Skip to main content

Carbon Sequestration for Sustainable Agriculture

  • Chapter
  • First Online:
Innovations in Sustainable Agriculture

Abstract

The climate of earth has been experiencing an unprecedented change possibly due to the rapidly increasing amount of greenhouse gases (GHGs) in the atmosphere. If the release of GHGs into atmosphere continued at current rate, global warming will make the earth’s atmosphere uninhabitable for living beings in near future. There is an urgency to discreetly devise multiple strategies to offset the current release of GHGs into atmosphere. The CO2 has a prominent share in global warming amongst all GHGs in atmosphere. Soil carbon sequestration is a promising approach to offset the raising amount of CO2 in the atmosphere. Both partially degraded and agricultural soils have a considerable potential to minimize the elevated CO2 levels in the atmosphere. On a global scale, the soils can retain twofold more C than that present in the atmosphere or captured in vegetation. The temperature, soil moisture and elevated CO2 levels are the dominant climatic factors affecting the soil C sequestration. Soil C sequestration is also strongly influenced by various edaphic factors i.e. soil texture, soil structure, soil porosity, soil compaction, soil mineralogy, and soil microbial community composition etc. Additionally, agricultural practices like land-use changes, plant residue management, agro-chemicals etc. influence soil organic carbon (SOC) stocks, either directly e.g. by altering the amount of C being added in the soil, or indirectly e.g. influencing soil aggregation and thereby accelerating microbial decomposition processes. Besides offsetting the rapidly increasing atmospheric GHGs, soil C sequestration may potentially improve the soil quality and advances the food security. It may play a crucial role in sustainable agriculture (SA) because it is highly sustainable and environment-friendly approach. It can enhance the soil quality by improving soil health parameters followed by improved crop production on sustainable basis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abiven S, Menasseri S, Chenu C (2008) The effects of organic inputs over time on soil aggregate stability – a literature analysis. Soil Biol Biochem 41:1–12

    Article  CAS  Google Scholar 

  • Álvaro-Fuentes J, López MV, Arrúe JL, Moret D, Paustian K (2009) Tillage and cropping effects on soil organic carbon in Mediterranean semiarid agroecosystems: testing the century model. Agric Ecosyst Environ 134:211–217

    Article  CAS  Google Scholar 

  • Amelung W, Zech W (1996) Organic species in ped surface and core fractions along a climosequence in the prairie, North America. Geoderma 74:193–206

    Article  Google Scholar 

  • Aune J, Lal R (1998) Agricultural productivity in he tropics and critical limits of properties of oxisols, ultisols and alfisols. Tropical Agriculture (Trinidad) 74:96–103

    Google Scholar 

  • Bailey VL, Smith JL, Bolton H (2002) Fungal-to-bacterial ratios in soils investigated for enhanced C sequestration. Soil Biol Biochem 34:997–1007

    Article  CAS  Google Scholar 

  • Baker JM, Ochsner TE, Venterea RT, Griffis TJ (2007) Tillage and soil carbon sequestration-what do we really know? Agric Ecosyst Environ 118:1–5

    Article  CAS  Google Scholar 

  • Baldock JA, Skjemstad JO (2000) Role of the soil matrix and minerals in protecting natural organic materials. Org Geochem 31:697–710

    Article  CAS  Google Scholar 

  • Bardgett RD, Freeman C, Ostle NJ (2008) Microbial contributions to climate change through carbon cycle feedbacks. ISME J 2:805–814

    Article  CAS  PubMed  Google Scholar 

  • Bastida F, Kandeler E, Hernández T, García C (2008) Long-term effect of municipal solid waste amendment on microbial abundance and humus-associated enzyme activities under semiarid conditions. Microb Ecol 55:651–661

    Article  PubMed  Google Scholar 

  • Batjes NH (1996) Total carbon and nitrogen in the soils of the world. Eur J Soil Sci 47:151–163

    Article  CAS  Google Scholar 

  • Bhogal A, Nicholson FA, Chambers BJ (2009) Organic carbon additions: effects on soil bio-physical and physico-chemical properties. Eur J Soil Sci 60:276–286

    Article  CAS  Google Scholar 

  • Birch HF (1958) The effect of soil drying on humus decomposition and nitrogen availability. Plant Soil 10:9–31

    Article  CAS  Google Scholar 

  • Bradford MA, Davies CA, Frey SD, Maddox TR, Melillo J, Mohan JE, Reynolds JF, Treseder KK, Wallenstein M (2008) Thermal adaptation of soil microbial respiration to elevated temperature. Ecol Lett 11:1316–1327

    Article  PubMed  Google Scholar 

  • Brevika E, Fentonb T, Moranb L (2002) Effect of soil compaction on organic carbon amounts and distribution, South-Central Lowa. Environ Pollut 116:137–141

