Skip to main content

Use of Biochar in Sustainable Agriculture

  • Chapter
  • First Online:
Innovations in Sustainable Agriculture

Abstract

Biochar is an emerging soil amendment in agriculture with many facets contributing towards agricultural sustainability. The increased population burden had shrunken the global cultivable area, putting tremendous pressure in agricultural productivity. This has led to an increased use of chemicals in the form of pesticides, herbicides, insecticides or inorganic fertilizers polluting the whole environment. Increased use of inorganic nitrogenous fertilizer sources lead to leaching of nitrogen that contaminate the water bodies and deteriorate soil heath. It also increases emission of greenhouse gas (GHG) nitrous oxide from the agricultural fields contributing towards global warming. Use of biochar in agriculture has shown encouraging results in mitigating soil pollution and decreasing soil acidity. Reduced greenhouse gas emission and improved soil fertility is obtained under biochar application due to its physico-chemical properties such as higher porosity, alkalinity and nutrient contents. Thus, the role of biochar in soil fertility, pollution remediation, greenhouse gas emissions, abiotic stress and disease management makes it an important tool of sustainable agriculture.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdelhafez AA, Li J, Abbas MH (2014) Feasibility of biochar manufactured from organic wastes on the stabilization of heavy metals in a metal smelter contaminated soil. Chemosphere 117:66–71

    Article  CAS  PubMed  Google Scholar 

  • Abel S, Peters A, Trinks S, Schonsky H, Facklam M, Wessolek G (2013) Impact of biochar and hydrochar addition on water retention and water repellency of sandy soil. Geoderma 202:183–191

    Article  Google Scholar 

  • Abiven S, Andreoli R (2011) Charcoal does not change the decomposition rate of mixed litters in a mineral cambisol: a controlled conditions study. Biol Fertil Soil 47(1):111–114

    Article  CAS  Google Scholar 

  • Agegnehu G, Nelson PN, Bird MI (2016a) Crop yield, plant nutrient uptake and soil physicochemical properties under organic soil amendments and nitrogen fertilization on Nitisols. Soil Tillage Res 160:1–13

    Article  Google Scholar 

  • Agegnehu G, Bass AM, Nelson PN, Bird MI (2016b) Benefits of biochar, compost and biochar–compost for soil quality, maize yield and greenhouse gas emissions in a tropical agricultural soil. Sci Total Environ 543:295–306

    Article  CAS  PubMed  Google Scholar 

  • Agegnehu G, Srivastava AK, Bird MI (2017) The role of biochar and biochar-compost in improving soil quality and crop performance: a review. Appl Soil Ecol 119:156–170

    Article  Google Scholar 

  • Ahmad M, Rajapaksha AU, Lim JE, Zhang M, Bolan N, Mohan D et al (2014) Biochar as a sorbent for contaminant management in soil and water: a review. Chemosphere 99:19–33

    Article  CAS  PubMed  Google Scholar 

  • Akhtar SS, Li G, Andersen MN, Liu F (2014) Biochar enhances yield and quality of tomato under reduced irrigation. Agric Water Manag 138:37–44

    Article  Google Scholar 

  • Akhtar SS, Andersen MN, Liu F (2015) Biochar mitigates salinity stress in potato. J Agron Crop Sci 201:368–378

    Article  CAS  Google Scholar 

  • Alexander BJR, Stewart A (2001) Glasshouse screening for biological control agents of Phytophthora cactorum on apple (Malus domestica). N Z J Crop Hort Sci 29(3):159–169

    Article  Google Scholar 

  • Ameloot N, Graber ER, Verheijen FGA, De Neve S (2013) Interactions between biochar stability and soil organisms: review and research needs. Eur J Soil Sci 64(4):379–390

    Article  CAS  Google Scholar 

  • Annabi M, Bahri H, Chibani R, Angar H, Bahri B, Ben Hadj Salah H (2011) Soil carbon storage under no-tillage practice in Northern Tunisia. In: Proceedings of 5th world congress on conservation agriculture

    Google Scholar 

  • Arif M, Ali K, Munsif F, Ahmad W, Ahmad A, Naveed K (2012) Effect of biochar, FYM and nitrogen on weeds and maize phenology. Pak J Weed Sci Res 18:475–484

    Google Scholar 

  • Artiola JF, Rasmussen C, Freitas R (2012) Effects of a biochar-amended alkaline soil on the growth of romaine lettuce and bermudagrass. Soil Sci 177:561–570

    Article  CAS  Google Scholar 

  • Asadullah M, Zhang S, Min Z, Yimsiri P, Li CZ (2010) Effects of biomass char structure on its gasification reactivity. Bioresour Technol 101(20):7935–7943

    Article  CAS  PubMed  Google Scholar 

  • Asai H, Samson BK, Stephan HM, Songyikhangsuthor K, Homma K, Kiyono Y, Inoue Y, Shiraiwa T, Horie T (2009) Biochar amendment techniques for upland rice production in Northern Laos: 1. Soil physical properties, leaf SPAD and grain yield. Field Crops Res 111(1–2):81–84

    Article  Google Scholar 

  • Baggs EM (2011) Soil microbial sources of nitrous oxide: recent advances in knowledge, emerging challenges and future direction. Curr Opin Environ Sustain 3:321–327

    Article  Google Scholar 

  • Baiamonte G, De Pasquale C, Marsala V, Cimò G, Alonzo G, Crescimanno G, Conte P (2015) Structure alteration of a sandyclay soil by biochar amendments. J Soils Sediment 15:816–824

    Article  CAS  Google Scholar 

  • Bakar RA, Razak ZA, Ahmad SH, Seh-Bardan BJ, Tsong LC, Meng CP (2015) Influence of oil palm empty fruit bunch biochar on floodwater pH and yield components of rice cultivated on acid sulphate soil under rice intensification practices. Plant Prod Sci 18(4):491–500

    Article  Google Scholar 

  • Baldock JA, Smernik RJ (2002) Chemical composition and bioavailability of thermally altered Pinus resinosa (Red pine) wood. Org Geochem 33:1093–1109

    Article  CAS  Google Scholar 

  • Barrow CJ (2012) Biochar: potential for countering land degradation and for improving agriculture. Appl Geogr 34:21–28

    Article  Google Scholar 

  • Batool A, Taj S, Rashid A, Khalid A, Qadeer S, Saleem AR, Ghufran MA (2015) Potential of soil amendments (biochar and gypsum) in increasing water use efficiency of Abelmoschus esculentus L. Moench. Front Plant Sci 6:1–13

    Article  Google Scholar 

  • Beesley L, Marmiroli M (2011) The immobilisation and retention of soluble arsenic, cadmium and zinc by biochar. Environ Pollut 159(2):474–480

    Article  CAS  PubMed  Google Scholar 

  • Beesley L, Moreno-Jiménez E, Gomez-Eyles JL (2010) Effects of biochar and greenwaste compost amendments on mobility, bioavailability and toxicity of inorganic and organic contaminants in a multi-element polluted soil. Environ Pollut 158(6):2282–2287

    Article  CAS  PubMed  Google Scholar 

  • Benbrook CM (2016) Trends in glyphosate herbicide use in the United States and globally. Environ Sci Eur 28(1)

    Google Scholar 

  • Bird MI, Wurster CM, de Paula Silva PH, Paul NA, de Nys R (2012) Algal biochar: effects and applications. GCB Bioenergy 4:61–69

    Article  CAS  Google Scholar 

  • Bruun EW, Müller-Stöver D, Ambus P, Hauggaard-Nielsen H (2011) Application of biochar to soil and N2O emissions: potential effects of blending fast-pyrolysis biochar with anaerobically digested slurry. Eur J Soil Sci 62(4):581–589

    Article  CAS  Google Scholar 

  • Bruun EW, Ambus P, Egsgaard H, Hauggaard-Nielsen H (2012) Effects of slow and fast pyrolysis biochar on soil C and N turnover dynamics. Soil Biol Biochem 46:73–79

    Article  CAS  Google Scholar 

  • Bruun EW, Petersen CT, Hansen E, Holm JK, Hauggaard-Nielsen H (2014) Biochar amendment to coarse sandy subsoil improves root growth and increases water retention. Soil Use Manag 30(1):109–118

