Skip to main content

Hsp90 Is a Pivotal Player in Retinal Disease and Cancer

  • Chapter
  • First Online:
Heat Shock Protein 90 in Human Diseases and Disorders

Part of the book series: Heat Shock Proteins ((HESP,volume 19))

Abstract

Heat shock proteins (Hsp) are primarily protecting and maintaining cell viability during stressful conditions such as thermal and oxidative challenges through protein refolding and stabilization. Hsp play an essential role to confer eye protection from disease states particularly the diseases affecting the retina. Here, we summarize the Hsp function in normal retina, and their involvement in the pathogenesis of certain retinal diseases such cancer, glaucomatous retina, retinitis pigmentosa, and retinal neurodegeneration, as well as the age-related macular degeneration. This information would provide a better understanding of Hsp function and their involvement in ocular disease pathogenesis that could be a target for therapeutic purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AMD:

Age-related macular degeneration

GFAP:

Glial fibrillary acidic protein

Hsp:

Heat shock proteins

IMPDH:

Inosine-5′-monophosphate dehydrogenase

RP:

Retinitis pigmentosa

RPE:

Retinal pigment epithelium

References

  • Aguila M, Bevilacqua D, McCulley C, Schwarz N, Athanasiou D, Kanuga N, Novoselov SS, Lange CA, Ali RR, Bainbridge JW, Gias C, Coffey PJ, Garriga P, Cheetham ME (2014) Hsp90 inhibition protects against inherited retinal degeneration. Hum Mol Genet 23:2164–2175

    Article  CAS  PubMed  Google Scholar 

  • Anckar J, Sistonen L (2007) Heat shock factor 1 as a coordinator of stress and developmental pathways. Adv Exp Med Biol 594:78–88

    Article  PubMed  Google Scholar 

  • Basso AD, Solit DB, Chiosis G, Giri B, Tsichlis P, Rosen N (2002) Akt forms an intracellular complex with heat shock protein 90 (Hsp90) and Cdc37 and is destabilized by inhibitors of Hsp90 function. J Biol Chem 277:39858–39866

    Article  CAS  PubMed  Google Scholar 

  • Bernstein SL, Borst DE, Neuder ME, Wong P (1996) Characterization of a human fovea cDNA library and regional differential gene expression in the human retina. Genomics 32:301–308

    Article  CAS  PubMed  Google Scholar 

  • Black JA, Waxman SG, Hildebrand C (1985) Axo-glial relations in the retina-optic nerve junction of the adult rat: freeze-fracture observations on axon membrane structure. J Neurocytol 14:887–907

    Article  CAS  PubMed  Google Scholar 

  • Bradke F, Dotti CG (1999) The role of local actin instability in axon formation. Science 283:1931–1934

    Article  CAS  PubMed  Google Scholar 

  • Brown IR (2007) Heat shock proteins and protection of the nervous system. Ann N Y Acad Sci 1113:147–158

    Article  CAS  PubMed  Google Scholar 

  • Calderwood SK, Khaleque MA, Sawyer DB, Ciocca DR (2006) Heat shock proteins in cancer: chaperones of tumorigenesis. Trends Biochem Sci 31:164–172

    Article  CAS  PubMed  Google Scholar 

  • Chatterjee S, Burns TF (2017) Targeting heat shock proteins in cancer: a promising therapeutic approach. Int J Mol Sci 18:1978

    Article  PubMed Central  CAS  Google Scholar 

  • Chatterjee S, Bhattacharya S, Socinski MA, Burns TF (2016) HSP90 inhibitors in lung cancer: promise still unfulfilled. Clin Adv Hematol Oncol 14:346–356

    PubMed  Google Scholar 

  • Chen G, Cao P, Goeddel DV (2002) TNF-induced recruitment and activation of the IKK complex require Cdc37 and Hsp90. Mol Cell 9:401–410

    Article  CAS  PubMed  Google Scholar 

  • Chen W, Zheng R, Baade PD, Zhang S, Zeng H, Bray F, Jemal A, Yu XQ, He J (2016) Cancer statistics in China, 2015. CA Cancer J Clin 66:115–132

