Skip to main content

Role of HSP90 Inhibitors in the Treatment of Cancer

  • Chapter
  • First Online:
  • 555 Accesses

Part of the book series: Heat Shock Proteins ((HESP,volume 19))

Abstract

The 90-kDa heat shock protein HSP90 is a member of a highly evolutionarily conserved class of molecular chaperone proteins indispensable for the development of cancer; when activated by cellular stress, HSP90 stabilizes oncogenic substrate “client” proteins involved in cellular processes that promote tumorigenesis. HSP90 inhibition attenuates this stabilization of aberrant client proteins in tumor cells, allowing for simultaneous targeting of multiple pathways involved in cancer cell survival. HSP90 inhibitors have been assessed as potential oncologic therapies in several preclinical and clinical studies. Although preclinically promising results have been measured, these results have not translated yet into major clinical efficacy. Combinations of HSP90 inhibitors with approved and investigational oncology drugs may represent further opportunities for the use of these agents in patients with cancer. This chapter reviews some of the important early clinical milestones observed in studies of first- and second-generation HSP90 inhibitors used as single agents and in combination. In the conclusion, possible reasons for the lack of therapeutic benefit in clinical studies are considered.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

AE:

Adverse event

ALK:

Anaplastic lymphoma kinase

BRAF:

Serine/threonine-protein kinases B-Raf

CDK:

Cyclin-dependent kinase

CRAF:

Serine/threonine-protein kinases C-Raf

CRC:

Colorectal carcinoma

DLT:

Dose-limiting toxicity

EGFR:

Epidermal growth factor receptor

EMT:

Epithelial-to-mesenchymal transition

GDNF:

Glial cell line-derived neurotrophic factor

HER2:

Human epidermal growth factor receptor 2

HGF:

Hepatocyte growth factor

HSP:

Heat shock protein

HSP90:

Heat shock protein 90

MBC:

Metastatic breast cancer

MTD:

Maximum tolerated dose

NSCLC:

Non-small cell lung cancer

ORR:

Overall response rate

TNBC:

Triple-negative breast cancer

References

  • Acquaviva J, Smith DL, Jimenez J-P, Zhang C, Sequeira M, He S et al (2014) Overcoming acquired BRAF inhibitor resistance in melanoma via targeted inhibition of Hsp90 with Ganetespib. Mol Cancer Ther 13:353–363

    Article  CAS  PubMed  Google Scholar 

  • Ahsan A, Ramanand SG, Whitehead C, Hiniker SM, Rehemtulla A, Pratt WB et al (2012) Wild-type EGFR is stabilized by direct interaction with HSP90 in cancer cells and tumors. Neoplasia 14:670–677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Akce M, Alese OB, Shaib WL, Wu CS-Y, Lesinski GB, El-Rayes BF (2018) Phase Ib trial of pembrolizumab and XL888 in patients with advanced gastrointestinal malignancies. J Clin Oncol 36:TPS526

    Article  Google Scholar 

  • Alfano L, Guida T, Provitera L, Vecchio G, Billaud M, Santoro M et al (2010) RET is a Heat Shock Protein 90 (HSP90) client protein and is knocked down upon HSP90 pharmacological block. J Clin Endocrinol 95:3552–3557

    Article  CAS  Google Scholar 

  • Banerji U, O'Donnell A, Scurr M, Pacey S, Stapleton S, Asad Y et al (2005) Phase I pharmacokinetic and pharmacodynamic study of 17-allylamino, 17-demethoxygeldanamycin in patients with advanced malignancies. J Clin Oncol 23:4152–4161

    Article  CAS  PubMed  Google Scholar 

  • Barrott JJ, Hughes PF, Osada T, Yang XY, Hartman ZC, Loiselle DR et al (2013) Optical and radioiodinated tethered Hsp90 inhibitors reveal selective internalization of ectopic Hsp90 in malignant breast tumor cells. Chem Biol 20:1187–1197

    Article  CAS  PubMed  Google Scholar 

  • Beere HM, Wolf BB, Cain K, Mosser DD, Mahboubi A, Kuwana T et al (2000) Heat-shock protein 70 inhibits apoptosis by preventing recruitment of procaspase-9 to the Apaf-1 apoptosome. Nat Cell Biol 2:469–475