    Article  Google Scholar 

  • Butterbach-Bahl K, Baggs EM, Dannenmann M, Kiese R, Zechmeister-Boltenstern S (2013) Nitrous oxide emissions from soils: how well do we understand the processes and their controls? Philos Trans R Soc Lond B: Biol Sci 368:20130122. https://doi.org/10.1098/rstb.2013.0122

    Article  CAS  Google Scholar 

  • Cabrera A, Cox L, Fernández-Hernández A, Civantos CGO, Cornejo J (2009) Field appraisement of olive mills solid waste application in olive crops: Effect on herbicide retention. Agric Ecosyst Environ 132(3–4):260–266

    Article  CAS  Google Scholar 

  • Cabrera C, Cox L, Spokas KA, Celis R, Hermosin MC, Cornejo J (2011) Comparative sorption and leaching study of the herbicides fluometuron and 4-chloro-2-methylphenoxyacetic acid (MCPA) in a soil amended with biochars and other sorbents. J Agric Food Chem 59(23):12550–12560

    Article  CAS  PubMed  Google Scholar 

  • Cabrera A, Cox L, Spokas L, Hermosin MC, Cornejo J, Koskinen WC (2014) Influence of biochar amendments on the sorption–desorption of aminocyclopyrachlor, bentazone and pyraclostrobin pesticides to an agricultural soil. Sci Total Environ 470–471:438–443

    Article  PubMed  CAS  Google Scholar 

  • Campbell A (2006) Compost use for pest and disease suppression in NSW. edn. Recycled Organics Unit, The University of New South Wales

    Google Scholar 

  • Cantrell KB, Hunt PG, Uchimiya M, Novak JM, Ro KS (2012) Impact of pyrolysis temperature and manure source on physicochemical characteristics of biochar. Bioresour Technol 107:419–428

    Article  CAS  PubMed  Google Scholar 

  • Cao X, Ma L, Gao B, Harris W (2009) Dairy-manure derived biochar effectively sorbs lead and atrazine. Environ Sci Technol 43(9):3285–3291

    Article  CAS  PubMed  Google Scholar 

  • Carter S, Shackley S, Sohi S, Suy TB, Haefele S (2013) The impact of biochar application on soil properties and plant growth of pot grown lettuce (Lactuca sativa) and cabbage (Brassica chinensis). Agronomy 3(2):404–418

    Article  CAS  Google Scholar 

  • Castro MS, Mellilo JM, Steudler PA, Chapman JW (1994) Soil moisture as a predictor of methane uptake by temperate forest soils. Can J For Res 24:1805–1810. https://doi.org/10.1139/x94-233

    Article  CAS  Google Scholar 

  • Cavigelli MA, Robertson GP (2001) Role of denitrifier diversity in rates of nitrous oxide consumption in a terrestrial ecosystem. Soil Biol Biochem 33:297–310

    Article  CAS  Google Scholar 

  • Cayuela ML, Sánchez-Monedero MA, Roig A, Hanley K, Enders A, Lehmann J (2013) Biochar and denitrification in soils: when, how much and why does biochar reduce N2O emissions? Sci Rep 3:1732

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chaganti VN, Crohn DM, Šimůnek J (2015) Leaching and reclamation of a biochar and compost amended saline–sodic soil with moderate SAR reclaimed water. Agric Water Manag 158:255–265

    Article  Google Scholar 

  • Chapuis-Lardy L, Wrage N, Metay A, Chotte JL, Bernoux M (2007) Soils, a sink for N2O? A review. Global Chang Biol 13:1–17

    Article  Google Scholar 

  • Chen B, Yuan M (2011) Enhanced sorption of polycyclic aromatic hydrocarbons by soil amended with biochar. J Soils Sediments 11(1):62–71

    Article  CAS  Google Scholar 

  • Chen B, Yuan M, Qian L (2012) Enhanced bioremediation of PAH contaminated soil by immobilized bacteria with plant residue and biochar as carriers. J Soils Sediments 12(9):1350–1359

    Article  CAS  Google Scholar 

  • Cheng CH, Lehmann J, Engelhard MH (2008) Natural oxidation of black carbon in soils: changes in molecular form and surface charge along a climosequence. Geochim Cosmochim Acta 72(6):1598–1610

    Article  CAS  Google Scholar 

  • Chintala R, Schumacher TE, McDonald LM, Clay DE, Malo DD, Papiernik SK, Clay SA, Julson JL (2014) Phosphorus sorption and availability from biochars and soil/biochar mixtures. CLEAN–Soil, Air, Water 42(5):626–634

    Article  CAS  Google Scholar 

  • Chun Y, Sheng G, Chiou CT, Xing B (2004) Compositions and sorptive properties of crop residue-derived chars. Environ Sci Technol 38(17):4649–4655

    Article  CAS  PubMed  Google Scholar 

  • Conrad R (2007) Microbial ecology of methanogens and methanotrophs. Adv Agron 96:1–63

    Article  CAS  Google Scholar 

  • Czimczik CI, Masiello CA (2007) Controls on black carbon storage in soils. Glob Biogeochem Cycle 21:GB3005

    Article  CAS  Google Scholar 

  • Datnoff LE, Elmer WH, Huber DM (2007) Mineral nutrition and plant disease. American Phytopathological Society Press, St. Paul

    Google Scholar 

  • Davidson EA, Swank WT, Perry TO (1986) Distinguishing between nitrification and denitrification as sources of gaseous nitrogen production in soil. Appl Environ Microbiol 52:1280–1286

    CAS  PubMed  PubMed Central  Google Scholar 

  • De Meyer A, Poesen J, Isabirye M, Deckers J, Raes D (2011) Soil erosion rates in tropical villages: a case study from Lake Victoria Basin, Uganda. Catena 84(3):89–98

    Article  Google Scholar 

  • Dechene A, Rosendahl I, Laabs V, Amelung W (2014) Sorption of polar herbicides and herbicide metabolites by biochar-amended soil. Chemosphere 109:180–186

    Article  CAS  PubMed  Google Scholar 

  • Dempster DN, Jones DL, Murphy DV (2012) Clay and biochar amendments decreased inorganic but not dissolved organic nitrogen leaching in soil. Aust J Soil Res 50:216–221

    Article  CAS  Google Scholar 

  • Diacono M, Montemurro F (2015) Effectiveness of organic wastes as fertilizers and amendments in salt-affected soils. Agriculture 5(2):221–230

    Article  Google Scholar 

  • Dong D, Yang M, Wang C, Wang H, Li Y, Luo J, Wu W (2013) Responses of methane emissions and rice yield to applications of biochar and straw in a paddy field. J Soils Sediments 13(8):1450–1460

    Article  CAS  Google Scholar 

  • Drake JA, Cavagnaro TR, Cunningham SC, Jackson WR, Patti AF (2016) Does biochar improve establishment of tree seedlings in saline sodic soils? Land Degrad Dev 27:52–59

    Article  Google Scholar 

  • Duku MH, Gu S, Hagan EB (2011) Biochar production potential in Ghana—a review. Renew Sustain Energy Rev 15(8):3539–3551

    Article  Google Scholar 

  • Elad Y, David DR, Harel YM, Borenshtein M, Kalifa HB, Silber A, Graber ER (2010) Induction of systemic resistance in plants by biochar, a soil-applied carbon sequestering agent. Phytopathology 100(9):913–921

    Article  PubMed  Google Scholar 

  • Elmer WH, Pignatello JJ (2011) Effect of biochar amendments on mycorrhizal associations and Fusarium crown and root rot of asparagus in replant soils. Plant Dis 95(8):960–966

    Article  PubMed  Google Scholar 

  • Eyles A, Bound SA, Oliver G, Corkrey R, Hardie M, Green S, Close DC (2015) Impact of biochar amendment on the growth, physiology and fruit of a young commercial apple orchard. Trees 29(6):1817–1826

    Article  CAS  Google Scholar 

  • Fahad S, Hussain S, Chauhan BS, Saud S, Wu C, Hassan S, Tanveer M, Jan A, Huang J (2015) Weed growth and crop yield loss in wheat as influenced by row spacing and weed emergence times. Crop Protect 71:101–108

    Article  Google Scholar 

  • Farhangi-Abriz S, Torabian S (2017) Antioxidant enzyme and osmotic adjustment changes in bean seedlings as affected by biochar under salt stress. Ecotoxicol Environ Saf 137:64–70