    Article  PubMed  Google Scholar 

  • Chiosis G (2006) Targeting chaperones in transformed systems – a focus on Hsp90 and cancer. Expert Opin Ther Targets 10:37–50

    Article  CAS  PubMed  Google Scholar 

  • Chiosis G (2016) Heat shock proteins in disease–from molecular mechanisms to therapeutics. Curr Top Med Chem 16:2727

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chuang J-Z, Vega C, Jun W, Sung C-H (2004) Structural and functional impairment of endocytic pathways by retinitis pigmentosa mutant rhodopsin-arrestin complexes. J Clin Invest 114:131–140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Csermely P, Schnaider T, Soti C, Prohaszka Z, Nardai G (1998) The 90-kDa molecular chaperone family: structure, function, and clinical applications. A comprehensive review. Pharmacol Ther 79:129–168

    Article  CAS  PubMed  Google Scholar 

  • Czar MJ, Welsh MJ, Pratt WB (1996) Immunofluorescence localization of the 90-kDa heat-shock protein to cytoskeleton. Eur J Cell Biol 70:322–330

    CAS  PubMed  Google Scholar 

  • Da Silva JS, Dotti CG (2002) Breaking the neuronal sphere: regulation of the actin cytoskeleton in neuritogenesis. Nat Rev Neurosci 3:694

    Article  PubMed  CAS  Google Scholar 

  • Darimont BD (1999) The Hsp90 chaperone complex-a potential target for cancer therapy? World J Gastroenterol 5:195–198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dean DO, Tytell M (2001) Hsp25 and −90 immunoreactivity in the normal rat eye. Invest Ophthalmol Vis Sci 42:3031–3040

    CAS  PubMed  Google Scholar 

  • Dean DO, Kent CR, Tytell M (1999) Constitutive and inducible heat shock protein 70 immunoreactivity in the normal rat eye. Invest Ophthalmol Vis Sci 40:2952–2962

    CAS  PubMed  Google Scholar 

  • Decanini A, Nordgaard CL, Feng X, Ferrington DA, Olsen TW (2007) Changes in select redox proteins of the retinal pigment epithelium in age-related macular degeneration. Am J Ophthalmol 143:607–615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ellis RJ (2007) Protein misassembly. In: Csermely P, Vígh L (eds) Molecular aspects of the stress response: chaperones, membranes and networks. Springer New York, New York, pp 1–13

    Google Scholar 

  • Garcia-Carbonero R, Carnero A, Paz-Ares L (2013) Inhibition of HSP90 molecular chaperones: moving into the clinic. Lancet Oncol 14:e358–e369

    Article  CAS  PubMed  Google Scholar 

  • Garrido C, Brunet M, Didelot C, Zermati Y, Schmitt E, Kroemer G (2006) Heat shock proteins 27 and 70: anti-apoptotic proteins with tumorigenic properties. Cell Cycle 5:2592–2601

    Article  CAS  PubMed  Google Scholar 

  • Goedert M, Jakes R (2005) Mutations causing neurodegenerative tauopathies. Biochim Biophys Acta 1739:240–250

    Article  CAS  PubMed  Google Scholar 

  • Gyrd-Hansen M, Nylandsted J, Jäättelä M (2004) Heat shock protein 70 promotes cancer cell viability by safeguarding lysosomal integrity. Cell Cycle 3:1484–1485

    Article  CAS  PubMed  Google Scholar 

  • Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674

    Article  CAS  PubMed  Google Scholar 

  • Harris H, Rubinsztein DC (2011) Control of autophagy as a therapy for neurodegenerative disease. Nat Rev Neurol 8:108–117

    Article  PubMed  CAS  Google Scholar 

  • He S, Zhang C, Shafi AA, Sequeira M, Acquaviva J, Friedland JC, Sang J, Smith DL, Weigel NL, Wada Y (2013) Potent activity of the Hsp90 inhibitor ganetespib in prostate cancer cells irrespective of androgen receptor status or variant receptor expression. Int J Oncol 42:35–43

