PubMed  Google Scholar 

  • Carvajal-Gonzalez JM, Mulero-Navarro S, Mlodzik M (2016) Centriole positioning in epithelial cells and its intimate relationship with planar cell polarity. BioEssays 38:1234–1245

    Article  PubMed  PubMed Central  Google Scholar 

  • Claude A (1970) Growth and differentiation of cytoplasmic membranes in the course of lipoprotein granule synthesis in the hepatic cell. I. Elaboration of elements of the Golgi complex. J Cell Biol 47:745–766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clermont Y, Xia L, Rambourg A, Turner JD, Hermo L (1993) Transport of casein submicelles and formation of secretion granules in the Golgi apparatus of epithelial cells of the lactating mammary gland of rat. Anat Rec 235:363–373

    Article  CAS  PubMed  Google Scholar 

  • Cole NB, Sciaky N, Marotta A, Song J, Lippincott-Schwartz J (1996) Golgi dispersal during microtubule disruption: regeneration of Golgi stacks at peripheral endoplasmic reticulum exit sites. Mol Biol Cell 7:631–650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Comments on: Silencing of mammalian Sar1 isoforms reveals COPII-independent protein sorting and transport. https://stephenslab.wordpress.com/2013/02/27/comments-on-silencing-of-mammalian-sar1-isoforms-reveals-copii-independent-protein-sorting-and-transport/

  • Conti B, Berti F, Mercati D, Giusti F, Dallai R (2010) The ultrastructure of malpighian tubules and the chemical composition of the cocoon of Aeolothrips intermedius Bagnall (Thysanoptera). J Morphol 271:244–254

    CAS  PubMed  Google Scholar 

  • Cosson P, Amherdt M, Rothman JE, Orci L (2002) A resident Golgi protein is excluded from peri-Golgi vesicles in NRK cells. Proc Natl Acad Sci USA 99:12831–12834

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cutrona MB, Beznoussenko GV, Fusella A, Martella O, Moral P, Mironov AA (2013) Silencing of the mammalian Sar1 isoforms reveals COPII-independent protein sorting and transport. Traffic 14(6):691–708

    Article  CAS  PubMed  Google Scholar 

  • Dahan S, Ahluwalia JP, Wong L, Posner BI, Bergeron JJ (1994) Concentration of intracellular hepatic apolipoprotein E in Golgi apparatus saccular distensions and endosomes. J Cell Biol 127:1859–1869

    Article  CAS  PubMed  Google Scholar 

  • Dunlop MH, Ernst AM, Schroeder LK, Toomre DK, Lavieu G, Rothman JE (2017) Land-locked mammalian Golgi reveals cargo transport between stable cisternae. Nat Commun 8:432. https://doi.org/10.1038/s41467-017-00570-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Emr S, Glick BS, Linstedt AD, Lippincott-Schwartz J, Luini A, Malhotra V, Marsh BJ, Nakano A, Pfeffer SR, Rabouille C, Rothman JE, Warren G, Wieland FT (2009) Journeys through the Golgi—taking stock in a new era. J Cell Biol 187:449–453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feiguin F, Ferreira A, Kosik KS, Caceres A (1994) Kinesin-mediated organelle translocation revealed by specific cellular manipulations. J Cell Biol 127:1021–1039

    Article  CAS  PubMed  Google Scholar 

  • Forrester A, De Leonibus C, Grumati P, Fasana E, Piemontese M, Staiano L, Fregno I, Raimondi A, Marazza A, Bruno G, Iavazzo M, Intartaglia D, Seczynska M, van Anken E, Conte I, De Matteis MA, Dikic I, Molinari M, Settembre C (2019) A selective ER-phagy exerts procollagen quality control via a Calnexin-FAM134B complex. EMBO J 38:e99847

    Article  PubMed  CAS  Google Scholar 

  • Fregno I, Molinari M (2018) Endoplasmic reticulum turnover: ER-phagy and other flavors in selective and non-selective ER clearance. F1000Res 7:454

    Article  PubMed  PubMed Central  Google Scholar 

  • Fregno I, Fasana E, Bergmann TJ, Raimondi A, Loi M, Soldà T, Galli C, D’Antuono R, Morone D, Danieli A, Paganetti P, van Anken E, Molinari M (2018) ER-to-lysosome-associated degradation of proteasome-resistant ATZ polymers occurs via receptor-mediated vesicular transport. EMBO J 37:e99259

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Fromme JC, Schekman R (2005) COPII-coated vesicles: flexible enough for large Cargo? Curr Opin Cell Biol 17:345–352