    Article  Google Scholar 

  • Bronson KF, Neue HU, Singh U, Abao EB (1997) Automated chamber measurements of methane and nitrous oxide flux in a flooded rice soil: in residue, nitrogen, and water management. Soil Sci Soc Am J 61:981–987

    Article  CAS  Google Scholar 

  • Butterly CR, Marschner P, McNeill AM, Baldock JA (2010) Rewetting CO2 pulses in Australian agricultural soils and the influence of soil properties. Biol Fertil Soils 46:739–753

    Article  CAS  Google Scholar 

  • Campbell CA, Zentner RP, Bowren KE, Townley-Smith L, Schnitzer M (1991) Effect of crop rotations and fertilization on soil organic matter and some biochemical properties of a thick Black Chernozem. Can J Soil Sci 71:377–387

    Article  CAS  Google Scholar 

  • Cassman KG, DeDatta SK, Amarante ST, Liboon SP, Samson MI, Dizon MA (1996) Long-term comparison of the agronomic efficiency and residual benefits of organic and inorganic nitrogen sources for tropical lowland rice. Exp Agric 32:427–444

    Article  Google Scholar 

  • Castro HF, Classen AT, Austin EE, Norby RH, Schadt CW (2010) Soil microbial community responses to multiple experimental climate change drivers. Appl Environ Microbiol 76:999–1007

    Article  CAS  PubMed  Google Scholar 

  • Chabbi A, Lehmann J, Ciais P, Loescher HW, Cotrufo MF, Don A, SanClements M, Schipper L, Six J, Smith P, Rumpel C (2017) Aligning agriculture and climate policy. Nat Clim Chang 7:307

    Article  Google Scholar 

  • Christopher SF, Lal R (2007) Nitrogen management affects carbon sequestration in North American cropland soils. Crit Rev Plant Sci 26:45–64

    Article  CAS  Google Scholar 

  • Classen AT, Sundqvist MK, Henning JA, Newman GS, Moore JAM, Cregger MA, Moorhead LC, Patterson CM (2015) Direct and indirect effects of climate change on soil microbial and soil microbial-plant interactions: what lies ahead? Ecosphere 6:1–21

    Article  Google Scholar 

  • Cotrufo MF, Soong JL, Horton AJ, Campbell EE, Haddix ML, Wall DH, Parton WJ (2015) Formation of soil organic matter via biochemical and physical pathways of litter mass loss. Nat Geosci 8:776–779

    Article  CAS  Google Scholar 

  • Curtis PS, Wang X (1998) A meta-analysis of elevated CO2 effects on woody plant mass, form, and physiology. Oecolegia 113:299–313

    Article  Google Scholar 

  • Dan W, Nianpeng H, Qing W, Yuliang L, Qiufeng W, Zhiwei X, Jianxing Z (2016) Effects of temperature and moisture on soil organic matter decomposition along elevation gradients on the Changbai Mountains, Northeast China. Pedosphere 26:399–407

    Article  Google Scholar 

  • Datta A, Mandal B, Badole S, A KC, Majumder SP, Padhan D, Basak N, Barman A, Kundu R, Narkhede WN (2018) Interrelationship of biomass yield, carbon input, aggregation, carbon pools and its sequestration in vertisols under long-term sorghum-wheat cropping system in semi-arid tropics. Soil Tillage Res 184:164–175

    Article  Google Scholar 

  • Davidson EA, Ackerman IL (1993) Changes in soil carbon inventories following cultivation of previously untilled soils. Biogeochemistry 20:161–193

    Article  CAS  Google Scholar 

  • Deng L, Liu Gb, Shangguan Zp (2014) Land-use conversion and changing soil carbon stocks in china’s ‘grain-for-green’ program: a synthesis. Glob Chang Biol 20:3544–3556

    Article  PubMed  Google Scholar 

  • Dijkstra FA, Cheng W, Johnson DW (2006) Plant biomass influences rhizosphere priming effects on soil organic matter decomposition in two differently managed soils. Soil Biol Biochem 38:2519–2526

    Article  CAS  Google Scholar 

  • Dijkstra FA, Carrillo Y, Pendall E, Morgan JA (2013) Rhizosphere priming: a nutrient perspective. Front Microbiol 4:1–8

    Article  CAS  Google Scholar 

  • Don A, Schumacher J, Freibauer A (2011) Impact of tropical land-use change on soil organic carbon stocks – a meta-analysis. Glob Chang Biol 17:1658–1670

    Article  Google Scholar 

  • Drinkwater LE, Wagoner P, Sarrantonio M (1998) Legume-based cropping systems have reduced carbon and nitrogen losses. Nature 396:262

    Article  CAS  Google Scholar 

  • Duiker SW, Lal R (1999) Crop residue and tillage effects on carbon sequestration in a luvisol in central ohio. Soil Tillage Res 52:73–81