    Article  CAS  PubMed  Google Scholar 

  • Honjo M, Tanihara H, Kido N, Inatani M, Okazaki K, Honda Y (2000) Expression of ciliary neurotrophic factor activated by retinal Muller cells in eyes with NMDA- and kainic acid-induced neuronal death. Invest Ophthalmol Vis Sci 41:552–560

    CAS  PubMed  Google Scholar 

  • Jäättelä M (1999) Escaping cell death: survival proteins in cancer. Exp Cell Res 248:30–43

    Article  PubMed  Google Scholar 

  • Jacobson C, Schnapp B, Banker GA (2006) A change in the selective translocation of the Kinesin-1 motor domain marks the initial specification of the axon. Neuron 49:797–804

    Article  CAS  PubMed  Google Scholar 

  • Jaiswal RK, Weissinger E, Kolch W, Landreth GE (1996) Nerve growth factor-mediated activation of the mitogen-activated protein (MAP) kinase cascade involves a signaling complex containing B-Raf and HSP90. J Biol Chem 271:23626–23629

    Article  CAS  PubMed  Google Scholar 

  • Jarrett SG, Boulton ME (2012) Consequences of oxidative stress in age-related macular degeneration. Mol Asp Med 33:399–417

    Article  CAS  Google Scholar 

  • Jego G, Hazoumé A, Seigneuric R, Garrido C (2013) Targeting heat shock proteins in cancer. Cancer Lett 332:275–285

    Article  CAS  PubMed  Google Scholar 

  • Jiang L, Liu X, Li B, He X, Jin Y, Li L, Gao F, Wang N (2008) Heat shock proteins and survivin: relationship and effects on proliferation index of retinoblastoma cells. Histol Histopathol 23:827–832

    PubMed  Google Scholar 

  • Johnson J, Corbisier R, Stensgard B, Toft D (1996) The involvement of p23, hsp90, and immunophilins in the assembly of progesterone receptor complexes. J Steroid Biochem Mol Biol 56:31–37

    Article  CAS  PubMed  Google Scholar 

  • Jolly C, Morimoto RI (2000) Role of the heat shock response and molecular chaperones in oncogenesis and cell death. J Natl Cancer Inst 92:1564–1572

    Article  CAS  PubMed  Google Scholar 

  • Jung T, Catalgol B, Grune T (2009) The proteasomal system. Mol Asp Med 30:191–296

    Article  CAS  Google Scholar 

  • Kaarniranta K, Sinha D, Blasiak J, Kauppinen A, Vereb Z, Salminen A, Boulton ME, Petrovski G (2013) Autophagy and heterophagy dysregulation leads to retinal pigment epithelium dysfunction and development of age-related macular degeneration. Autophagy 9:973–984

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kanwar JR, Kamalapuram SK, Kanwar RK (2013) Survivin signaling in clinical oncology: a multifaceted dragon. Med Res Rev 33:765–789

    Article  CAS  PubMed  Google Scholar 

  • Kaplan KB, Li R (2012) A prescription for ‘stress’–the role of Hsp90 in genome stability and cellular adaptation. Trends Cell Biol 22:576–583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karagoz GE, Rudiger SG (2015) Hsp90 interaction with clients. Trends Biochem Sci 40:117–125

    Article  CAS  PubMed  Google Scholar 

  • Karunanithi S, Barclay JW, Robertson RM, Brown IR, Atwood HL (1999) Neuroprotection at Drosophila synapses conferred by prior heat shock. J Neurosci 19:4360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kauppinen A, Niskanen H, Suuronen T, Kinnunen K, Salminen A, Kaarniranta K (2012) Oxidative stress activates NLRP3 inflammasomes in ARPE-19 cells – implications for age-related macular degeneration (AMD). Immunol Lett 147:29–33

    Article  CAS  PubMed  Google Scholar 

  • Kiang JG, Tsokos GC (1998) Heat shock protein 70 kDa: molecular biology, biochemistry, and physiology. Pharmacol Ther 80:183–201