    Article  CAS  PubMed  Google Scholar 

  • Fukunaga T, Furuno A, Hatsuzawa K, Tani K, Yamamoto A, Tagaya M (1998) NSF is required for the brefeldin A-promoted disassembly of the Golgi apparatus. FEBS Lett 435:237–240

    Article  CAS  PubMed  Google Scholar 

  • Fusella A, Micaroni M, Di Giandomenico D, Mironov AA, Beznoussenko GV (2013) Segregation of the Qb-SNAREs GS27 and GS28 into Golgi vesicles regulates intra-Golgi transport. Traffic 14:568–584

    Article  CAS  PubMed  Google Scholar 

  • Ghadialli FN (1982) Ultrastructural pathology of the cell and matrix. Butterworths, London, 971 p

    Google Scholar 

  • Gilchrist A, Au CE, Hiding J, Bell AW, Fernandez-Rodriguez J, Lesimple S, Nagaya H, Roy L, Gosline SJ, Hallett M, Paiement J, Kearney RE, Nilsson T, Bergeron JJ (2006) Quantitative proteomics analysis of the secretory pathway. Cell 127:1265–1281

    Article  CAS  PubMed  Google Scholar 

  • Girard-Dias W, Alcântara CL, Cunha-E-Silva N, de Souza W, Miranda K (2012) On the ultrastructural organization of Trypanosoma cruzi using cryopreparation methods and electron tomography. Histochem Cell Biol 138:821–831

    Article  CAS  PubMed  Google Scholar 

  • Glaumann H, Bergstrand A, Ericsson JL (1975) Studies on the synthesis and intracellular transport of lipoprotein particles in rat liver. J Cell Biol 64:356–377

    Article  CAS  PubMed  Google Scholar 

  • Glick BS, Luini A (2011) Models for Golgi traffic: a critical assessment. Cold Spring Harb Perspect Biol 3:a005215

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Glick BS, Nakano A (2009) Membrane traffic within the Golgi apparatus. Annu Rev Cell Dev Biol 25:113–132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Glick BS, lston ET, Oster G (1997) A cisternal maturation mechanism can explain the asymmetry of the Golgi stack. FEBS Lett 414:177–181

    Article  CAS  PubMed  Google Scholar 

  • Gorur A, Yuan L, Kenny SJ, Baba S, Xu K, Schekman R (2017) COPII-coated membranes function as transport carriers of intracellular procollagen I. J Cell Biol. https://doi.org/10.1083/jcb.201702135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gosavi P, Houghton FJ, McMillan PJ, Hanssen E, Gleeson PA (2018) The Golgi ribbon in mammalian cells negatively regulates autophagy by modulating mTOR activity. J Cell Sci 131:jcs211987

    Article  PubMed  CAS  Google Scholar 

  • Hanus C, Ehlers MD (2008) Secretory outposts for the local processing of membrane cargo in neuronal dendrites. Traffic 9:1437–1445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Henderson GP, Gan L, Jensen GJ (2007) 3-D ultrastructure of O. tauri: electron cryotomography of an entire eukaryotic cell. PLoS One 2:e749

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ho WC, Allan VJ, van Meer G, Berger EG, Kreis TE (1989) Reclustering of scattered Golgi elements occurs along microtubules. Eur J Cell Biol 48:250–263

    CAS  PubMed  Google Scholar 

  • Hohmann-Marriott MF, Sousa AA, Azari AA, Glushakova S, Zhang G, Zimmerberg J, Leapman RD (2009) Nanoscale 3D cellular imaging by axial scanning transmission electron tomography. Nat Methods 6:729–731

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoppeler-Lebel A, Celati C, Bellett G, Mogensen MM, Klein-Hitpass L, Bornens M, Tassin AM (2007) Centrosomal CAP350 protein stabilises microtubules associated with the Golgi complex. J Cell Sci 120:3299–3308

    Article  CAS  PubMed  Google Scholar 

  • Horton AC, Racz B, Monson EE, Lin AL, Weinberg RJ, Ehlers MD (2005) Polarized secretory trafficking directs cargo for asymmetric dendrite growth and morphogenesis. Neuron 48:757–771

    Article  CAS  PubMed  Google Scholar 

  • Inoue T (1992) Complementary scanning electron microscopy, technical notes and applications. Arch Histol Cytol 55:45–51

    Article  PubMed  Google Scholar 

  • Jamieson JD, Palade GE (1968) Intracellular transport of secretory proteins in the pancreatic exocrine cell. 3. Dissociation of intracellular transport from protein synthesis. J Cell Biol 39:580–588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaiser CA, Schekman R (1990) Distinct sets of SEC genes govern transport vesicle formation and fusion early in the secretory pathway. Cell 61:723–733