    Article  Google Scholar 

  • Dungait JAJ, Hopkins DW, Gregory AS, Whitmore AP (2012) Soil organic matter turnover is governed by accessibility not recalcitrance. Glob Chang Biol 18:1781–1796

    Article  Google Scholar 

  • Durán ZVH, Pleguezuelo CR (2008) Soil-erosion and runoff prevention by plant covers. A review. Agron Sustain Dev 28:65–86

    Article  Google Scholar 

  • Edmeades DC (2003) The long-term effects of manures and fertilisers on soil productivity and quality: a review. Nutr Cycl Agroecosyst 66:165–180

    Article  CAS  Google Scholar 

  • Eleftheriadis A, Lafuente F, Turrión M-B (2018) Effect of land use, time since deforestation and management on organic C and N in soil textural fractions. Soil Tillage Res 183:1–7

    Article  Google Scholar 

  • Eswaran H, Berg EVD, Reich P (1993) Organic carbon in soils of the world. Nature

    Google Scholar 

  • Fageria NK, Carvalho GD, Santos AB, Ferreira EPB, Knupp AM (2011) Chemistry of lowland rice soils and nutrient availability. Comun Soil Sci Plant Anal 42:1913–1933

    Article  CAS  Google Scholar 

  • Faulkner SP (2004) Soils and sediment: understanding wetland biogeochemistry. In: Spray SL, McGothlin KL (eds) Wetlands. Rowman & Littlefield Publishers, Lanham, pp 30–54

    Google Scholar 

  • Fierer N, Schimel JP (2002) Effects of drying – rewetting frequency on soil carbon and nitrogen transformations. Soil Biol Biochem 34:777–787

    Article  CAS  Google Scholar 

  • Fontaine S, Bardoux G, Abbadie L, Mariotti A (2004) Carbon input to soil may decrease soil carbon content. Ecol Lett 7:314–320

    Article  Google Scholar 

  • Fontaine S, Henault C, Aamor A, Bdioui N, Bloor JMG, Maire V, Mary B, Revaillot S, Maron PA (2011) Fungi mediate long term sequestration of carbon and nitrogen in soil through their priming effect. Soil Biol Biochem 43:86–96

    Article  CAS  Google Scholar 

  • Franzleubbers AJ (1999) Microbial activity in response to water-filled pore space of variably eroded southern piedmont soils. Appl Soil Ecol 11:91–101

    Article  Google Scholar 

  • Gai X, Liu H, Liu J, Zhai L, Yang B, Wu S, Ren T, Lei Q, Wang H (2018) Long-term benefits of combining chemical fertilizer and manure applications on crop yields and soil carbon and nitrogen stocks in north china plain. Agric Water Manag 208:384–392

    Article  Google Scholar 

  • Gami SK, Ladha JK, Pathak H, Shah MP, Pasquin E, Pandey SP, Hobbs PR, Joshy D (2001) Long term changes in yield and soil fertility in a twenty year rice-wheat experiment in nepal. Biol Fertil Soils 34:73–78

    Article  CAS  Google Scholar 

  • Gami SK, Lauren JG, Duxbury JM (2009) Soil organic carbon and nitrogen stocks in nepal long-term soil fertility experiments. Soil Tillage Res 106:95–103

    Article  Google Scholar 

  • Ghimire R, Adhikari KR, Chen Z-S, Shah SC, Dahal KR (2012) Soil organic carbon sequestration as affected by tillage, crop residue, and nitrogen application in rice–wheat rotation system. Paddy Water Environ 10:95–102

    Article  Google Scholar 

  • Ghimire R, Lamichhane S, Acharya BS, Bista P, Sainju UM (2017) Tillage, crop residue, and nutrient management effects on soil organic carbon in rice-based cropping systems: a review. J Integr Agric 16:1–15

    Article  Google Scholar 

  • Ginting D, Kessavalou A, Eghball B, Doran JW (2003) Greenhouse gas emissions and soil indicators four years after manure and compost applications. J Environ Qual 32:23–32

    Article  CAS  PubMed  Google Scholar 

  • Goh KM (2004) Carbon sequestration and stabilization in soils: Implications for soil productivity and climate change. Soil Sci Plant Nutr 50(4):467–476

    Article  CAS  Google Scholar 

  • Gold M (2009) What is sustainable agriculture? United States Department of Agriculture. Alternative Farming Systems Information Center

    Google Scholar 

  • Gregorich EG, Drury CF, Baldock JA (2001) Changes in soil carbon under long-term maize in monoculture and legume-based rotation. Can J Soil Sci 81:21–31

    Article  CAS  Google Scholar 

  • Guo LB, Gifford RM (2002) Soil carbon stocks and land use change: a meta analysis. Glob Chang Biol 8:345–360