    Article  CAS  PubMed  Google Scholar 

  • Fazal A, Bano A (2016) Role of plant growth-promoting rhizobacteria (pgpr), biochar, and chemical fertilizer under salinity stress. Commun Soil Sci Plant Anal 47:1985–1993

    Article  CAS  Google Scholar 

  • Feng YZ, Xu YP, Yu YC, Xie ZB, Lin XG (2012) Mechanisms of biochar decreasing methane emission from Chinese paddy soils. Soil Biol Biochem 46:80–88

    Article  CAS  Google Scholar 

  • Foster EJ, Hansen N, Wallenstein M, Cotrufo MF (2016) Biochar and manure amendments impact soil nutrients and microbial enzymatic activities in a semi-arid irrigated maize cropping system. Agric Ecosyst Environ 233:404–414

    Article  Google Scholar 

  • García-Jaramillo M, Cox L, Cornejo J, Hermosín MC (2014) Effect of soil organic amendments on the behavior of bentazone and tricyclazole. Sci Total Environ 466:906–913

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Montiel DC, Neill C, Melillo J, Thomas S, Steudler PA, Cerri CC (2000) Soil phosphorus transformations following forest clearing for pasture in the Brazilian Amazon. Soil Sci Soc Am J 64:1792–1804. https://doi.org/10.2136/sssaj2000.6451792x

    Article  CAS  Google Scholar 

  • Gaskin JW, Speir RA, Harris K, Das KC, Lee RD, Morris LA, Fisher DS (2010) Effect of peanut hull and pine chip biochar on soil nutrients, corn nutrient status, and yield. Agron J 102(2):623–633

    Article  CAS  Google Scholar 

  • Gautam DK, Bajracharya RM, Sitaula BK (2017) Effects of biochar and farmyard manure on soil properties and crop growth in an agroforestry system in the Himalaya. Sustain Agric Res 6(4):74

    Article  Google Scholar 

  • Githinji L (2014) Effect of biochar application rate on soil physical and hydraulic properties of a sandy loam. Arch Agron Soil Sci 60(4):457–470

    Article  CAS  Google Scholar 

  • Glaser B, Lehmann J, Steiner C, Nehls T, Yousaf M, Zech W (2002) Potential of pyrolyzed organic matter in soil amelioration. In: 12th ISCO conference’. Beijing, pp 421–427

    Google Scholar 

  • Glenn EP, Brown JJ, Blumwald E (1999) Salt tolerance and crop potential of halophytes. Crit Rev Plant Sci 18(2):227–255

    Article  Google Scholar 

  • Gomez-Eyles JL, Sizmur T, Collins CD, Hodson ME (2011) Effects of biochar and the earthworm Eisenia fetida on the bioavailability of polycyclic aromatic hydrocarbons and potentially toxic elements. Environ Pollut 159(2):616–622

    Article  CAS  PubMed  Google Scholar 

  • Graber ER, Harel YM, Kolton M, Cytryn E, Silber A, David DR, Tsechansky L, Borenshtein M, Elad Y (2010) Biochar impact on development and productivity of pepper and tomato grown in fertigated soilless media. Plant Soil 337(1–2):481–496

    Article  CAS  Google Scholar 

  • Graber ER, Frenkel O, Jaiswal AK, Elad Y (2014) How may biochar influence severity of diseases caused by soilborne pathogens? Carbon Manag 5(2):169–183

    Article  CAS  Google Scholar 

  • Güereña D, Lehmann J, Hanley K, Enders A, Hyland C, Riha S (2013) Nitrogen dynamics following field application of biochar in a temperate North American maize-based production system. Plant Soil 365(1–2):239–254

    Article  CAS  Google Scholar 

  • Guo G, Zhou Q, Ma LQ (2006) Availability and assessment of fixing additives for the in situ remediation of heavy metal contaminated soils: a review. Environ Monit Assess 116(1–3):513–528

    Article  CAS  PubMed  Google Scholar 

  • Haefele SM, Konboon Y, Wongboon W, Amarante S, Maarifat AA, Pfeiffer EM, Knoblauch C (2011) Effects and fate of biochar from rice residues in rice-based systems. Field Crops Res 121(3):430–440

    Article  Google Scholar 

  • Haider G, Koyro HW, Azam F, Steffens D, Müller C, Kammann C (2015) Biochar but not humic acid productamendment affectedmaize yields via improving plant-soil moisture relations. Plant Soil 395:141–157

    Article  CAS  Google Scholar 

  • Hammer EC, Forstreuter M, Rillig MC, Kohler J (2015) Biochar increases arbuscular mycorrhizal plant growth enhancement and ameliorates salinity stress. Appl Soil Ecol 96:114–121

    Article  Google Scholar 

  • Hardie M, Clothier B, Bound S, Oliver G, Close D (2014) Does biochar influence soil physical properties and soil water availability? Plant Soil 376(1–2):347–361

    Article  CAS  Google Scholar 

  • Harvey OR, Kuo LJ, Zimmerman AR, Louchouarn P, Amonette JE, Herbert BE (2012) An index-based approach to assessing recalcitrance and soil carbon sequestration potential of engineered black carbons (biochars). Environ Sci Technol 46(3):1415–1421

    Article  CAS  PubMed  Google Scholar 

  • Hass A, Gonzalez JM, Lima IM, Godwin HW, Halvorson JJ, Boyer DG (2012) Chicken manure biochar as liming and nutrient source for acid Appalachian soil. J Environ Qual 41(4):1096–1106

    Article  CAS  PubMed  Google Scholar 

  • Hebbar P, Berge O, Heulin T, Singh SP (1991) Bacterial antagonists of sunflower (Helianthus annuus l.) fungal pathogens. Plant Soil 133(1):131–140

    Article  Google Scholar 

  • Hilscher A, Heister K, Siewert C, Knicker H (2009) Mineralisation and structural changes during the initial phase of microbial degradation of pyrogenic plant residues in soil. Org Geochem 40(3):332–342

    Article  CAS  Google Scholar 

  • Hossain MK, Strezov V, Chan KY, Nelson PF (2010) Agronomic properties of wastewater sludge biochar and bioavailability of metals in production of cherry tomato (Lycopersicon esculentum). Chemosphere 78(9):1167–1171

    Article  CAS  PubMed  Google Scholar 

  • Hossain MK, Strezov V, Chan KY, Ziolkowski A, Nelson PF (2011) Influence of pyrolysis temperature on production and nutrient properties of wastewater sludge biochar. J Environ Manag 92(1):223–228

    Article  CAS  Google Scholar 

  • Husson O (2012) Redox potential (Eh) and pH as drivers of soil/plant/microorganism systems: a transdisciplinary overview pointing to integrative opportunities for agronomy. Plant Soil 362(1–2):389–417

    Google Scholar 

  • Huygens D, Boeckx P, Templer P, Paulino L, Van Cleemput O, Oyarzun C, Muller C, Godoy R (2008) Mechanisms for retention of bioavailable nitrogen in volcanic rainforest soils. Nat Geosci 1:543–548

    Article  CAS  Google Scholar 

  • IPCC Intergovernmental Panel on Climate Change (2007) Climate change 2007: impacts, adaptation and vulnerability. In: Parry ML, Canziani OF, Palutikof JP, van der Linden PJ, Hanson CE (eds) Contribution of working group II to fourth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, p 1000

    Google Scholar 

  • Irikiin Y, Nishiyama M, Otsuka S, Senoo K (2006) Rhizobacterial community-level, sole carbon source utilization pattern affects the delay in the bacterial wilt of tomato grown in rhizobacterial community model system. Appl Soil Ecol 34(1):27–32

    Article  Google Scholar 

  • Jagadish SVK, Cairns J, Lafitte R, Wheeler TR, Price AH, Craufurd PQ (2010) Genetic analysis of heat tolerance at Anthesis in Rice. Crop Sci 50(5):1633

    Article  CAS  Google Scholar 

  • Jaiswal AK, Elad Y, Graber ER, Frenkel O (2014) Rhizoctonia solani suppression and plant growth promotion in cucumber as affected by biochar pyrolysis temperature, feedstock and concentration. Soil Biol Biochem 69:110–118