    Article  CAS  PubMed  Google Scholar 

  • Kim SD, Pahuja KB, Ravazzola M, Yoon J, Boyadjiev SA, Hammamoto S, Schekman R, Orci L, Kim J (2012) The SEC23-SEC31 interface plays critical role for export of procollagen from the endoplasmic reticulum. J Biol Chem 287(13):10134–10144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kloc M, Kubiak JZ, Li XC, Ghobrial RM (2014) The newly found functions of MTOC in immunological response. J Leukoc Biol 95:417–430

    Article  PubMed  CAS  Google Scholar 

  • Koegler E, Bonnon C, Waldmeier L, Mitrovic S, Halbeisen R, Hauri HP (2010) p28, a novel ERGIC/cis Golgi protein, required for golgi ribbon formation. Traffic 11:70–89

    Article  CAS  PubMed  Google Scholar 

  • Kondylis V, Rabouille C (2003) A novel role for dp115 in the organization of tER sites in Drosophila. J Cell Biol 162:185–198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kreft ME, Di Giandomenico D, Beznoussenko GV, Resnik N, Mironov AA, Jezernik K (2010) Golgi apparatus fragmentation as a mechanism responsible for uniform delivery of uroplakins to the apical plasma membrane of uroepithelial cells. Biol Cell 102:593–607

    Article  CAS  PubMed  Google Scholar 

  • Kurokawa K, Ishii M, Suda Y, Ichihara A, Nakano A (2013) Live cell visualization of Golgi membrane dynamics by super-resolution confocal live imaging microscopy. Methods Cell Biol 118:235–242

    Article  CAS  PubMed  Google Scholar 

  • Kweon HS, Beznoussenko GV, Micaroni M, Polishchuk RS, Trucco A, Martella O, Di Giandomenico D, Marra P, Fusella A, Di Pentima A, Berger EG, Geerts WJ, Koster AJ, Burger KN, Luini A, Mironov AA (2004) Golgi enzymes are enriched in perforated zones of golgi cisternae but are depleted in COPI vesicles. Mol Biol Cell 15:4710–4724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ladinsky MS, Mastronarde DN, McIntosh JR, Howell KE, Staehelin LA (1999) Golgi structure in three dimensions, functional insights from the normal rat kidney cell. J Cell Biol 144:1135–1149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ladinsky MS, Wu CC, McIntosh S, McIntosh JR, Howell KE (2002) Structure of the Golgi and distribution of reporter molecules at 20°C reveals the complexity of the exit compartments. Mol Biol Cell 13:2810–2825

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lanoix J, Ouwendijk J, Lin CC, Stark A, Love HD, Ostermann J, Nilsson T (1999) GTP hydrolysis by arf-1 mediates sorting and concentration of Golgi resident enzymes into functional COPI vesicles. EMBO J 18:4935–4948

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lavieu G, Zheng H, Rothman JE (2013) Stapled Golgi cisternae remain in place as cargo passes through the stack. Elife 2:e00558

    Article  PubMed  PubMed Central  Google Scholar 

  • Leblond CP (1989) Synthesis and secretion of collagen by cells of connective tissue, bone, and dentin. Anat Rec 224:123–138

    Article  CAS  PubMed  Google Scholar 

  • Lee MC, Orci L, Hamamoto S, Futai E, Ravazzola M, Schekman R (2005) Sar1p N-terminal helix initiates membrane curvature and completes the fission of a COPII vesicle. Cell 122:605–617

    Article  CAS  PubMed  Google Scholar 

  • Lippincott-Schwartz J, Cole NB, Marotta A, Conrad PA, Bloom GS (1995) Kinesin is the motor for microtubule-mediated Golgi-to-ER membrane traffic. J Cell Biol 128:293–306

    Article  CAS  PubMed  Google Scholar 

  • Luby-Phelps K (1994) Physical properties of cytoplasm. Curr Opin Cell Biol 6:3–9

    Article  CAS  PubMed  Google Scholar 

  • Makhoul C, Gosavi P, Gleeson PA (2018) The Golgi architecture and cell sensing. Biochem Soc Trans 46:1063–1072

    Article  CAS  PubMed  Google Scholar 

  • Malhotra V, Erlmann P, Nogueira C (2015) Procollagen export from the endoplasmic reticulum. Biochem Soc Trans 43:104–107

    Article  CAS  PubMed  Google Scholar 

  • Marchi F, Leblond CP (1983) Collagen biogenesis and assembly into fibrils as shown by ultrastructural and 3H-proline radioautographic studies on the fibroblasts of the rat food pad. Am J Anat 168:167–197