    Article  Google Scholar 

  • Guo H, Ye C, Zhang H, Pan S, Ji Y, Li Z, Liu M, Zhou X, Du G, Hu F, Hu S (2017) Long-term nitrogen and phosphorus additions reduce soil microbial respiration but increase its temperature sensitivity in a Tibetan Alpine Meadow. Soil Biol Biochem 113:26–34

    Article  CAS  Google Scholar 

  • Hassink J, Whitmore AP, Kubát J (1997) Size and density fractionation of soil organic matter and the physical capacity of soils to protect organic matter. Eur J Agron 7:189–199

    Article  Google Scholar 

  • Hinge G, Surampalli RY, Goyal MK (2018) Regional carbon fluxes from land-use conversion and land-use management in Northeast India. J Hazard Toxic Radioact Waste 22:8

    Article  Google Scholar 

  • Hobley EU, Honermeier B, Don A, Gocke MI, Amelung W, Kogel-Knabner I (2018) Decoupling of subsoil carbon and nitrogen dynamics after long-term crop rotation and fertilization. Agric Ecosyst Environ 265:363–373

    Article  CAS  Google Scholar 

  • Huang S, Peng X, Huang Q, Zhang W (2010) Soil aggregation and organic carbon fractions affected by long-term fertilization in a red soil of subtropical China. Geoderma 154:364–369

    Article  CAS  Google Scholar 

  • IPCC (2007) Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds). Climate change 2007: the physical science basis. Contribution of Working Group I to the fourth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University.

    Google Scholar 

  • IPCC (2014) Climate change 2014: mitigation of climate change, vol 3. Cambridge University Press

    Google Scholar 

  • Jenny H (1941) Factors of soil formation. McGraw-Hill, New York

    Book  Google Scholar 

  • Jing Z, Chen R, Wei S, Feng Y, Zhang J, Lin X (2017) Response and feedback of C mineralization to P availability driven by soil microorganisms. Soil Biol Biochem 105:111–120

    Article  CAS  Google Scholar 

  • Kaneez-e-Batool N, Shahzad T, Mahmood F, Hussain S, Riaz M, Maqbool Z, Anwar F, Rehman K, Rashid MI (2016) Carbon mineralization in response to nitrogen and litter addition in surface and subsoils in an agroecosystem. Arch Agron Soil Sci 62:1–9

    Article  CAS  Google Scholar 

  • Kaur T, Brar BS, Dhillon NS (2008) Soil organic matter dynamics as affected by long-term use of organic and inorganic fertilizers under maize–wheat cropping system. Nutr Cycl Agroecosyst 81:59–69

    Article  Google Scholar 

  • Keil RG, Tsamakis E, Fuh CB, Giddings C, Hedges JI (1994) Mineralogical and textural controls on the organic composition of coastal marine sediments: hydrodynamic separation using splitt-fractionation. Geochemica et Cosmochimica Acta 58:879–893

    Article  CAS  Google Scholar 

  • Kilbertus G (1980) Microhabitats in soil aggregates. Their relationship with bacterial biomass and size of procaryotes present. Revue d’Ecologie et de Biologie du Sol 17:543–557

    Google Scholar 

  • Kirkby CA, Kirkegaard JA, Richardson AE, Wade LJ, Blanchard C, Batten G (2011) Stable soil organic matter: a comparison of C:N:P:S ratios in australian and other world soils. Geoderma 163:197–208

    Article  CAS  Google Scholar 

  • Krull E, Baldock J, Skjemstad J (2001) Soil texture effects on decomposition and soil carbon storage. Paper read at Net Ecosystem Exchange CRC workshop proceedings

    Google Scholar 

  • Kuikman PJ, Lekkerkerk LJA, Veen JAV (1991) Carbon dynamics of a soil planted with wheat under elevated atmospheric CO2 concentration. In: Wilson WS (ed) Advances in soil organic matter research. The impact on agriculture and the environment. Redwood Press, Melksham, pp 267–274

    Google Scholar 

  • Kuzyakov Y (2002) Review: factors affecting rhizosphere priming effects. J Plant Nutr Soil Sci 165:382–396

    Article  CAS  Google Scholar 

  • Kuzyakov Y (2010) Priming effects: interactions between living and dead organic matter. Soil Biol Biochem 42:1363–1371

    Article  CAS  Google Scholar 

  • Laganière J, Angers DA, Paré D (2010) Carbon accumulation in agricultural soils after afforestation: a meta-analysis. Glob Chang Biol 16:439–453

    Article  Google Scholar 

  • Lal R (2002) The potential of soils of the tropics to sequester carbon and mitigatc the greenhouse effects. Adv Agron 76:1–30

    Article  CAS  Google Scholar 

  • Lal R (2004a) Soil carbon sequestration impacts on global climate change and food security. Science 304:1623–1627

    Article  CAS  PubMed  Google Scholar 

  • Lal R (2004b) Soil carbon sequestration to mitigate climate change. Geoderma 123:1–22