    Article  CAS  PubMed  Google Scholar 

  • Kimura E, Enns RE, Alcaraz JE, Arboleda J, Slamon DJ, Howell SB (1993) Correlation of the survival of ovarian cancer patients with mRNA expression of the 60-kD heat-shock protein HSP-60. J Clin Oncol Off J Am Soc Clin Oncol 11:891–898

    Article  CAS  Google Scholar 

  • Klettner A (2004) The induction of heat shock proteins as a potential strategy to treat neurodegenerative disorders. Drug News Perspect 17:299–306

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi K, Kobayashi H, Ueda M, Honda Y (1998) Estrogen receptor expression in bovine and rat retinas. Invest Ophthalmol Vis Sci 39:2105–2110

    CAS  PubMed  Google Scholar 

  • Kojima M, Hoshimaru M, Aoki T, Takahashi JB, Ohtsuka T, Asahi M, Matsuura N, Kikuchi H (1996) Expression of heat shock proteins in the developing rat retina. Neurosci Lett 205:215–217

    Article  CAS  PubMed  Google Scholar 

  • Kosik KS, Shimura H (2005) Phosphorylated tau and the neurodegenerative foldopathies. Biochim Biophys Acta 1739:298–310

    Article  CAS  PubMed  Google Scholar 

  • Labbadia J, Cunliffe H, Weiss A, Katsyuba E, Sathasivam K, Seredenina T, Woodman B, Moussaoui S, Frentzel S, Luthi-Carter R, Paganetti P, Bates GP (2011) Altered chromatin architecture underlies progressive impairment of the heat shock response in mouse models of Huntington disease. J Clin Invest 121:3306–3319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lau LF, Schachter JB, Seymour PA, Sanner MA (2002) Tau protein phosphorylation as a therapeutic target in Alzheimer’s disease. Curr Top Med Chem 2:395–415

    Article  CAS  PubMed  Google Scholar 

  • Li J, Buchner J (2013) Structure, function and regulation of the hsp90 machinery. Biom J 36:106–117

    Google Scholar 

  • Li Y, Wang YS, Shen XF, Hui YN, Han J, Zhao W, Zhu J (2008) Alterations of activity and intracellular distribution of the 20S proteasome in ageing retinal pigment epithelial cells. Exp Gerontol 43:1114–1122

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Zhang T, Schwartz SJ, Sun D (2009) New developments in Hsp90 inhibitors as anti-cancer therapeutics: mechanisms, clinical perspective and more potential. Drug Resist Updat 12:17–27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin T-Y, Guo W, Long Q, Ma A, Liu Q, Zhang H, Huang Y, Chandrasekaran S, Pan C, Lam KS (2016) HSP90 inhibitor encapsulated photo-theranostic nanoparticles for synergistic combination cancer therapy. Theranostics 6:1324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lindquist S, Craig E (1988) The heat-shock proteins. Annu Rev Genet 22:631–677

    Article  CAS  PubMed  Google Scholar 

  • Luo W, Dou F, Rodina A, Chip S, Kim J, Zhao Q, Moulick K, Aguirre J, Wu N, Greengard P, Chiosis G (2007) Roles of heat-shock protein 90 in maintaining and facilitating the neurodegenerative phenotype in tauopathies. Proc Natl Acad Sci USA 104:9511–9516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luo W, Rodina A, Chiosis G (2008) Heat shock protein 90: translation from cancer to Alzheimer’s disease treatment? BMC Neurosci 9:S7–S7

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Martinon F (2008) Detection of immune danger signals by NALP3. J Leukoc Biol 83:507–511

    Article  CAS  PubMed  Google Scholar 

  • Mayor A, Martinon F, De Smedt T, Petrilli V, Tschopp J (2007) A crucial function of SGT1 and HSP90 in inflammasome activity links mammalian and plant innate immune responses. Nat Immunol 8:497–503

    Article  CAS  PubMed  Google Scholar 

  • Meli M, Pennati M, Curto M, Daidone MG, Plescia J, Toba S, Altieri DC, Zaffaroni N, Colombo G (2006) Small-molecule targeting of heat shock protein 90 chaperone function: rational identification of a new anticancer lead. J Med Chem 49:7721–7730