    Article  CAS  PubMed  Google Scholar 

  • Marra P, Salvatore L, Mironov A Jr, Di Campli A, Di Tullio G, Trucco A, Beznoussenko G, Mironov A, De Matteis MA (2007) The biogenesis of the Golgi ribbon, the roles of membrane input from the ER and of GM130. Mol Biol Cell 18:1595–1608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marsh BJ, Mastronarde DN, Buttle KF, Howell KE, McIntosh JR (2001) Organellar relationships in the Golgi region of pancreatic beta cell line, HIT-T15, visualized by high resolution electron tomography. Proc Natl Acad Sci USA 98:2399–2406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martínez-Menárguez JA, Geuze HJ, Slot JW, Klumperman J (1999) Vesicular tubular clusters (VTCs) between ER and Golgi mediate concentration of soluble secretory proteins by exclusion from COPI-coated vesicles. Cell 98:81–90

    Article  PubMed  Google Scholar 

  • Matsuura S, Tashiro Y (1979) Immunoelectron-microscopic studies of endoplasmic reticulum-Golgi relationships in the intracellular transport process of lipoprotein particles in rat hepatocytes. J Cell Sci 39:273–290

    CAS  PubMed  Google Scholar 

  • Matsuura-Tokita K, Takeuchi M, Ichihara A, Mikuriya K, Nakano A (2006) Live imaging of yeast Golgi cisternal maturation. Nature 441:1007–1010

    Article  CAS  PubMed  Google Scholar 

  • Mavillard F, Hidalgo J, Megias D, Levitsky KL, Velasco A (2010) PKA-mediated Golgi remodeling during cAMP signal transmission. Traffic 11(1):90–109

    Article  CAS  PubMed  Google Scholar 

  • McCaughey J, Stevenson NL, Cross S, Stephens DJ (2019) ER-to-Golgi trafficking of procollagen in the absence of large carriers. J Cell Biol. https://doi.org/10.1083/jcb.201806035

    Article  PubMed  CAS  Google Scholar 

  • Micaroni M, Perinetti G, Di Giandomenico D, Bianchi K, Spaar A, Mironov AA (2010) Synchronous intra-Golgi transport induces the release of Ca2+ from the Golgi apparatus. Exp Cell Res 316:2071–2086

    Article  CAS  PubMed  Google Scholar 

  • Minin AA (1997) Dispersal of Golgi apparatus in nocodazole-treated fibroblasts is a kinesin-driven process. J Cell Sci 110:2495–2505

    CAS  PubMed  Google Scholar 

  • Mironov AA (2014) ER-Golgi transport could occur in the absence of COPII vesicles. Nat Rev Mol Cell Biol. https://doi.org/10.1038/nrm3588-c1

    Article  CAS  PubMed  Google Scholar 

  • Mironov AA, Arvan P (2008) Origin of the regulated secretory pathway. In: Mironov AA, Pavelka M (eds) Golgi apparatus, Chapter 3.11. Springer, Wien, pp 482–515

    Chapter  Google Scholar 

  • Mironov AA, Beznoussenko GV (2008) Intra-Golgi transport. In: Mironov AA, Pavelka M (eds) The Golgi Apparatus. State of the art 110 years after Camillo Golgi’s discovery, Chapter 3.2. Springer, Wien, pp 342–357

    Google Scholar 

  • Mironov AA, Beznoussenko GV (2011) Molecular mechanisms responsible for formation of Golgi ribbon. Histol Histopathol 26:117–133

    CAS  PubMed  Google Scholar 

  • Mironov AA, Beznoussenko GV (2012) The kiss-and-run model of intra-Golgi transport. Int J Mol Sci 13:6800–6819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mironov AA Jr, Mironov AA (1998) Estimation of subcellular organelle volume from ultrathin sections through centrioles with a discretized version of vertical rotator. J Microsc 192:29–36

    Article  PubMed  Google Scholar 

  • Mironov AA, Pavelka M (2008) The Golgi apparatus as a crossroad in intracellular traffic. In: Mironov AA, Pavelka M (eds) The Golgi apparatus. State of the art 110 years after Camillo Golgi’s discovery, Chapter 1.2. Springer, Wien, pp 16–39

    Google Scholar 

  • Mironov AA, Weidman P, Luini A (1997) Variations on the intracellular transport theme, maturing cisternae and trafficking tubules. J Cell Biol 138:481–484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mironov AA Jr, Luini A, Mironov AA (1998) A synthetic model of intra-Golgi traffic. FASEB J 12:249–252