    Article  CAS  Google Scholar 

  • Lal R (2006) Enhancing crop yields in the developing countries through restoration of the soil organic carbon pool in agricultural lands. Land Degrad Dev 17:197–209

    Article  Google Scholar 

  • Lal R (2009) Soil degradation as a reason for inadequate human nutrition. Food Sec 1:45–57

    Article  Google Scholar 

  • Lambers JHR, Harpole WS, Tilman D, Knops J, Reich PB (2004) Mechanisms responsible for the positive diversity-productivity relationship in minnesota grasslands. Ecol Lett 7:661–668

    Article  Google Scholar 

  • Leon MCC, Stone A, Dick RP (2006) Organic soil amendments: impacts on snap bean common root rot (Aphanomyes euteiches) and soil quality. Appl Soil Ecol 31:199–210

    Article  Google Scholar 

  • Li J, Wen YC, Li XH, Li YT, Yang XD, Lin Z, Song ZZ, Cooper JM, Zhao BQ (2018) Soil labile organic carbon fractions and soil organic carbon stocks as affected by long-term organic and mineral fertilization regimes in the North China Plain. Soil Tillage Res 175:281–290

    Article  Google Scholar 

  • Liu W, Qiao C, Yang S, Bai W, Liu L (2018) Microbial carbon use efficiency and priming effect regulate soil carbon storage under nitrogen deposition by slowing soil organic matter decomposition. Geoderma 332:37–44

    Article  CAS  Google Scholar 

  • Luo Z, Wang E, Sun OJ (2010) Can no-tillage stimulate carbon sequestration in agricultural soils? A meta-analysis of paired experiments. Agric Ecosys Environ 139:224–231

    Article  CAS  Google Scholar 

  • Maillard É, Angers DA (2014) Animal manure application and soil organic carbon stocks: a meta-analysis. Glob Chang Biol 20:666–679

    Article  PubMed  Google Scholar 

  • Mann LK (1986) Changes in soil carbon storage after cultivation. Soil Sci 142:279–288

    Article  CAS  Google Scholar 

  • Marhan S, Kandeler E, Rein S, Fangmeier A, Niklaus PA (2010) Indirect effects of soil moisture reverse soil C sequestration responses of a spring wheat agro-ecosystem to elevated CO2. Glob Chang Biol 16:469–483

    Article  Google Scholar 

  • Masscheleyn PH, DeLaune RD, Patrick WH (1993) Methane and nitrous oxide emissions from laboratory measurements from laboratory measurements of rice soil suspension: effects of oxidation-reduction status. Chemosphere 26:251–260

    Article  CAS  Google Scholar 

  • Mayhew L (2004) Humic substances in biological agriculture. Acres USA 34

    Google Scholar 

  • Maysoon MM, Benjamin JG, Vigil MF, Nielson DC (2010) Cropping intensity impacts on soil aggregation and carbon sequestration in the Central Great Plains. Soil Sci Soc Am J 74:1712–1719

    Article  CAS  Google Scholar 

  • McDaniel MD, Tiemann LK, Grandy AS (2014) Does agricultural crop diversity enhance soil microbial biomass and organic matter dynamics? A meta-analysis. Ecol Appl 24:560–570

    Article  CAS  PubMed  Google Scholar 

  • Mearns LO, Katz RW, Schneider SH (1984) Extreme high-temperature events: changes in their probabilities with changes in mean temperature. J Clim Appl Meteorol 23:1601–1613

    Article  Google Scholar 

  • Melillo JM, Steudler PA, Aber JD, Newkirk K, Lux H, Bowles FP, Catricala C, Magill A, Ahrens T, Morrisseau S (2002) Soil warming and carbon-cycle feedbacks to the climate system. Science 298:2173–2176

    Article  CAS  PubMed  Google Scholar 

  • Miller DM, Miller WP (2000) Chapter 9: land application of wastes. In: Sumner M (ed) Handbook of soil science. CRC Press

    Google Scholar 

  • Minasny B, Malone BP, McBratney AB, Angers DA, Arrouays D, Chambers A, Chaplot V, Chen Z-S, Cheng K, Das BS, Field DJ, Gimona A, Hedley CB, Hong SY, Mandal B, Marchant BP, Martin M, McConkey BG, Mulder VL, O’Rourke S, Richer-de-Forges AC, Odeh I, Padarian J, Paustian K, Pan G, Poggio L, Savin I, Stolbovoy V, Stockmann U, Sulaeman Y, Tsui C-C, Vågen T-G, van Wesemael B, Winowiecki L (2017) Soil carbon 4 per mille. Geoderma 292:59–86

    Article  Google Scholar 

  • Mizota C, Reeuwijk LPV (1989) Clay mineralogy and chemistry of soils formed under volcanic material in diverse climatic regions, Soil monograph 2. ISRIC, Wageningen