    Article  CAS  PubMed  Google Scholar 

  • Mendes HF, Cheetham ME (2008) Pharmacological manipulation of gain-of-function and dominant-negative mechanisms in rhodopsin retinitis pigmentosa. Hum Mol Genet 17:3043–3054

    Article  CAS  PubMed  Google Scholar 

  • Mimnaugh EG, Worland PJ, Whitesell L, Neckers LM (1995) Possible role for serine/threonine phosphorylation in the regulation of the heteroprotein complex between the hsp90 stress protein and the pp60v-src tyrosine kinase. J Biol Chem 270:28654–28659

    Article  CAS  PubMed  Google Scholar 

  • Mirshahi M, Nicolas C, Mirshahi A, Hecquet C, d’Hermies F, Faure JP, Agarwal MK (1996) The mineralocorticoid hormone receptor and action in the eye. Biochem Biophys Res Commun 219:150–156

    Article  CAS  PubMed  Google Scholar 

  • Miyata Y, Nakamoto H, Neckers L (2013) The therapeutic target Hsp90 and cancer hallmarks. Curr Pharm Des 19:347–365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moore SK, Kozak C, Robinson EA, Ullrich SJ, Appella E (1989) Murine 86- and 84-kDa heat shock proteins, cDNA sequences, chromosome assignments, and evolutionary origins. J Biol Chem 264:5343–5351

    CAS  PubMed  Google Scholar 

  • Muchowski PJ, Wacker JL (2005) Modulation of neurodegeneration by molecular chaperones. Nat Rev Neurosci 6:11–22

    Article  CAS  PubMed  Google Scholar 

  • Nathan DF, Lindquist S (1995) Mutational analysis of Hsp90 function: interactions with a steroid receptor and a protein kinase. Mol Cell Biol 15:3917–3925

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nathan DF, Vos MH, Lindquist S (1997) In vivo functions of the Saccharomyces cerevisiae Hsp90 chaperone. Proc Natl Acad Sci USA 94:12949–12956

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Neckers L, Workman P (2012) Hsp90 molecular chaperone inhibitors: are we there yet? Clin Cancer Res 18:64–76

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park JW, Moon C, Yun S, Kim SY, Bae YC, Chun M-H, Moon J-I (2007) Differential expression of heat shock protein mRNAs under in vivo glutathione depletion in the mouse retina. Neurosci Lett 413:260–264

    Article  CAS  PubMed  Google Scholar 

  • Parsell D, Lindquist S (1993) The function of heat-shock proteins in stress tolerance: degradation and reactivation of damaged proteins. Annu Rev Genet 27:437–496

    Article  CAS  PubMed  Google Scholar 

  • Pearl LH, Prodromou C, Workman P (2008) The Hsp90 molecular chaperone: an open and shut case for treatment. Biochem J 410:439–453

    Article  CAS  PubMed  Google Scholar 

  • Pratt WB (1997) The role of the hsp90-based chaperone system in signal transduction by nuclear receptors and receptors signaling via MAP kinase. Annu Rev Pharmacol Toxicol 37:297–326

    Article  CAS  PubMed  Google Scholar 

  • Pratt WB (1998) The hsp90-based chaperone system: involvement in signal transduction from a variety of hormone and growth factor receptors. Proc Soc Exp Biol Med 217:420–434

    Article  CAS  PubMed  Google Scholar 

  • Proia DA, Kaufmann GF (2015) Targeting heat-shock protein 90 (HSP90) as a complementary strategy to immune checkpoint blockade for cancer therapy. Cancer Immunol Res 3:583–589

    Article  CAS  PubMed  Google Scholar 

  • Qin S, Ni M, Wang X, Maurier-Mahe F, Shurland DL, Rodrigues GA (2011) Inhibition of RPE cell sterile inflammatory responses and endotoxin-induced uveitis by a cell-impermeable HSP90 inhibitor. Exp Eye Res 93:889–897

    Article  CAS  PubMed  Google Scholar 

  • Rui Z, Xiao-Yun G, Xing-Chuang X, You J, Ze-Jian H, Xiang F (2018) Progress in molecular chaperone regulation of heat shock protein 90 and cancer. Chin J Anal Chem 46:301–308