    Article  CAS  PubMed  Google Scholar 

  • Mironov AA, Beznoussenko GV, Nicoziani P, Martella O, Trucco A, Kweon HS, Di Giandomenico D, Polishchuk RS, Fusella A, Lupetti P, Berger EG, Geerts WJ, Koster AJ, Burger KN, Luini A (2001) Small cargo proteins and large aggregates can traverse the Golgi by a common mechanism without leaving the lumen of cisternae. J Cell Biol 155:1225–1238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mironov AA, Mironov AA Jr, Beznoussenko GV, Trucco A, Lupetti P, Smith JD, Geerts WJ, Koster AJ, Burger KN, Martone ME, Deerinck TJ, Ellisman MH, Luini A (2003) ER-to-Golgi carriers arise through direct en bloc protrusion and multistage maturation of specialized ER exit domains. Dev Cell 5:583–594

    Article  CAS  PubMed  Google Scholar 

  • Mironov AA, Colanzi A, Polishchuk RS, Beznoussenko GV, Mironov AA Jr, Fusella A, Di Tullio G, Silletta MG, Corda D, De Matteis MA, Luini A (2004) Dicumarol, an inhibitor of ADP-ribosylation of CtBP3/BARS, fragments Golgi non-compact tubular zones and inhibits intra-Golgi transport. Eur J Cell Biol 83:263–279

    Article  CAS  PubMed  Google Scholar 

  • Mironov AA, Beznoussenko GV, Polishchuk RS, Trucco A (2005) Intra-Golgi transport: a way to a new paradigm? Biochim Biophys Acta 1744:340–350

    Article  CAS  PubMed  Google Scholar 

  • Mironov AA, Sesorova IV, Beznoussenko GV (2013) Golgi’s way: a long path toward the new paradigm of the intra-Golgi transport. Histochem Cell Biol 140:383–393

    Article  CAS  PubMed  Google Scholar 

  • Mironov AA, Sesorova IS, Seliverstova EV, Beznoussenko GV (2016) Different Golgi ultrastructure across species and tissues: implications under functional and pathological conditions, and an attempt at classification. Tissue Cell. https://doi.org/10.1016/j.tice.2016.12.002

    Article  CAS  PubMed  Google Scholar 

  • Mitrovic S, Ben-Tekaya H, Koegler E, Gruenberg J, Hauri HP (2008) The cargo receptors Surf4, endoplasmic reticulum-Golgi intermediate compartment (ERGIC)-53, and p25 are required to maintain the architecture of ERGIC and Golgi. Mol Biol Cell 19:1976–1990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morin-Ganet MN, Rambourg A, Deitz SB, Franzusoff A, Képès F (2000) Morphogenesis and dynamics of the yeast Golgi apparatus. Traffic 1:56–68

    Article  CAS  PubMed  Google Scholar 

  • Motta PM, Makabe S, Naguro T, Correr S (1994) Oocyte follicle cells association during development of human ovarian follicle. A study by high resolution scanning and transmission electron microscopy. Arch Histol Cytol 57:369–394

    Article  CAS  PubMed  Google Scholar 

  • Nogueira C, Erlmann P, Villeneuve J, Santos AJ, Martínez-Alonso E, Martínez-Menárguez JÁ, Malhotra V (2014) SLY1 and Syntaxin 18 specify a distinct pathway for procollagen VII export from the endoplasmic reticulum. Elife 3:e02784

    Article  PubMed  PubMed Central  Google Scholar 

  • Oprins A, Rabouille C, Posthuma G, Klumperman J, Geuze HJ, Slot JW (2001) The ER to Golgi interface is the major concentration site of secretory proteins in the exocrine pancreatic cell. Traffic 2:831–838

    Article  CAS  PubMed  Google Scholar 

  • Orci L, Glick BS, Rothman JE (1986) A new type of coated vesicular carrier that appears not to contain clathrin: its possible role in protein transport within the Golgi stack. Cell 46:171–184

    Article  CAS  PubMed  Google Scholar 

  • Orci L, Stamnes M, Ravazzola M, Amherdt M, Perrelet A, Sollner TH, Rothman JE (1997) Bidirectional transport by distinct populations of COPI-coated vesicles. Cell 90:335–349