    Article  CAS  PubMed  Google Scholar 

  • Biamonte MA, Van de Water R, Arndt JW, Scannevin RH, Perret D, Lee WC (2010) Heat shock protein 90: inhibitors in clinical trials. J Med Chem 53:3–17

    Article  CAS  PubMed  Google Scholar 

  • Bonvini P, Gastaldi T, Falini B, Rosolen A (2002) Nucleophosmin-anaplastic lymphoma kinase (NPM-ALK), a novel Hsp90-client tyrosine kinase: down-regulation of NPM-ALK expression and tyrosine phosphorylation in ALK(+) CD30(+) lymphoma cells by the Hsp90 antagonist 17-allylamino,17-demethoxygeldanamycin. Cancer Res 62:1559–1566

    CAS  PubMed  Google Scholar 

  • Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A (2018) Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 68:394–424

    Article  PubMed  Google Scholar 

  • Breinig M, Mayer P, Harjung A, Goeppert B, Malz M, Penzel R et al (2011) Heat shock protein 90-sheltered overexpression of insulin-like growth factor 1 receptor contributes to malignancy of thymic epithelial tumors. Clin Cancer Res 17:2237–2249

    Article  CAS  PubMed  Google Scholar 

  • Burrows F, Zhang H, Kamal A (2004) Hsp90 activation and cell cycle regulation. Cell Cycle 3:1530–1536

    Article  CAS  PubMed  Google Scholar 

  • Caldas-Lopes E, Cerchietti L, Ahn JH, Clement CC, Robles AI, Rodina A et al (2009) Hsp90 inhibitor PU-H71, a multimodal inhibitor of malignancy, induces complete responses in triple-negative breast cancer models. Proc Natl Acad Sci U S A 106:8368–8373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cameron DA, Spector N, Cortes J, Mano MS, Canon J-LR, Hickish T et al (2014) Targeting HSP90 in breast cancer: Enchant-1 (NCT01677455) phase 2 proof of concept study of ganetespib in first-line treatment of women with metastatic breast cancer. J Clin Oncol 32:TPS665

    Article  Google Scholar 

  • Chatterjee S, Burns TF (2017) Targeting heat shock proteins in cancer: a promising therapeutic approach. Int J Mol Sci 18:E1978

    Article  PubMed  CAS  Google Scholar 

  • Chatterjee S, Bhattacharya S, Socinski MA, Burns TF (2016) HSP90 inhibitors in lung cancer: promise still unfulfilled. Clin Adv Hematol Oncol 14:346–356

    PubMed  Google Scholar 

  • Chen Z, Sasaki T, Tan X, Carretero J, Shimamura T, Li D et al (2010) Inhibition of ALK, PI3K/MEK, and HSP90 in murine lung adenocarcinoma induced by EML4-ALK fusion oncogene. Cancer Res 70:9827–9836

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chiosis G, Neckers L (2006) Tumor selectivity of Hsp90 inhibitors: the explanation remains elusive. ACS Chem Biol 1:279–284

    Article  CAS  PubMed  Google Scholar 

  • Daozhen C, Lu L, Min Y, Xinyu J, Ying H (2007) Synthesis of (131)I-labeled-[(131)I]iodo-17-allylamino-17-demethoxy geldanamycin ([(131)I]iodo-17-AAG) and its biodistribution in mice. Cancer Biother Radiopharm 22:607–612

    Article  PubMed  CAS  Google Scholar 

  • Do K, Speranza G, Chang L-C, Polley EC, Bishop R, Zhu W et al (2015) Phase I study of the heat shock protein 90 (Hsp90) inhibitor onalespib (AT13387) administered on a daily for 2 consecutive days per week dosing schedule in patients with advanced solid tumors. Investig New Drugs 33:921–930

    Article  CAS  Google Scholar 

  • Eccles SA, Massey A, Raynaud FI, Sharp SY, Box G, Valenti M et al (2008) NVP-AUY922: a novel heat shock protein 90 inhibitor active against xenograft tumor growth, angiogenesis, and metastasis. Cancer Res 68:2850–2860

    Article  CAS  PubMed  Google Scholar 

  • Eiseman JL, Lan J, Lagattuta TF, Hamburger DR, Joseph E, Covey JM et al (2005) Pharmacokinetics and pharmacodynamics of 17-demethoxy 17-[[(2-dimethylamino)ethyl]amino]geldanamycin (17DMAG, NSC 707545) in C.B-17 SCID mice bearing MDA-MB-231 human breast cancer xenografts. Cancer Chemother Pharmacol 55:21–32