    Article  CAS  Google Scholar 

  • Jaiswal AK, Frenkel O, Elad Y, Lew B, Graber ER (2015) Non-monotonic influence of biochar dose on bean seedling growth and susceptibility to Rhizoctonia solani: the “Shifted R max-Effect”. Plant Soil 395(1–2):125–140

    Article  CAS  Google Scholar 

  • Jeffery S, Meinders MB, Stoof CR, Bezemer TM, van de Voorde TF, Mommer L, van Groenigen JW (2015) Biochar application does not improve the soil hydrological function of a sandy soil. Geoderma 251:47–54

    Article  Google Scholar 

  • Jia J, Li B, Chen Z, Xie Z, Xiong Z (2012) Effects of biochar application on vegetable production and emissions of N2O and CH4. Soil Sci Plant Nutr 58(4):503–509

    Article  CAS  Google Scholar 

  • Jiang J, Xu RK, Jiang TY, Li Z (2012) Immobilization of Cu (II), Pb (II) and Cd (II) by the addition of rice straw derived biochar to a simulated polluted Ultisol. J Hazard Mater 229:145–150

    Article  PubMed  CAS  Google Scholar 

  • Jones DL, Murphy DV, Khalid M, Ahmad W, Edwards-Jones G, DeLuca TH (2011) Short-term biochar-induced increase in soil CO2 release is both biotically and abiotically mediated. Soil Biol Biochem 43(8):1723–1731

    Article  CAS  Google Scholar 

  • Jones DL, Rousk J, Edwards-Jones G, DeLuca TH, Murphy DV (2012) Biochar-mediated changes in soil quality and plant growth in a three year field trial. Soil Biol Biochem 45:113–124

    Article  CAS  Google Scholar 

  • Joseph SD, Camps-Arbestain M, Lin Y, Munroe P, Chia CH, Hook J, Van Zwieten L, Kimber S, Cowie A, Singh BP, Lehmann J (2010) An investigation into the reactions of biochar in soil. Soil Res 48(7):501–515

    Article  CAS  Google Scholar 

  • Karami N, Clemente R, Moreno-Jiménez E, Lepp NW, Beesley L (2011) Efficiency of green waste compost and biochar soil amendments for reducing lead and copper mobility and uptake to ryegrass. J Hazard Mater 191(1–3):41–48

    Article  CAS  PubMed  Google Scholar 

  • Karhu K, Mattila T, Bergström I, Regina K (2011) Biochar addition to agricultural soil increased CH4 uptake and water holding capacity–Results from a short-term pilot field study. Agric Ecosyst Environ 140(1–2):309–313

    Article  CAS  Google Scholar 

  • Khan SU (2016) Pesticides in the soil environment. Elsevier, Amsterdam

    Google Scholar 

  • Khan KY, Ali B, Cui XQ, Feng Y, Yang XE, Stoffella PJ (2017) Impact of different feedstocks derived biochar amendment with cadmium low uptake affinity cultivar of pak choi (Brassica rapa ssb. chinensis L.) on phytoavoidation of Cd to reduce potential dietary toxicity. Ecotoxicol Environ Saf 141:129–138

    Article  CAS  Google Scholar 

  • Khodadad CLM, Zimmerman AR, Uthandi S, Green SJJ, Foster JS (2011) Taxa-specific changes in soil microbial composition induced by pyrogenic carbon amendments. Soil Biol Biochem 43:385–392

    Article  CAS  Google Scholar 

  • Khorram MS, Wang Y, Jin X, Fang H, Yu Y (2015) Reduced mobility of fomesafen through enhanced adsorption in biochar-amended soil. Environ Toxicol Chem 34(6):1258–1266

    Article  CAS  PubMed  Google Scholar 

  • Khorram MS, Zheng Y, Lin D, Zhang Q, Fang H, Yu Y (2016) Dissipation of fomesafen in biochar-amended soil and its availability to corn (Zea mays L.) and earthworm (Eisenia fetida). J Soils Sediments 16(10):2439–2448

    Article  CAS  Google Scholar 

  • Kim HS, Kim KR, Yang JE, Ok YS, Owens G, Nehls T, Wessolek G, Kim KH (2016) Effect of biochar on reclaimed tidal land soil properties and maize (Zea mays L.) response. Chemosphere 142:153–159

    Article  CAS  PubMed  Google Scholar 

  • Kimetu JM, Lehmann J (2010) Stability and stabilisation of biochar and green manure in soil with different organic carbon contents. Aust J Soil Res 48:577–585

    Article  CAS  Google Scholar 

  • Knief C (2015) Diversity and habitat preferences of cultivated and uncultivated aerobic methanotrophic bacteria evaluated based on pmoA as molecular marker. Front Microbiol 6:1346

    Article  PubMed  PubMed Central  Google Scholar 

  • Knoblauch C, Zimmermann U, Blumenberg M, Michaelis W, Pfeiffer EM (2008) Methane turnover and temperature response of methane-oxidizing bacteria in permafrost-affected soils of northeast Siberia. Soil Biol Biochem 40(12):3004–3013

    Article  CAS  Google Scholar 

  • Kolton M, Harel YM, Pasternak Z, Graber ER, Elad Y, Cytryn E (2011) Impact of biochar application to soil on the root-associated bacterial community structure of fully developed greenhouse pepper plants. Appl Environ Microbiol 77(14):4924–4930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kong LL, Liu WT, Zhou QX (2014) Biochar: an effective amendment for remediating contaminated soil. In: Reviews of environmental contamination and toxicology, vol 228. Springer, Cham, pp 83–99

    Google Scholar 

  • Kookana RS, Sarmah AK, Van Zwieten L, Krull E, Singh B (2011) Chapter three—biochar application to soil: agronomic and environmental benefits and unintended consequences. In: Donald LS (ed) Advances in agronomy, vol 112. Academic, New York, pp 103–143

    Google Scholar 

  • Krause MS, Madden LV, Hoitink HA (2001) Effect of potting mix microbial carrying capacity on biological control of Rhizoctonia damping-off of radish and Rhizoctonia crown and root rot of poinsettia. Phytopathology 91(11):1116–1123

    Article  CAS  PubMed  Google Scholar 

  • Kumpiene J, Lagerkvist A, Maurice C (2008) Stabilization of As, Cr, Cu, Pb and Zn in soil using amendments–a review. Waste Manag 28(1):215–225

    Article  CAS  PubMed  Google Scholar 

  • Kuzyakov Y, Subbotina I, Chen H, Bogomolova I, Xu X (2009) Black carbon decomposition and incorporation into soil microbial biomass estimated by 14C labeling. Soil Biol Biochem 41:210–219. https://doi.org/10.1016/j.soilbio.2008.10.016

    Article  CAS  Google Scholar 

  • Laird D, Fleming P, Wang B, Horton R, Karlen D (2010) Biochar impact on nutrient leaching from a Midwestern agricultural soil. Geoderma 158(3–4):436–442

    Article  CAS  Google Scholar 

  • Larsbo M, Löfstrand E, de Veer DV, Ulén B (2013) Pesticide leaching from two Swedish topsoils of contrasting texture amended with biochar. J Contam Hydrol 147:73–81

    Article  CAS  PubMed  Google Scholar 

  • Lashari MS, Ye Y, Ji H, Li L, Kibue GW, Lu H, Zheng J, Pan G (2015) Biochar–manure compost in conjunction with pyroligneous solution alleviated salt stress and improved leaf bioactivity of maize in a saline soil from central China: a 2-year field experiment. J Sci Food Agric 95:1321–1327

    Article  CAS  PubMed  Google Scholar 

  • Lehmann J (2007) Concepts and questions: bioenergy in the black. Front Ecol Environ 5:381–387

    Article  Google Scholar 

  • Lehmann J, Joseph S (2009) Biochar for environmental management: an introduction. In: Lehmann J, Joseph S (eds) (2015) Biochar for environmental management: science, technology and implementation. Routledge, London

    Google Scholar 

  • Lehmann J, Joseph S (2015) Biochar for environmental management: science, technology and implementation. Routledge, New York

    Book  Google Scholar 

  • Lehmann J, da Silva JP, Steiner C, Nehls T, Zech W, Glaser B (2003) Nutrient availability and leaching in an archaeological Anthrosol and a Ferralsol of the Central Amazon basin: fertilizer, manure and charcoal amendments. Plant Soil 249(2):343–357