    Article  CAS  PubMed  Google Scholar 

  • Orci L, Perrelet A, Rothman JE (1998) Vesicles on strings: morphological evidence for processive transport within the Golgi stack. Proc Natl Acad Sci USA 95:2279–2283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Orci L, Amherdt M, Ravazzola M, Perrelet A, Rothman JE (2000a) Exclusion of Golgi residents from transport vesicles budding from Golgi cisternae in intact cells. J Cell Biol 150:1263–1270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Orci L, Ravazzola M, Volchuk A, Engel T, Gmachl M, Amherdt M, Perrelet A, Sollner TH, Rothman JE (2000b) Anterograde flow of cargo across the golgi stack potentially mediated via bidirectional “percolating” COPI vesicles. Proc Natl Acad Sci USA 97:10400–10405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pagano RE, Longmuir KJ (1985) Phosphorylation, transbilayer movement, and facilitated intracellular transport of diacylglycerol are involved in the uptake of a fluorescent analog of phosphatidic acid by cultured fibroblasts. J Biol Chem 260:1909–1916

    CAS  PubMed  Google Scholar 

  • Pagano RE, Sepanski MA, Martin OC (1989) Molecular trapping of a fluorescent ceramide analogue at the Golgi apparatus of fixed cells: interaction with endogenous lipids provides a trans-Golgi marker for both light and electron microscopy. J Cell Biol 109:2067–2079

    Article  CAS  PubMed  Google Scholar 

  • Palade G (1975) Intracellular aspects of the process of protein synthesis. Science 189:347–359

    Article  CAS  PubMed  Google Scholar 

  • Patterson GH, Hirschberg K, Polishchuk RS, Gerlich D, Phair RD, Lippincott-Schwartz J (2008) Transport through the Golgi apparatus by rapid partitioning within a two-phase membrane system. Cell 133:1055–1067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pavelka M, Roth J (2005) Functional ultrastructure. Atlas of tissue biology and pathology. Springer, Wien, 326 p

    Chapter  Google Scholar 

  • Pellett PA, Dietrich F, Bewersdorf J, Rothman JE, Lavieu G (2013) Inter-Golgi transport mediated by COPI-containing vesicles carrying small cargoes. Elife 2:e01296

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Perinetti G, Müller T, Spaar A, Polishchuk R, Luini A, Egner A (2009) Correlation of 4Pi- and electron microscopy to study transport through single Golgi stacks in living cells with super resolution. Traffic 10:379–391

    Article  CAS  PubMed  Google Scholar 

  • Peters A, Palay SL, Webster HdeF (1991) Fine structure of the nervous system: neurons and their supporting cells, 3rd edn. Oxford University Press, Oxford, 528 p

    Google Scholar 

  • Polishchuk RS, Mironov AA (2004) Structural aspects of Golgi function. Cell Mol Life Sci 61:146–158

    Article  CAS  PubMed  Google Scholar 

  • Polishchuk RS, Polishchuk EV, Mironov AA (1999) Coalescence of Golgi fragments in microtubule-deprived living cells. Eur J Cell Biol 78:170–185

    Article  CAS  PubMed  Google Scholar 

  • Polishchuk RS, Polishchuk EV, Marra P, Alberti S, Buccione R, Luini A, Mironov AA (2000) Correlative light-electron microscopy reveals the tubular-saccular ultrastructure of carriers operating between Golgi apparatus and plasma membrane. J Cell Biol 148(1):45–58

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Polishchuk EV, Di Pentima A, Luini A, Polishchuk RS (2003) Mechanism of constitutive export from the Golgi: bulk flow via the formation, protrusion, and en bloc cleavage of large trans-Golgi network tubular domains. Mol Biol Cell 14:4470–4485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Presley JF, Cole NB, Schroer TA, Hirschberg K, Zaal KJ, Lippincott-Schwartz J (1997) ER-to-Golgi transport visualized in living cells. Nature 389:81–85

    Article  CAS  PubMed  Google Scholar 

  • Rahkila P, Alakangas A, Väänänen K, Metsikkö K (1996) Transport pathway, maturation, and targeting of the vesicular stomatitis virus glycoprotein in skeletal muscle fibers. J Cell Sci 109:1585–1596

    CAS  PubMed  Google Scholar 

  • Rambourg A, Clermont Y, Chrétien M, Olivier L (1993) Modulation of the Golgi apparatus in stimulated and nonstimulated prolactin cells of female rats. Anat Rec 235:353–362

    Article  CAS  PubMed  Google Scholar 

  • Raote I, Ortega Bellido M, Pirozzi M, Zhang C, Melville D, Parashuraman S, Zimmermann T, Malhotra V (2017) TANGO1 assembles into rings around COPII coats at ER exit sites. J Cell Biol 216(4):901–909