    Article  Google Scholar 

  • Rutherford SL, Lindquist S (1998) Hsp90 as a capacitor for morphological evolution. Nature 396:336

    Article  CAS  PubMed  Google Scholar 

  • Saif M, Erlichman C, Dragovich T, Mendelson D, Toft D, Burrows F, Storgard C, Von Hoff D (2013) Open-label, dose-escalation, safety, pharmacokinetic, and pharmacodynamic study of intravenously administered CNF1010 (17-(allylamino)-17-demethoxygeldanamycin [17-AAG]) in patients with solid tumors. Cancer Chemother Pharmacol 71:1345–1355

    Article  CAS  PubMed  Google Scholar 

  • Sakai M, Sakai H, Nakamura Y, Fukuchi T, Sawaguchi S (2003) Immunolocalization of heat shock proteins in the retina of normal monkey eyes and monkey eyes with laser-induced glaucoma. Jpn J Ophthalmol 47:42–52

    Article  CAS  PubMed  Google Scholar 

  • Sanchez ER, Redmond T, Scherrer LC, Bresnick EH, Welsh MJ, Pratt WB (1988) Evidence that the 90-kilodalton heat shock protein is associated with tubulin-containing complexes in L cell cytosol and in intact PtK cells. Mol Endocrinol 2:756–760

    Article  CAS  PubMed  Google Scholar 

  • Santarosa M, Favaro D, Quaia M, Galligioni E (1997) Expression of heat shock protein 72 in renal cell carcinoma: possible role and prognostic implications in cancer patients. Eur J Cancer 33:873–877

    Article  CAS  PubMed  Google Scholar 

  • Sauvage F, Messaoudi S, Fattal E, Barratt G, Vergnaud-Gauduchon J (2017) Heat shock proteins and cancer: how can nanomedicine be harnessed? J Control Release 248:133–143

    Article  CAS  PubMed  Google Scholar 

  • Scheibel T, Buchner J (1998) The Hsp90 complex – a super-chaperone machine as a novel drug target. Biochem Pharmacol 56:675–682

    Article  CAS  PubMed  Google Scholar 

  • Schwamborn JC, Müller M, Becker AH, Püschel AW (2007) Retracted: ubiquitination of the GTPase Rap1B by the ubiquitin ligase Smurf2 is required for the establishment of neuronal polarity. EMBO J 26:1410–1422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shapley R, Perry VH (1986) Cat and monkey retinal ganglion cells and their visual functional roles. Trends Neurosci 9:229–235

    Article  Google Scholar 

  • Shi S-H, Jan LY, Jan Y-N (2003) Hippocampal neuronal polarity specified by spatially localized mPar3/mPar6 and PI 3-kinase activity. Cell 112:63–75

    Article  CAS  PubMed  Google Scholar 

  • Shi S-H, Cheng T, Jan LY, Jan Y-N (2004) APC and GSK-3β are involved in mPar3 targeting to the nascent axon and establishment of neuronal polarity. Curr Biol 14:2025–2032

    Article  CAS  PubMed  Google Scholar 

  • Singh A, Singh A, Sand JM, Bauer SJ, Hafeez BB, Meske L, Verma AK (2015) Topically applied Hsp90 inhibitor 17AAG inhibits UVR-induced cutaneous squamous cell carcinomas. J Invest Dermatol 135:1098–1107

    Article  CAS  PubMed  Google Scholar 

  • Sittler A, Lurz R, Lueder G, Priller J, Hayer-Hartl MK, Hartl FU, Lehrach H, Wanker EE (2001) Geldanamycin activates a heat shock response and inhibits huntingtin aggregation in a cell culture model of Huntington’s disease. Hum Mol Genet 10:1307–1315