    Google Scholar 

  • Murphy DV, Tockdale EA, Brookes PC, Goulding KWT (2007) Impact of microorganisms on chemical transformation in soil. In: Abbott LK, Murphy DV (eds) Soil biological fertility – a key to sustainable land use in agriculture. Springer, Dordrecht, pp 37–59

    Google Scholar 

  • NRC (2007) Surface temperature reconstructions for the last 2,000 years. National Academies Press, Washington, DC

    Google Scholar 

  • Nunes MR, van Es HM, Schindelbeck R, Ristow AJ, Ryan M (2018) No-till and cropping system diversification improve soil health and crop yield. Geoderma 328:30–43

    Article  CAS  Google Scholar 

  • Parfitt RL, Parshotam A, Salt GI (2002) Carbon turnover in two soils with contrasting mineralogy under long-term maize and pasture. Aust 1 Soil Res 40:127–136

    Article  CAS  Google Scholar 

  • Parihar CM, Yadav MR, Jat SL, Singh AK, Kumar B, Pooniya V, Pradhan S, Verma RK, Jat ML, Jat RK, Saharawat YS (2017) Long term conservation agriculture and intensified cropping systems: effect on growth, yield, water and energy-use efficiency of maize in North-Western India. Pedosphere

    Google Scholar 

  • Patterson E, Rattray EAS, Kellham K (1996) Effect of elevated atmospheric CO2 concentration on c-partitioning and rhizosphere C for three plant species. Soil Biol Biochem 28:195–201

    Article  Google Scholar 

  • Paustian K, Collins HP, Paul EA (1997) Management controls on soil carbon. In: Paul EA, Paustian K, Elliot ET, Cole CV (eds) Organic matter in temperate agroecosystems. CRC Press, Boca Raton, pp 15–49

    Google Scholar 

  • Paustian K, Lehmann J, Ogle S, Reay D, Robertson GP, Smith P (2016) Climate-smart soils. Nature 532:49

    Article  CAS  PubMed  Google Scholar 

  • Pelosi C, Barot S, Capowiez Y, Hedde M, Vandenbulcke F (2014) Pesticides and earthworms. A review. Agron Sustain Dev 34:199–228

    Article  CAS  Google Scholar 

  • Peters W, Jacobson AR, Sweeney C, Andrews AE, Conway TJ, Masarie K, Miller JB, Bruhwiler LMP, Pétron G, Hirsch AI, Worthy DEJ, van der Werf GR, Randerson JT, Wennberg PO, Krol MC, Tans PP (2007) An atmospheric perspective on north american carbon dioxide exchange: Carbontracker. Proc Natl Acad Sci 104:18925–18930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qin R, Stamp P, Richner W (2004) Impact of tillage on root systems of winter wheat. Agron J 96:1523–1530

    Article  Google Scholar 

  • Ransom B, Kim D, Kastner M, Wainwright S (1998) Organic matter preservation on continental slopes: importance of mineralogy and surface area. Geochim Cosmochim Acta 62:1329–1345

    Article  CAS  Google Scholar 

  • Richardson AE, Kirkby CA, Banerjee S, Kirkegaard JA (2014) The inorganic nutrient cost of building soil carbon. Carbon Manag 5:265–268

    Article  CAS  Google Scholar 

  • Rogers HH, Peterson CM, McCrimmon JN, Cure JD (1992) Response of plant roots to elevated carbon dioxide. Plant Cell Environ 15:749–752

    Article  CAS  Google Scholar 

  • Rumpel C (2008) Does burning of harvesting residues increase soil carbon storage. J Soil Sci Plant Nutr 8:44–51

    Google Scholar 

  • Sainju UM, Senwo ZN, Nyakatawa EZ, Tazisong IA, Reddy KC (2008) Soil carbon and nitrogen sequestration as affected by long-term tillage, cropping systems, and nitrogen fertilizer sources. Agric Ecosyst Environ 127:234–240

    Article  CAS  Google Scholar 

  • Sanaullah M, Blagodatskaya E, Chabbi A, Rumpel C, Kuzyakov Y (2011) Drought effects on microbial biomass and enzyme activities in the rhizosphere of grasses depend on plant community composition. Appl Soil Ecol 48:38–44

    Article  Google Scholar 

  • Sanaullah M, Chabbi A, Rumpel C, Kuzyakov Y (2012) Carbon allocation in grassland communities under drought stress followed by 14C pulse labeling. Soil Biol Biochem 55:132–139

    Article  CAS  Google Scholar 

  • Santer BD, Wigley TML, Barnett TP, Anyamba E (1996) A search for human influences on the thermal structure of the atmosphere. Nature 382:39–46

    Article  CAS  Google Scholar 

  • Schimel J, Balser TC, Wallenstein M (2007) Microbial stress-response physiology and its implications for ecosystem function. Ecology 88:1386–1394