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raote I, Ortega-Bellido M, Santos AJ, Foresti O, Zhang C, Garcia-Parajo MF, Campelo F, Malhotra V (2018) TANGO1 builds a machine for collagen export by recruiting and spatially organizing COPII, tethers and membranes. Elife 7:e32723. https://doi.org/10.7554/eLife.32723

    Article  PubMed  PubMed Central  Google Scholar 

  • Razi M, Chan EY, Tooze SA (2009) Early endosomes and endosomal coatomer are required for autophagy. J Cell Biol 185:305–321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rexach MF, Schekman RW (1992) Use of sec mutants to define intermediates in protein transport from endoplasmic reticulum. Methods Enzymol 219:267–286

    Article  CAS  PubMed  Google Scholar 

  • Rhodin JAG (1974) Histology: a text and atlas. Oxford University Press, New York, 803 pp

    Google Scholar 

  • Rizzo R, Parashuraman S, Mirabelli P, Puri C, Lucocq J, Luini A (2013) The dynamics of engineered resident proteins in the mammalian Golgi complex relies on cisternal maturation. J Cell Biol 201:1027–1036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Romero N, Dumur CI, Martinez H, García IA, Monetta P, Slavin I, Sampieri L, Koritschoner N, Mironov AA, De Matteis MA, Alvarez C (2013) Rab1b overexpression modifies Golgi size and gene expression in HeLa cells and modulates the thyrotrophin response in thyroid cells in culture. Mol Biol Cell 24:617–632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rothman JE, Bursztyn-Pettegrew H, Fine RE (1980) Transport of the membrane glycoprotein of vesicular stomatitis virus to the cell surface in two stages by clathrin-coated vesicles. J Cell Biol 86:162–171

    Article  CAS  PubMed  Google Scholar 

  • Rothman JE, Miller RL, Urbani LJ (1984) Intercompartmental transport in the Golgi complex is a dissociative process: facile transfer of membrane protein between two Golgi populations. J Cell Biol 99:260–271

    Article  CAS  PubMed  Google Scholar 

  • Sabesin SM, Frase S (1977) Electron microscopic studies of the assembly, intracellular transport, and secretion of chylomicrons by rat intestine. J Lipid Res 18:496–511

    CAS  PubMed  Google Scholar 

  • Saito K, Chen M, Bard F, Chen S, Zhou H, Woodley D, Polischuk R, Schekman R, Malhotra V (2009) TANGO1 facilitates cargo loading at endoplasmic reticulum exit sites. Cell 136(5):891–902

    Article  CAS  PubMed  Google Scholar 

  • Santos AJ, Nogueira C, Ortega-Bellido M, Malhotra V (2016) TANGO1 and Mia2/cTAGE5 (TALI) cooperate to export bulky pre-chylomicrons/VLDLs from the endoplasmic reticulum. J Cell Biol 213:343–354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sesorova IS, Beznoussenko GV, Kazakova TE, Sesorov VV, Dimov ID, Mironov AA (2018) New opportunities of light microscopy in cytology and histology. Tsitologia 60(5):319–329

    Article  Google Scholar 

  • Sesso A, de Faria FP, Iwamura ES, Correa H (1994) A three-dimensional reconstruction study of the rough ER-Golgi interface in serial thin sections of the pancreatic acinar cell of the rat. J Cell Sci 107:517–528

    PubMed  Google Scholar 

  • Siddiqi SA, Gorelick FS, Mahan JT, Mansbach CM 2nd (2003) COPII proteins are required for Golgi fusion but not for endoplasmic reticulum budding of the pre-chylomicron transport vesicle. J Cell Sci 116:415–427

    Article  CAS  PubMed  Google Scholar 

  • Sleight RG, Pagano RE (1983) Rapid appearance of newly synthesized phosphatidylethanolamine at the plasma membrane. J Biol Chem 258:9050–9058

    CAS  PubMed  Google Scholar 

  • Sokolova YY, Mironov AA (2008) Structure and function of the Golgi organelle in parasitic protists. In: Mironov AA, Pavelka M (eds) Golgi apparatus, Chapter 4.14. Springer, Wien, pp 647–674

    Chapter  Google Scholar 

  • Styers ML, O’Connor AK, Grabski R, Cormet-Boyaka E, Sztul E (2008) Depletion of beta-COP reveals a role for COP-I in compartmentalization of secretory compartments and in biosynthetic transport of caveolin-1. Am J Physiol Cell Physiol 294:C1485–C1498

    Article  CAS  PubMed  Google Scholar 

  • Sukhorukov VM, Meyer-Hermann M (2015) Structural heterogeneity of mitochondria induced by the microtubule cytoskeleton. Sci Rep 5:13924