    Article  CAS  PubMed  Google Scholar 

  • Sliutz G, Karlseder J, Tempfer C, Orel L, Holzer G, Simon MM (1996) Drug resistance against gemcitabine and topotecan mediated by constitutive hsp70 overexpression in vitro: implication of quercetin as sensitiser in chemotherapy. Br J Cancer 74:172–177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sudhakar J, Venkatesan N, Lakshmanan S, Khetan V, Krishnakumar S, Biswas J (2013) Hypoxic tumor microenvironment in advanced retinoblastoma. Pediatr Blood Cancer 60:1598–1601

    Article  PubMed  Google Scholar 

  • Taipale M, Jarosz DF, Lindquist S (2010) HSP90 at the hub of protein homeostasis: emerging mechanistic insights. Nat Rev Mol Cell Biol 11:515–528

    Article  CAS  PubMed  Google Scholar 

  • Taiyab A, Sreedhar AS, Rao CM (2009) Hsp90 inhibitors, GA and 17AAG, lead to ER stress-induced apoptosis in rat histiocytoma. Biochem Pharmacol 78:142–152

    Article  CAS  PubMed  Google Scholar 

  • Takayama S, Reed JC, Homma S (2003) Heat-shock proteins as regulators of apoptosis. Oncogene 22:9041–9047

    Article  CAS  PubMed  Google Scholar 

  • Tam LC, Kiang AS, Campbell M, Keaney J, Farrar GJ, Humphries MM, Kenna PF, Humphries P (2010) Prevention of autosomal dominant retinitis pigmentosa by systemic drug therapy targeting heat shock protein 90 (Hsp90). Hum Mol Genet 19:4421–4436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tanaka Y, Kobayashi K, Kita M, Kinoshita S, Imanishi J (1995) Messenger RNA expression of heat shock proteins (Hsp) during ocular development. Curr Eye Res 14:1125–1133

    Article  CAS  PubMed  Google Scholar 

  • Tanihara H, Hangai M, Sawaguchi S, Abe H, Kageyama M, Nakazawa F, Shirasawa E, Honda Y (1997) Up-regulation of glial fibrillary acidic protein in the retina of primate eyes with experimental glaucoma. Arch Ophthalmol 115:752–756

    Article  CAS  PubMed  Google Scholar 

  • Tapia M, Wandosell F, Garrido JJ (2010) Impaired function of HDAC6 slows down axonal growth and interferes with axon initial segment development. PLoS One 5:e12908

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tarallo V, Hirano Y, Gelfand BD, Dridi S, Kerur N, Kim Y, Cho WG, Kaneko H, Fowler BJ, Bogdanovich S, Albuquerque RJ, Hauswirth WW, Chiodo VA, Kugel JF, Goodrich JA, Ponicsan SL, Chaudhuri G, Murphy MP, Dunaief JL, Ambati BK, Ogura Y, Yoo JW, Lee DK, Provost P, Hinton DR, Nunez G, Baffi JZ, Kleinman ME, Ambati J (2012) DICER1 loss and Alu RNA induce age-related macular degeneration via the NLRP3 inflammasome and MyD88. Cell 149:847–859

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trabulo S, Cardoso A, Santos-Ferreira T, Cardoso A, Simoes S, Pedroso de Lima M (2011) Survivin silencing as a promising strategy to enhance the sensitivity of cancer cells to chemotherapeutic agents. Mol Pharm 8:1120–1131

    Article  CAS  PubMed  Google Scholar 

  • Tukaj S, Bieber K, KleszczyÅ„ski K, Witte M, Cames R, Kalies K, Zillikens D, Ludwig RJ, Fischer TW, Kasperkiewicz M (2017) Topically applied Hsp90 blocker 17AAG inhibits autoantibody-mediated blister-inducing cutaneous inflammation. J Investig Dermatol 137:341–349

    Article  CAS  PubMed  Google Scholar 

  • Vanden Berghe T, Kalai M, van Loo G, Declercq W, Vandenabeele P (2003) Disruption of HSP90 function reverts tumor necrosis factor-induced necrosis to apoptosis. J Biol Chem 278:5622–5629

    Article  Google Scholar 

  • Venkatesan N, Kanwar JR, Deepa PR, Navaneethakrishnan S, Joseph C, Krishnakumar S (2016) Targeting HSP90/Survivin using a cell permeable structure based peptido-mimetic shepherdin in retinoblastoma. Chem Biol Interact 252:141–149