    Article  CAS  Google Scholar 

  • Lehmann J, Gaunt J, Rondon M (2006) Bio-char sequestration in terrestrial ecosystems—a review. Mitig Adapt Strateg Glob Chang 11:395–419

    Article  Google Scholar 

  • Lehmann J, Rillig MC, Thies J, Masiello CA, Hockaday WC, Crowley D (2011) Biochar effects on soil biota – a review. Soil Biol Biochem 43:1812–1836

    Article  CAS  Google Scholar 

  • Li X, Hayashi J, Li CZ (2006) FT-Raman spectroscopic study of the evolution of char structure during the pyrolysis of a Victorian brown coal. Fuel 85:1700–1707

    Article  CAS  Google Scholar 

  • Li J, Li Y, Wu M, Zhang Z, Lu J (2013) Effectiveness of low-temperature biochar in controlling the release and leaching of herbicides in soil. Plant Soil 370(1):333–344

    Article  CAS  Google Scholar 

  • Li S, Barreto V, Li R, Chen G, Hsieh YP (2018) Nitrogen retention of biochar derived from different feedstocks at variable pyrolysis temperatures. J Anal Appl Pyrolysis 133:136–146

    Article  CAS  Google Scholar 

  • Lin Y, Munroe P, Joseph S, Henderson R, Ziolkowski A (2012) Water extractable organic carbon in untreated and chemical treated biochars. Chemosphere 87(2):151–157

    Article  CAS  PubMed  Google Scholar 

  • Liu Z, Quek A, Hoekman SK, Balasubramanian R (2013) Production of solid biochar fuel from waste biomass by hydrothermal carbonization. Fuel 103:943–949

    Article  CAS  Google Scholar 

  • Lone AH, Najar GR, Ganie MA, Sofi JA, Tahir Ali T (2015) Biochar for sustainable soil health: a review of prospects and concerns. Pedosphere 25(5):639–653

    Article  Google Scholar 

  • Lopez-Pineiro A, Pena D, Albarran A, Sánchez-Llerena J, Becerra D (2013) Behavior of MCPA in four intensive cropping soils amended with fresh, composted, and aged olive mill waste. J Contam Hydrol 152:137–146

    Article  CAS  PubMed  Google Scholar 

  • Lovley DR (2012) Electromicrobiology. Ann Rev Microbiol 66:391–409

    Article  CAS  Google Scholar 

  • Lu H, Zhang W, Yang Y, Huang X, Wang S, Qiu R (2012) Relative distribution of Pb2+ sorption mechanisms by sludge-derived biochar. Water Res 46(3):854–862

    Article  CAS  PubMed  Google Scholar 

  • Lu K, Yang X, Shen J, Robinson B, Huang H, Liu D, Bolan N, Pei J, Wang H (2014) Effect of bamboo and rice straw biochars on the bioavailability of Cd, Cu, Pb and Zn to Sedum plumbizincicola. Agric Ecosyst Environ 191:124–132

    Article  CAS  Google Scholar 

  • Lu W, Kang C, Wang Y, Xie Z (2015) Influence of biochar on the moisture of dark brown soil and yield of maize in Northern China. Int J Agric Biol 17(5):1007–1012

    Article  Google Scholar 

  • Lyu S, Du G, Liu Z, Zhao L, Lyu D (2016) Effects of biochar on photosystem function and activities of protective enzymes in Pyrus ussuriensis Maxim. under drought stress. Acta Physiol Plant 38:1–10

    Article  CAS  Google Scholar 

  • Major J, Lehmann J, Rondon M, Goodale C (2010a) Fate of soil applied black carbon: downward migration, leaching and soil respiration. Glob Chang Biol 16:1366–1379

    Article  Google Scholar 

  • Major J, Rondon M, Molina D, Riha S, Lehmann J (2010b) Maize yield and nutrition during 4 years after biochar application to a Colombian savanna oxisol. Plant Soil 333:117–128

    Article  CAS  Google Scholar 

  • Marin-Benito JM, Brown CD, Herrero-Hernández E, Arienzo M, Sánchez-Martín MJ, Rodríguez-Cruz MS (2013) Use of raw or incubated organic wastes as amendments in reducing pesticide leaching through soil columns. Sci Total Environ 463–464:589–599

    Article  PubMed  CAS  Google Scholar 

  • Martin SM, Kookana RS, Van Zwieten L, Krull E (2012) Marked changes in herbicide sorption–desorption upon ageing of biochars in soil. J Hazard Mater 231–232:70–78

    Article  PubMed  CAS  Google Scholar 

  • Martinsen V, Mulder J, Shitumbanuma V, Sparrevik M, Børresen T, Cornelissen G (2014) Farmer-led maize biochar trials: effect on crop yield and soil nutrients under conservation farming. J Plant Nutr Soil Sci 177:681–695

    Article  CAS  Google Scholar 

  • Matos A, Kerkhof L, Garland JL (2005) Effects of microbial community diversity on the survival of Pseudomonas aeruginosa in the wheat rhizosphere. Microb Ecol 49(2):257–264

    Article  CAS  PubMed  Google Scholar 

  • Matsui T, Omasa K (2002) Rice (Oryza sativa L.) cultivars tolerant to high temperature at flowering: anther characteristics. Ann Bot 89(6):683–687

    Article  PubMed  PubMed Central  Google Scholar 

  • Méndez A, Barriga S, Fidalgo JM, Gascó G (2009) Adsorbent materials from paper industry waste materials and their use in Cu (II) removal from water. J Hazard Mater 165(1–3):736–743

    Article  PubMed  CAS  Google Scholar 

  • Mia S, Van Groenigen JW, Van de Voorde TF, Oram NJ, Bezemer TM, Mommer L, Jeffery S (2014) Biochar application rate affects biological nitrogen fixation in red clover conditional on potassium availability. Agric Ecosyst Environ 191:83–91

    Article  CAS  Google Scholar 

  • Mosier AR, Duxbury JM, Freney JR, Heinemeyer O, Minami K (1998) Assessing and mitigating N2O emissions from agricultural soils. Clim Chang 40:7–38

    Article  CAS  Google Scholar 

  • Mukherjee A, Zimmerman AR, Harris W (2011) Surface chemistry variations among a series of laboratory-produced biochars. Geoderma 163:247–255

    Article  CAS  Google Scholar 

  • Mulcahy DN, Mulcahy DL, Dietz D (2013) Biochar soil amendment increases tomato seedling resistance to drought in sandy soils. J Arid Environ 88:222–225

    Article  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681

    Article  CAS  PubMed  Google Scholar 

  • Narzari R, Bordoloi N, Chutia RS, Borkotoki B, Gogoi N, Bora A, Kataki R (2015) Biochar: an overview on its production, properties and potential benefits. In: Biology, biotechnology and sustainable development, pp 13–40. https://doi.org/10.13140/RG.2.1.3966.2560

  • Nelissen V, Ruysschaert G, Manka’Abusi D, D’Hose T, De Beuf K, Al-Barri B, Cornelis W, Boeckx P (2015) Impact of a woody biochar on properties of a sandy loam soil and spring barley during a two-year field experiment. Eur J Agron 62:65–78

    Article  CAS  Google Scholar 

  • Newsham KK, Fitter AH, Watkinson AR (2005) Multi-functionality and biodiversity in arbuscular mycorrhizas. Trends Ecol Evol 10:407–411

    Article  Google Scholar 

  • Nguyen BT, Lehmann J (2009) Black carbon decomposition under varying water regimes. Org Geochem 40:846–853

    Article  CAS  Google Scholar 

  • Nguyen TT, Xu CY, Tahmasbian I, Che R, Xu Z, Zhou X, Wallace HM, Bai SH (2017) Effects of biochar on soil available inorganic nitrogen: a review and meta-analysis. Geoderma 288:79–96

    Article  CAS  Google Scholar 

  • Nishio M (1996) Microbial fertilizers in Japan, FFTC extension bulletin. Food and Fertilizer Technology Center, Taipei

    Google Scholar 

  • O’Connor D, Peng T, Zhang J, Tsang DC, Alessi DS, Shen Z, Bolan NS, Hou D (2018) Biochar application for the remediation of heavy metal polluted land: a review of in situ field trials. Sci Total Environ 619:815–826