    Article  PubMed  Google Scholar 

  • Schimel JP, Wetterstedt JÅM, Holden Pa, Trumbore SE (2011) Drying/rewetting cycles mobilize old C from deep soils from a California annual grassland. Soil Biol Biochem 43:1101–1103

    Article  CAS  Google Scholar 

  • Shahzad T, Chenu C, Repinçay C, Mougin C, Ollier J-L, Fontaine S (2012) Plant clipping decelerates the mineralization of recalcitrant soil organic matter under multiple grassland species. Soil Biol Biochem 51:73–80

    Article  CAS  Google Scholar 

  • Shrestha RK, Ladha JK, Lefroy RDB (2002) Carbon management for sustainability of an intensively managed rice-based cropping system. Biol Fertil Soils 36:215–223

    Article  CAS  Google Scholar 

  • Shukla SK, Swaha S, Maity SK, Solomon S, Awasthi SK, Gaur A, Pathak AD, Jaiswal VP (2017) Soil carbon sequestration and crop yields in rice–wheat and sugarcane–ratoon–wheat cropping systems through crop residue management and inoculation of Trichoderma viride in subtropical India. Sugar Tech 17:347–358

    Article  CAS  Google Scholar 

  • Singh HB, Anderson BE, Brune WH, Cai C, Cohen RC, Crawford JH, Cubison MJ, Czech EP, Emmons L, Fuelberg H, Huey G, Jacob DJ, Jimenez JL, Kaduwela A (2010) Pollution influences on atmospheric composition and chemistry at high northern latitudes: Boreal and California forest fire emissions. Atmos Environ 44:4553–4564

    Article  CAS  Google Scholar 

  • Six J, Feller C, Denef K, Ogle SM, Sa JCD, Albrecht A (2002a) Soil organic matter, biota and aggregation in temperate and tropical soils – effects of no-tillage. Agronomie 22:755–775

    Article  Google Scholar 

  • Six J, Callewaert P, Lenders S, de Gryze S, Morris SJ, Gregorich EG, Paul EA, Paustian K (2002b) Measuring and understanding carbon storage in afforested soils by physical fractionation. Soil Sci Soc Am J 66:1981–1987

    Article  CAS  Google Scholar 

  • Six J, Frey SD, K TR, Batten KM (2006) Bacterial and fungal contributions to carbon sequestration in agroecosystems. Soil Sci Soc Am J 70:555–569

    Article  CAS  Google Scholar 

  • Sodhi GPS, Beri V, Benbi DK (2009) Soil aggregation and distribution of carbon and nitrogen in different fractions under long-term application of compost in rice–wheat system. Soil Tillage Res 103:412–418

    Article  Google Scholar 

  • Soon YK (1998) Crop residue and fertilizer management effects on some biological and chemical properties of a Dark Grey Solod. Can J Soil Sci 78:707–713

    Article  Google Scholar 

  • Spohn M, Kuzyakov Y (2013) Phosphorus mineralization can be driven by microbial need for carbon. Soil Biol Biochem 61:69–75

    Article  CAS  Google Scholar 

  • Stevenson FJ (1994) Humus chemistry, genesis, composition reactions. Wiley, New York, pp 429–471

    Google Scholar 

  • Stevenson JR, Villoria N, Byerlee D, Kelley T, Maredia M (2013) Green revolution research saved an estimated 18 to 27 million hectares from being brought into agricultural production. Proc Natl Acad Sci USA 110:8363–8368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stockmann U, Adams MA, Crawford JW, Field DJ, Henakaarchchi N, Jenkins M, Minasny B, McBratney AB, Remy VD, Courcelles D, Singh K, Wheeler I, Abbott L, Angers DA, Baldock J, Bird M, Brookes PC, Chenu C, Jastrow JD, Lal R, Lehmann J, Donnell AGO, Parton WJ, Whitehead D, Zimmermann M (2015) The knowns, known unknowns and unknowns of sequestration of soil organic carbon. Agric Ecosyst Environ 164:80–99

    Article  CAS  Google Scholar 

  • Swanepoel CM, Rötter RP, van der Laan M, Annandale JG, Beukes DJ, du Preez CC, Swanepoel LH, van der Merwe A, Hoffmann MP (2018) The benefits of conservation agriculture on soil organic carbon and yield in Southern Africa are site-specific. Soil Tillage Res 183:72–82

    Article  Google Scholar 

  • Tan X, Chang SX (2007) Soil compaction and forest litter amendment affect carbon and net nitrogen mineralization in a boreal forest soil. Soil Tillage Res 93:77–86

    Article  Google Scholar 

  • Tejada M, Gonzalez JL, García-Martínez AM, Parrado J (2008) Application of a green manure and green manure composted with beet vinasse on soil restoration: effects on soil properties. Bioresour Technol 99:4949–4957