    Article  PubMed  PubMed Central  Google Scholar 

  • Taylor RS, Jones SM, Dahl RH, Nordeen MH, Howell KE (1997) Characterization of the Golgi complex cleared of proteins in transit and examination of calcium uptake activities. Mol Biol Cell 8:1911–1931

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Townley AK, Feng Y, Schmidt K, Carter DA, Porter R, Verkade P, Stephens DJ (2008) Efficient coupling of Sec23-Sec24 to Sec13-Sec31 drives COPII-dependent collagen secretion and is essential for normal craniofacial development. J Cell Sci 121:3025–3034

    Article  CAS  PubMed  Google Scholar 

  • Townley AK, Schmidt K, Hodgson L, Stephens DJ (2012) Epithelial organization and cyst lumen expansion require efficient Sec13-Sec31-driven secretion. J Cell Sci 125:673–684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trucco A, Polishchuk RS, Martella O, Di Pentima A, Fusella A, Di Giandomenico D, San Pietro E, Beznoussenko GV, Polishchuk EV, Baldassarre M, Buccione R, Geerts WJ, Koster AJ, Burger KN, Mironov AA, Luini A (2004) Secretory traffic triggers the formation of tubular continuities across Golgi sub-compartments. Nat Cell Biol 6:1071–1081

    Article  CAS  PubMed  Google Scholar 

  • Valderrama F, Babià T, Ayala I, Kok JW, Renau-Piqueras J, Egea G (1998) Actin microfilaments are essential for the cytological positioning and morphology of the Golgi complex. Eur J Cell Biol 76:9–17

    Article  CAS  PubMed  Google Scholar 

  • Velasco A, Hendricks L, Moreman KW, Tulsiani DRP, Touster O, Farquhar MG (1993) Cell-type dependent variations in the subcellular distribution of a-mannosidase I and II. J Cell Biol 122:39–51

    Article  CAS  PubMed  Google Scholar 

  • Venditti R, Scanu T, Santoro M, Di Tullio G, Spaar A, Gaibisso R, Beznoussenko GV, Mironov AA, Mironov A Jr, Zelante L, Piemontese MR, Notarangelo A, Malhotra V, Vertel BM, Wilson C, De Matteis MA (2012) Sedlin controls the ER export of procollagen by regulating the Sar1 cycle. Science 337:1668–1672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Watson P, Forster R, Palmer KJ, Pepperkok R, Stephens DJ (2005) Coupling of ER exit to microtubules through direct interaction of COPII with dynactin. Nat Cell Biol 7:48–55

    Article  CAS  PubMed  Google Scholar 

  • Weidman P, Roth R, Heuser J (1993) Golgi membrane dynamics imaged by freeze-etch electron microscopy: views of different membrane coatings involved in tubulation versus vesiculation. Cell 75:123–133

    Article  CAS  PubMed  Google Scholar 

  • Weinstock M, Leblond CP (1974) Synthesis, migration, and release of precursor collagen by odontoblasts as visualized by radioautography after (3H)proline administration. J Cell Biol 60:92–127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu J, Akhmanova A (2017) Microtubule-organizing centers. Annu Rev Cell Dev Biol 33:51–75

    Article  CAS  PubMed  Google Scholar 

  • Yang JS, Valente C, Polishchuk RS, Turacchio G, Layre E, Branch Moody D, Leslie CC, Gelb MH, Brown WJ, Corda D, Luini A, Hsu VW (2011) COPI acts in both vesicular and tubular transport. Nat Cell Biol. https://doi.org/10.1038/ncb2273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang C, Wu J, de Heus C, Grigoriev I, Liv N, Yao Y, Smal I, Meijering E, Klumperman J, Qi RZ, Akhmanova A (2017) EB1 and EB3 regulate microtubule minus end organization and Golgi morphology. J Cell Biol 216:3179–3198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zeuschner D, Geerts WJ, van Donselaar E, Humbel BM, Slot JW, Koster AJ, Klumperman J (2006) Immuno-electron tomography of ER exit sites reveals the existence of free COPII-coated transport carriers. Nat Cell Biol 8:377–383

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander A. Mironov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mironov, A.A., Dimov, I.D., Beznoussenko, G.V. (2019). Role of Intracellular Transport in the Centriole-Dependent Formation of Golgi Ribbon. In: Kloc, M. (eds) The Golgi Apparatus and Centriole. Results and Problems in Cell Differentiation, vol 67. Springer, Cham. https://doi.org/10.1007/978-3-030-23173-6_4

Download citation

Publish with us

Policies and ethics