    Article  CAS  PubMed  Google Scholar 

  • Wainberg ZA, Anghel A, Rogers AM, Desai AJ, Kalous O, Conklin D, Ayala R, O’Brien NA, Quadt C, Akimov M (2013) Inhibition of HSP90 with AUY922 induces synergy in HER2-amplified trastuzumab-resistant breast and gastric cancer. Mol Cancer Ther 12(4):509–519

    Article  CAS  PubMed  Google Scholar 

  • Walton-Diaz A, Khan S, Bourboulia D, Trepel JB, Neckers L, Mollapour M (2013) Contributions of co-chaperones and post-translational modifications towards Hsp90 drug sensitivity. Future Med Chem 5:1059–1071

    Article  CAS  PubMed  Google Scholar 

  • Wang YQ, Zhang XM, Wang XD, Wang BJ, Wang W (2010) 17-AAG, a Hsp90 inhibitor, attenuates the hypoxia-induced expression of SDF-1alpha and ILK in mouse RPE cells. Mol Biol Rep 37:1203–1209

    Article  CAS  PubMed  Google Scholar 

  • Wang C, Zhang Y, Guo K, Wang N, Jin H, Liu Y, Qin W (2016) Heat shock proteins in hepatocellular carcinoma: molecular mechanism and therapeutic potential. Int J Cancer 138:1824–1834

    Article  CAS  PubMed  Google Scholar 

  • Waza M, Adachi H, Katsuno M, Minamiyama M, Sang C, Tanaka F, Inukai A, Doyu M, Sobue G (2005) 17-AAG, an Hsp90 inhibitor, ameliorates polyglutamine-mediated motor neuron degeneration. Nat Med 11:1088

    Article  CAS  PubMed  Google Scholar 

  • Whitesell L, Lindquist SL (2005) HSP90 and the chaperoning of cancer. Nat Rev Cancer 5:761–772

    Article  CAS  PubMed  Google Scholar 

  • Workman P, Burrows F, Neckers L, Rosen N (2007) Drugging the cancer chaperone HSP90. Ann N Y Acad Sci 1113:202–216

    Article  CAS  PubMed  Google Scholar 

  • Wu W-C, Kao Y-H, Hu P-S, Chen J-H (2007) Geldanamycin, a HSP90 inhibitor, attenuates the hypoxia-induced vascular endothelial growth factor expression in retinal pigment epithelium cells in vitro. Exp Eye Res 85:721–731

    Article  CAS  PubMed  Google Scholar 

  • Xu Y, Lindquist S (1993) Heat-shock protein hsp90 governs the activity of pp60v-src kinase. Proc Natl Acad Sci USA 90:7074–7078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yan D, Guo L, Wang Y (2006) Requirement of dendritic Akt degradation by the ubiquitin–proteasome system for neuronal polarity. J Cell Biol 174:415–424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ylikomi T, Wurtz JM, Syvälä H, Passinen S, Pekki A, Haverinen M, Bläuer M, Tuohimaa P, Gronemeyer H (1998) Reappraisal of the role of heat shock proteins as regulators of steroid receptor activity. Crit Rev Biochem Mol Biol 33:437–466

    Article  CAS  PubMed  Google Scholar 

  • Zou J, Guo Y, Guettouche T, Smith DF, Voellmy R (1998) Repression of heat shock transcription factor HSF1 activation by HSP90 (HSP90 complex) that forms a stress-sensitive complex with HSF1. Cell 94:471–480

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank the Deanship of Scientific Research and RSSU at King Saud University for their technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Islam M. Saadeldin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Aboelnour, A., Noreldin, A.E., Saadeldin, I.M. (2019). Hsp90 Is a Pivotal Player in Retinal Disease and Cancer. In: Asea, A., Kaur, P. (eds) Heat Shock Protein 90 in Human Diseases and Disorders. Heat Shock Proteins, vol 19. Springer, Cham. https://doi.org/10.1007/978-3-030-23158-3_9

Download citation

Publish with us

Policies and ethics