    Article  PubMed  CAS  Google Scholar 

  • Olmo M, Alburquerque JA, Barrón V, del Campillo MC, Gallardo A, Fuentes M, Villar R (2014) Wheat growth and yield responses to biochar addition under Mediterranean climate conditions. Biol Fert Soil 50:1177–1187

    Article  Google Scholar 

  • Oo AN, Iwai CB, Saenjan P (2015) Soil properties and maize growth in saline and nonsaline soils using cassava-industrial waste compost and vermicompost with or without earthworms. Land Degrad Develop 26:300–310

    Article  Google Scholar 

  • Paneque M, José M, Franco-Navarro JD, Colmenero-Flores JM, Knicker H (2016) Effect of biochar amendment on morphology, productivity and water relations of sunflower plants under non-irrigation conditions. Catena 147:280–287

    Article  CAS  Google Scholar 

  • Panuccio MR, Jacobsen SE, Akhtar SS, Muscolo A (2014) Effect of saline water on seed germination and early seedling growth of the halophyte quinoa. AoB Plants 6. https://doi.org/10.1093/aobpla/plu047

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Parihar P, Singh S, Singh R, Singh VP, Prasad SM (2015) Effect of salinity stress on plants and its tolerance strategies: a review. Environ Sci Pollut Res 22:4056–4075

    Article  CAS  Google Scholar 

  • Park JH, Choppala GK, Bolan NS, Chung JW, Chuasavathi T (2011) Biochar reduces the bioavailability and phytotoxicity of heavy metals. Plant Soil 348:439–451

    Article  CAS  Google Scholar 

  • Park JH, Choppala G, Lee SJ, Bolan N, Chung JW, Edraki M (2013) Comparative sorption of Pb and Cd by biochars and its implication for metal immobilization in soils. Water Air Soil Pollut 224(12):1711

    Article  CAS  Google Scholar 

  • Pereira RG, Heinemann AB, Madari BE, Carvalho MTDM, Kliemann HJ, Santos APD (2012) Transpiration response of upland rice to water deficit changed by different levels of eucalyptus biochar. Pesq Agropec Bras 47:716–721

    Article  Google Scholar 

  • Powlson DS, Whitmore AP, Goulding KWT (2011) Soil carbon sequestration to mitigate climate change: a critical re-examination to identify the true and the false. Eur J Soil Sci 62(1):42–55

    Article  CAS  Google Scholar 

  • Pratscher J, Dumont MG, Conrad R (2011) Ammonia oxidation coupled to CO2 fixation by archaea and bacteria in an agricultural soil. Proc Natl Acad Sci 108(10):4170–4175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prendergast-Miller MT, Duvall M, Sohi SP (2014) Biochar–root interactions are mediated by biochar nutrient content and impacts on soil nutrient availability. Eur J Soil Sci 65(1):173–185

    Article  CAS  Google Scholar 

  • Qiu Y, Pang H, Zhou Z, Zhang P, Feng Y, Sheng DG (2009) Competitive biodegradation of dichlobenil and atrazine coexisting in soil amended with a char and citrate. Environ Pollut 157(11):2964–2969

    Article  CAS  PubMed  Google Scholar 

  • Rajkovich S, Enders A, Hanley K, Hyland C, Zimmerman AR, Lehmann J (2012) Corn growth and nitrogen nutrition after additions of biochars with varying properties to a temperate soil. Biol Fertil Soils 48(3):271–284

    Article  CAS  Google Scholar 

  • Reddy KR, Yargicoglu EN, Yue D, Yaghoubi P (2014a) Enhanced microbial methane oxidation in landfill cover soil amended with biochar. J Geotech Geoenviron 140(9):04014047

    Article  CAS  Google Scholar 

  • Reddy KR, Xie T, Dastgheibi S (2014b) Evaluation of biochar as a potential filter media for the removal of mixed contaminants from urban storm water runoff. J Environ Eng 140(12):04014043

    Article  CAS  Google Scholar 

  • Rees F, Simonnot MO, Morel JL (2014) Short-term effects of biochar on soil heavy metal mobility are controlled by intra-particle diffusion and soil pH increase. Eur J Soil Sci 65:149–161. https://doi.org/10.1111/ejss.12107

    Article  CAS  Google Scholar 

  • Rondon M, Ramirez JA, Lehmann J (2005) Charcoal additions reduce net emissions of greenhouse gases to the atmosphere. In: Proceedings of the 3rd USDA Symposium on Greenhouse Gases and Carbon Sequestration in Agriculture and Forestry, Baltimore, MD. 21–24 Mar, University of Delaware, USA, p 208

    Google Scholar 

  • Rondon MA, Lehmann J, Ramirez J, Hurtado M (2007) Biological nitrogen fixation by common beans (Phaseolus vulgaris L.) increases with biochar additions. Biol Fertil Soils 43:699–708

    Article  Google Scholar 

  • Roy M, McDonald LM (2015) Metal uptake in plants and health risk assessments in metal-contaminated smelter soils. Land Degrad Dev 26(8):785–792

    Article  Google Scholar 

  • Rubasinghege G, Spak SN, Stanier CO, Carmichael GR, Grassian VH (2011) Abiotic mechanism for the formation of atmospheric nitrous oxide from ammonium nitrate. Environ Sci Technol 45:2691–2697

    Article  CAS  PubMed  Google Scholar 

  • Saarnio S, Heimonen K, Kettunen R (2013) Biochar addition indirectly affects N2O emissions via soil moisture and plant N uptake. Soil Biol Biochem 58:99–106

    Article  CAS  Google Scholar 

  • Samarkin VA, Madigan MT, Bowles MW, Casciotti KL, Priscu JC, McKay CP, Joye SB (2010) Abiotic nitrous oxide emission from the hypersaline Don Juan Pond in Antarctica. Nat Geosci 3:341–344

    Article  CAS  Google Scholar 

  • Sarma B, Borkotoki B, Gogoi N, Kataki R (2017a) Responses of soil enzymes and carbon mineralization to applied organic amendments: a short-term study in acidic sandy loam soil. J Indian Soc Soil Sci 65(3):283–289

    Article  Google Scholar 

  • Sarma B, Borkotoki B, Narzari R, Kataki R, Gogoi N (2017b) Organic amendments: effect on carbon mineralization and crop productivity in acidic soil. J Clean Prod 152:157–166

    Article  CAS  Google Scholar 

  • Sarma B, Gogoi N, Bharali M, Mali P (2018) Field evaluation of soil and wheat responses to combined application of hardwood biochar and inorganic fertilizers in acidic sandy loam soil. Exp Agric 54(4):507–519

    Article  Google Scholar 

  • Scheer C, Grace P, Rowlings D, Kimber S, Van Zwieten L (2011) Effect of biochar amendment on the soil-atmosphere exchange of greenhouse gases from an intensive subtropical pasture in northern New South Wales, Australia. Plant Soil 1–2:47–58

    Article  CAS  Google Scholar 

  • Scheuerell SJ, Sullivan DM, Mahaffee WF (2005) Suppression of seedling damping-off caused by Pythium ultimum, P. irregulare, and Rhizoctonia solani in container media amended with a diverse range of Pacific Northwest compost sources. Phytopathology 95(3):306–315

    Article  PubMed  Google Scholar 

  • Schmidt HP, Kammann C, Niggli C, Evangelou MW, Mackie KA, Abiven S (2014) Biochar and biochar-compost as soil amendments to a vineyard soil: influences on plant growth nutrient uptake, plant health and grape quality. Agric Ecosyst Environ 191:117–123

    Article  CAS  Google Scholar 

  • Schmidt HP, Pandit BH, Martinsen V, Cornelissen G, Conte P, Kammann CI (2015) Fourfold increase in pumpkin yield in response to low-dosage root zone application of urine-enhanced biochar to a fertile tropical soil. Agriculture 5(3):723–741

    Article  CAS  Google Scholar 

  • Scott AC, Glasspool IJ (2007) Observations and experiments on the origin and formation of inertinite group macerals. Int J Coal Geol 70:53–66

    Article  CAS  Google Scholar 

  • Semple KT, Doick KJ, Jones KC, Burauel P, Craven A, Harms H (2004) Defining bioavailability and bioaccessibility of contaminated soil and sediment is complicated. Environ Sci Technol 38:228A–231A