    Article  CAS  PubMed  Google Scholar 

  • Thomsen IK, Christensen BT (2010) Carbon sequestration in soils with annual inputs of maize biomass and maize-derived animal manure: evidence from 13C abundance. Soil Biol Biochem 42:1643–1646

    Article  CAS  Google Scholar 

  • Tiemann LK, Grandy AS, Atkinson EE, Marin-Spiotta E, McDaniel MD (2015) Crop rotational diversity enhances belowground communities and functions in an agroecosystem. Ecol Lett. n/a–n/a

    Google Scholar 

  • Tilman D, Knops J, Wedin D, Reich P, Ritchie M, Siemann E (1997) The influence of functional diversity and composition on ecosystem processes. Science 277:1300–1302

    Article  CAS  Google Scholar 

  • Tittarelli F, Petruzzelli G, Pezzarossa B, Civilini M, Benedetti A, Sequi P (2007) Quality and agronomic use of compost. In: Diaz LF, de bertoldi M, Bidlingmaier W, Stentiford E (eds) Compost science and technology. Waste management series, vol 8. Elsevier, pp 119–145

    Google Scholar 

  • Trumbore SE, Chadwick OA, Amundson R (1996) Rapid exchange between soil carbon and atmospheric carbon dioxide driven by temperature change. Science 272:383–396

    Article  Google Scholar 

  • Van de Geijn SC, Veen JAV (1993) Implications of increased carbon dioxide levels for carbon input and turnover in soils. Vegetatio 104/105:283–292

    Article  Google Scholar 

  • Van-Camp L, Bujarrabal B, Gentile AR, Jones RJA, Montanarella L, Olazabal C, Selvaradjou SK (2004) Reports of the Technical Working Groups established under the thematic strategy for soil protection. Office for Official Publications of the European Communities, Luxembourg, p 872

    Google Scholar 

  • Varadachari CH, Mondal AH, Nayak DC, Ghosh K (1994) Clay-humus complexation: effect of ph and the nature of bonding. Soil Biol Biochem 26:1145

    Article  CAS  Google Scholar 

  • Waldrop MP, Zak DR, Blackwood CB, Curtis CD, Tilman D (2006) Resource availability controls fungal diversity across a plant diversity gradient. Ecol Lett 9:1127–1135

    Article  PubMed  Google Scholar 

  • Walia MK, Dick WA (2018) Selected soil physical properties and aggregate-associated carbon and nitrogen as influenced by gypsum, crop residue, and glucose. Geoderma 320:67–73

    Article  CAS  Google Scholar 

  • Walsh E, McDonnell K (2012) The influence of measurement methodology on soil infiltration rate. Int J Soil Sci 7:168–176

    Article  Google Scholar 

  • Wegner BR, Osborne SL, Lehman RM, Kumar S (2018) Seven-year impact of cover crops on soil health when corn residue is removed. BioEnergy Res 11:239–248

    Article  CAS  Google Scholar 

  • West TO, Post WM (2002) Soil organic carbon sequestration rates by tillage and crop rotation: a global data analysis. Soil Sci Soc Am J 66:1930–1946

    Article  CAS  Google Scholar 

  • Wieder WR, Bonan GB, Allison SD (2013) Global soil carbon projections are improved by modelling microbial processes. Nat Clim Chang 3:909–912

    Article  CAS  Google Scholar 

  • Willey JM, Sherwood LM, Woolverton CJ (2009) Prescott’s principles of microbiology. McGraw-Hill, New York

    Google Scholar 

  • Williams MA (2007) Response of microbial communities to water stress in irrigated and drought-prone tallgrass prairie soils. Soil Biol Biochem 39:39

    Google Scholar 

  • Xiang S-R, Doyle A, Holden PA, Schimel JP (2008) Drying and rewetting effects on C and N mineralization and microbial activity in surface and subsurface California grassland soils. Soil Biol Biochem 40:2281–2289

    Article  CAS  Google Scholar 

  • Zak DR, Holmes WE, MacDonald NW, Pregitzer KS (1999) Soil temperature, matrix potential, and the kinetics of microbial respiration and nitrogen mineralization. Soil Sci Soc Am J 63:575–584

    Article  CAS  Google Scholar 

  • Zhang JY, Sun CL, Liu GB, Xue S (2018) Effects of long-term fertilisation on aggregates and dynamics of soil organic carbon in a semi-arid agro-ecosystem in China. PeerJ 6:20

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Sanaullah .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sanaullah, M., Afzal, T., Shahzad, T., Wakeel, A. (2019). Carbon Sequestration for Sustainable Agriculture. In: Farooq, M., Pisante, M. (eds) Innovations in Sustainable Agriculture. Springer, Cham. https://doi.org/10.1007/978-3-030-23169-9_15

Download citation

Publish with us

Policies and ethics