    Article  CAS  PubMed  Google Scholar 

  • Shilev SI, Ruso J, Puig A, Benlloch M, Jorrin J, Sancho E (2001) Rhizospheric bacteria promote sunflower (Helianthus annuus L.) plant growth and tolerance to heavy metals. Minerva Biotecnol 13:37–39

    Google Scholar 

  • Silber A, Levkovitch I, Graber ER (2010) pH-dependent mineral release and surface properties of cornstraw biochar: agronomic implications. Environ Sci Technol 44(24):9318–9323

    Article  CAS  PubMed  Google Scholar 

  • Singh BP, Hatton BJ, Singh B, Cowie AL, Kathuria A (2010) Influence of biochars on nitrous oxide emission and nitrogen leaching from two contrasting soils. J Environ Qual 39:1224–1235

    Article  CAS  PubMed  Google Scholar 

  • Smith LC, deKlein CA, Catto WD (2008) Effect of dicyandiamide applied in a granular form on nitrous oxide emissions from a grazed dairy pasture in Southland, New Zealand. N Z J Agric Res 51(4):387–396

    Article  CAS  Google Scholar 

  • Smith JL, Collins HP, Bailey VL (2010) The effect of young biochar on soil respiration. Soil Biol Biochem 42(12):2345–2347

    Article  CAS  Google Scholar 

  • Sohi SP, Krull E, Lopez-Capel E, Bol R (2010) A review of biochar and its use and function in soil. In: Advances in agronomy, vol 105. Academic, Burlington, pp 47–82

    Google Scholar 

  • Solaiman ZM, Blackwell P, Abbott LK, Storer P (2010) Direct and residual effect of biochar application on mycorrhizal root colonisation, growth and nutrition of wheat. Soil Res 48(7):546–554

    Article  CAS  Google Scholar 

  • Sopena F, Semple K, Sohi S, Bending G (2012) Assessing the chemical and biological accessibility of the herbicide isoproturon in soil amended with biochar. Chemosphere 88(1):77–83

    Article  CAS  PubMed  Google Scholar 

  • Spokas KA, Bogner JE (2011) Limits and dynamics of methane oxidation in landfill cover soils. Waste Manag 31(5):823–832

    Article  CAS  PubMed  Google Scholar 

  • Spokas KA, Koskinen WC, Baker JM, Reicosky DC (2009) Impacts of woodchip biochar additions on greenhouse gas production and sorption/degradation of two herbicides in a Minnesota soil. Chemosphere 77(4):574–581

    Article  CAS  PubMed  Google Scholar 

  • Stavi I, Lal R (2013) Agroforestry and biochar to offset climate change: a review. Agron Sustain Dev 33(1):81–96

    Article  Google Scholar 

  • Steinbeiss S, Gleixner G, Antonietti M (2009) Effect of biochar amendment on soil carbon balance and soil microbial activity. Soil Biol Biochem 41(6):1301–1310

    Article  CAS  Google Scholar 

  • Steiner C, Teixeira W, Lehmann J, Nehls T, de Macêdo J, Blum W, Zech W (2007) Long term effects of manure, charcoal and mineral fertilization on crop production and fertility on a highly weathered Central Amazonian upland soil. Plant Soil 291:275–290

    Article  CAS  Google Scholar 

  • Steiner C, Glaser B, Geraldes Teixeira W, Lehmann J, Blum WE, Zech W (2008) Nitrogen retention and plant uptake on a highly weathered central Amazonian Ferralsol amended with compost and charcoal. J Plant Nutr Soil Sci 171(6):893–899

    Article  CAS  Google Scholar 

  • Steiner C, Das CK, Melear N, Lakly D (2010) Reducing nitrogen loss during poultry litter composting using biochar. J Environ Qual 39:1236–1242. https://doi.org/10.2134/jeq2009.0337

    Article  CAS  PubMed  Google Scholar 

  • Sun J, He F, Shao H, Zhang Z, Xu G (2016) Effects of biochar application on Suaeda salsa growth and saline soil properties. Environ Earth Sci 75:1–6

    Article  Google Scholar 

  • Tagoe SO, Horiuchi T, Matsui T (2008) Effects of carbonized and dried chicken manures on the growth, yield, and N content of soybean. Plant Soil 306(1–2):211–220

    Article  CAS  Google Scholar 

  • Tan XF, Liu SB, Liu YG, Gu YL, Zeng GM, Hu XJ, Wang X, Liu SH, Jiang LH (2017) Biochar as potential sustainable precursors for activated carbon production: Multiple applications in environmental protection and energy storage. Biores Technol 227:359–372

    Article  CAS  Google Scholar 

  • Tatarkova V, Hiller E, Vaculik M (2013) Impact of wheat straw biochar addition to soil on the sorption, leaching, dissipation of the herbicide (4-chloro-2-methylphenoxy) acetic acid and the growth of sunflower (Helianthus annuus L.). Ecotoxicol Environ Saf 92:215–221

    Article  CAS  PubMed  Google Scholar 

  • Termorshuizen AJ, Van Rijn E, Van Der Gaag DJ, Alabouvette C, Chen Y, Lagerlöf J, Malandrakis AA, Paplomatas EJ, Rämert B, Ryckeboer J, Steinberg C (2006) Suppressiveness of 18 composts against 7 pathosystems: variability in pathogen response. Soil Biol Biochem 38(8):2461–2477

    Article  CAS  Google Scholar 

  • Thies JE, Rillig MC (2009) Characteristics of biochar: biological properties. In: Lehmann J, Joseph S (eds) Biochar for environmental management: science and technology. Earthscan Press, UK, pp 85–105

    Google Scholar 

  • Thomson AJ, Giannopoulos G, Pretty J, Baggs EM, Richardson DJ (2012) Biological sources and sinks of nitrous oxide and strategies to mitigate emissions. Philos Trans R Soc Lond B: Biol Sci 367:1157–1168

    Article  CAS  Google Scholar 

  • Uchimiya M, Wartelle LH, Klasson KT, Fortier CA, Lima IM (2011) Influence of pyrolysis temperature on biochar property and function as a heavy metal sorbent in soil. J Agric Food Chem 59:2501–2510. https://doi.org/10.1021/jf104206c

    Article  CAS  PubMed  Google Scholar 

  • Unger RC (2008) The effect of bio-char on soil properties and corn grain yields in Iowa. Graduate Theses and Dissertations. 11719. https://lib.dr.iastate.edu/etd/11719

  • Vaccari FP, Baronti S, Lugato E, Genesio L, Castaldi S, Fornasier F, Miglietta F (2011) Biochar as a strategy to sequester carbon and increase yield in durum wheat. Eur J Agron 34:231–238

    Article  CAS  Google Scholar 

  • Vaccari FP, Maienza A, Miglietta F, Baronti S, Di Lonardo S, Giagnoni L, Lagomarsino A, Pozzi A, Pusceddu E, Ranieri R, Valboa G (2015) Biochar stimulates plant growth but not fruit yield of processing tomato in a fertile soil. Agric Ecosyst Environ 207:163–170

    Article  CAS  Google Scholar 

  • Van Zwieten L, Kimber S, Morris S, Chan K, Downie A, Rust J, Joseph S, Cowie A (2010a) Effects of biochar from slow pyrolysis of papermill waste on agronomic performance and soil fertility. Plant Soil 327:235–246

    Article  CAS  Google Scholar 

  • Van Zwieten L, Kimber S, Morris S, Downie A, Berger E, Rust J, Scheer C (2010b) Influence of biochars on flux of N2O and CO2 from ferrosol. Aust J Soil Res 48:555–568

    Article  CAS  Google Scholar 

  • Wang HL, Lin KD, Hou ZN, Richardson B, Gan J (2010) Sorption of the herbicide terbuthylazine in two New Zealand forest soils amended with biosolids and biochars. J Soils Sediments 10(2):283–289

    Article  CAS  Google Scholar 

  • Wang J, Zhang M, Xiong Z, Liu P, Pan G (2011) Effects of biochar addition on N2O and CO2 emissions from two paddy soils. Biol Fert Soils 47:887–896

    Article  CAS  Google Scholar 

  • Wang D, Maughan MW, Sun J, Feng X, Miguez F, Lee D, Dietze MC (2012) Impact of nitrogen allocation on growth and photosynthesis of Miscanthus (Miscanthus × giganteus). GCB Bioenergy 4:688–697

    Article  CAS  Google Scholar 

  • Wang X, Cui H, Shi J, Zhao X, Zhao Y, Wei Z (2015) Relationship between bacterial diversity and environmental parameters during composting of different raw materials. Biores Technol 198:395–402

    Article  CAS  Google Scholar 

  • Wang J, Xiong Z, Kuzyakov Y (2016) Biochar stability in soil: meta-analysis of decomposition and priming effects. GCB Bioenergy 8:512–523

    Article  CAS  Google Scholar 

  • Warnock DD, Lehmann J, Kuyper TW, Rillig MC (2007) Mycorrhizal responses to biochar in soil concepts and mechanisms. Plant Soil 300:9–20

    Article  CAS  Google Scholar 

  • Warnock DD, Mummey DL, McBride B, Major J, Lehmann J, Rillig MC (2010) Influences of non-herbaceous biochar on arbuscular mycorrhizal fungal abundances in roots and soils: results from growth chamber and field experiments. Appl Soil Ecol 46:450–456

    Article  Google Scholar 

  • Wolf D (2008) Biochar as a soil amendment a review of the environmental implications. Available via http://orgprints.org/13268/1/Biochar_as_a_soil_amendment_a_review.pdf. Accessed 8 July 2010

  • Xiao Q, Zhu LX, Shen YF, Li SQ (2016) Sensitivity of soil water retention and availability to biochar addition in rainfed semi-arid farmland during a three-year field experiment. Field Crops Res 196:284–293

    Article  Google Scholar 

  • Xu C, Liu W, Sheng GD (2008) Burned rice straw reduces the availability of clomazone to barnyardgrass. Sci Total Environ 392(2–3):284–289

    Article  CAS  PubMed  Google Scholar 

  • Xu NN, Lin DS, Xu YM, Xie ZL, Liang XF, Guo WJ (2014) Adsorption of aquatic Cd2+ by biochar obtained from corn stover. J Agro-Environ Sci. (in Chinese 33:958–964

    CAS  Google Scholar 

  • Yaghoubi P, Yargicoglu E, Reddy K (2014) Effects of biochar-amendment to landfill cover soil on microbial methane oxidation: initial results. Geo-Congress 2014 Technical papers. American Society of Civil Engineers, pp 1849–1858

    Google Scholar 

  • Yanai Y, Toyota K, Okazaki M (2007) Effects of charcoal addition on N2O emissions from soil resulting from rewetting air-dried soil in short-term laboratory experiments. Soil Sci Plant Nutr 53:181–188

    Article  CAS  Google Scholar 

  • Yang YN, Sheng GY (2003) Enhanced pesticide sorption by soils containing particulate matter from crop residue burns. Environ Sci Technol 37(16):3635–3639

    Article  CAS  PubMed  Google Scholar 

  • Yang X, Lu KP, McGrouther K, Che L, Hu GT, Wang QY, Liu XY, Shen LL, Huang HG, Ye ZQ, Wang HL (2017) Bioavailability of Cd and Zn in soils treated with biochars derived from tobacco stalk and dead pigs. J Soils Sediment 17:751–762

    Article  CAS  Google Scholar 

  • Yao Y, Gao B, Zhang M, Inyang M, Zimmerman AR (2012) Effect of biochar amendment on sorption and leaching of nitrate, ammonium, and phosphate in a sandy soil. Chemosphere 89(11):1467–1471

    Article  CAS  PubMed  Google Scholar 

  • Yeo AR, Flowers TJ (1986) Salinity resistance in rice (Oryza sativa L.) and a pyramiding approach to breeding varieties for saline soils. Funct Plant Biol 13(1):161–173

    Article  Google Scholar 

  • Yu XY, Ying GG, Kookana RS (2006) Sorption and desorption behaviors of diuron in soils amended with charcoal. J Agric Food Chem 54(22):8545–8550

    Article  CAS  PubMed  Google Scholar 

  • Yuan JH, Xu RK (2012) Effects of biochars generated from crop residues on chemical properties of acid soils from tropical and subtropical China. Soil Res 50(7):570–578

    Article  CAS  Google Scholar 

  • Yuan X, Huang H, Zeng G, Li H, Wang J, Zhou C, Zhu H, Pei X, Liu Z, Liu Z (2011) Total concentrations and chemical speciation of heavy metals in liquefaction residues of sewage sludge. Biores Technol 102(5):4104–4110

    Article  CAS  Google Scholar 

  • Yuan H, Lu T, Wang Y, Chen Y, Lei T (2016) Sewage sludge biochar: nutrient composition and its effect on the leaching of soil nutrients. Geoderma 267:17–23

    Article  CAS  Google Scholar 

  • Zahir ZA, Akhtar SS, Ahmad M, Nadeem SM, Nadeem SM (2012) Comparative effectiveness of Enterobacter aerogenes and Pseudomonas fluorescens for mitigating the depressing effect of brackish water on maize. Int J Agric Biol 14(3):337–344

    CAS  Google Scholar 

  • Zhang P, Sheng G, Feng Y, Miller DM (2005) Role of wheat-residue-derived char in the biodegradation of benzonitrile in soil: nutritional stimulation versus adsorptive inhibition. Environ Sci Technol 39(14):5442–5448

    Article  CAS  PubMed  Google Scholar 

  • Zhang P, Sheng G, Feng Y, Miller DM (2006) Predominance of char sorption over substrate concentration and soil pH in influencing biodegradation of benzonitrile. Biodegradation 17(1):1–8

    Article  PubMed  CAS  Google Scholar 

  • Zhang H, Lin K, Wang H, Gan J (2010) Effect of Pinus radiata derived biochars on soil sorption and desorption of phenanthrene. Environ Pollut 158(9):2821–2825

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, He L, Sarmah A, Lin K, Liu Y, Li J, Wang H (2014) Retention and release of diethyl phthalate in biochar-amended vegetable garden soils. J Soils Sediments 14:1790–1799

    Article  CAS  Google Scholar 

  • Zhang J, Liu J, Liu R (2015) Effects of pyrolysis temperature and heating time on biochar obtained from the pyrolysis of straw and lignosulfonate. Biores Technol 176:288–291

    Article  CAS  Google Scholar 

  • Zhao L, Cao X, Mašek O, Zimmerman A (2013) Heterogeneity of biochar properties as a function of feedstock sources and production temperatures. J Hazard Mater 256:1–9

    PubMed  Google Scholar 

  • Zheng J, Zhang X, Li L, Zhang P, Pan G (2007) Effect of long-term fertilization on C mineralization and production of CH4 and CO2 under anaerobic incubation from bulk samples and particle size fractions of a typical paddy soil. Agric Ecosyst Environ 120:129–138

    Article  CAS  Google Scholar 

  • Zheng R, Chen Z, Cai C, Wang X, Huang Y, Xiao B, Sun G (2013) Effect of biochars from rice husk, bran, and straw on heavy metal uptake by pot-grown wheat seedling in a historically contaminated soil. BioResources 8(4):5965–5982

    Article  Google Scholar 

  • Zimmerman AR (2010) Abiotic and microbial oxidation of laboratory-produced black carbon (biochar). Environ Sci Technol 44(4):1295–1301

    Article  CAS  PubMed  Google Scholar 

  • Zimmerman AR, Gao B, Ahn M-Y (2011) Positive and negative carbon mineralization priming effects among a variety of biochar-amended soils. Soil Biol Biochem 43:1169–1179

    Article  CAS  Google Scholar 

  • Zwieten VL, Singh B, Joseph S, Kimber S, Cowie A, Chan YK (2009) Biochar and emissions of non-CO2 greenhouse gases from soil. In: Lehmann J, Joseph S (eds) Biochar for environmental management science and technology. Earthscan Press, UK, pp 227–249

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nirmali Gogoi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gogoi, N., Sarma, B., Mondal, S.C., Kataki, R., Garg, A. (2019). Use of Biochar in Sustainable Agriculture. In: Farooq, M., Pisante, M. (eds) Innovations in Sustainable Agriculture. Springer, Cham. https://doi.org/10.1007/978-3-030-23169-9_16

Download citation

Publish with us

Policies and ethics