    Article  CAS  PubMed  Google Scholar 

  • Eroglu Z, Chen YA, Gibney GT, Weber JS, Kudchadkar RR, Khushalani NI et al (2018) Combined BRAF and HSP90 inhibition in patients with unresectable BRAF V600E-mutant melanoma. Clin Cancer Res 24:5516–5524

    Article  PubMed  PubMed Central  Google Scholar 

  • Forsberg LK, Liu W, Holzbeierlein J, Blagg BSJ (2017) Modified biphenyl Hsp90 C-terminal inhibitors for the treatment of cancer. Bioorg Med Chem Lett 27:4514–4519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Friedland JC, Smith DL, Sang J, Acquaviva J, He S, Zhang C et al (2014) Targeted inhibition of Hsp90 by ganetespib is effective across a broad spectrum of breast cancer subtypes. Investig New Drugs 32:14–24

    Article  CAS  Google Scholar 

  • Garon EB, Moran T, Barlesi F, Gandhi L, Sequist LV, Kim S-W et al (2012) Phase II study of the HSP90 inhibitor AUY922 in patients with previously treated, advanced non-small cell lung cancer (NSCLC). J Clin Oncol 30:7543–7543

    Google Scholar 

  • Garrido C, Schmitt E, Cande C, Vahsen N, Parcellier A, Kroemer G (2003) HSP27 and HSP70: potentially oncogenic apoptosis inhibitors. Cell Cycle 2:579–584

    Article  CAS  PubMed  Google Scholar 

  • Garrido C, Brunet M, Didelot C, Zermati Y, Schmitt E, Kroemer G (2006) Heat shock proteins 27 and 70: anti-apoptotic proteins with tumorigenic properties. Cell Cycle 5:2592–2601

    Article  CAS  PubMed  Google Scholar 

  • Georgakis GV, Li Y, Younes A (2006) The heat shock protein 90 inhibitor 17-AAG induces cell cycle arrest and apoptosis in mantle cell lymphoma cell lines by depleting cyclin D1, Akt, Bid and activating caspase 9. Br J Haematol 135:68–71

    Article  CAS  PubMed  Google Scholar 

  • Ghosh JC, Dohi T, Kang BH, Altieri DC (2008) Hsp60 regulation of tumor cell apoptosis. J Biol Chem 283:5188–5194

    Article  CAS  PubMed  Google Scholar 

  • Goetz MP, Toft D, Reid J, Ames M, Stensgard B, Safgren S et al (2005) Phase I trial of 17-allylamino-17-demethoxygeldanamycin in patients with advanced cancer. J Clin Oncol 23:1078–1087

    Article  CAS  PubMed  Google Scholar 

  • Graham B, Curry J, Smyth T, Fazal L, Feltell R, Harada I et al (2012) The heat shock protein 90 inhibitor, AT13387, displays a long duration of action in vitro and in vivo in non-small cell lung cancer. Cancer Sci 103:522–527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Graner MW (2016) Chapter eight – HSP90 and immune modulation in Cancer. In: Isaacs J, Whitesell L (eds) Advances in cancer research, vol 129. Elsevier Science & Technology, San Diego, pp 191–224

    Google Scholar 

  • Guo F, Rocha K, Bali P, Pranpat M, Fiskus W, Boyapalle S et al (2005) Abrogation of heat shock protein 70 induction as a strategy to increase antileukemia activity of heat shock protein 90 inhibitor 17-allylamino-demethoxy geldanamycin. Cancer Res 65:10536–10544

    Article  CAS  PubMed  Google Scholar 

  • Hasenstein JR, Shin HC, Kasmerchak K, Buehler D, Kwon GS, Kozak KR (2012) Antitumor activity of Triolimus: a novel multidrug-loaded micelle containing Paclitaxel, Rapamycin, and 17-AAG. Mol Cancer Ther 11:2233–2242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hollingshead M, Alley M, Burger AM, Borgel S, Pacula-Cox C, Fiebig HH et al (2005) In vivo antitumor efficacy of 17-DMAG (17-dimethylaminoethylamino-17-demethoxygeldanamycin hydrochloride), a water-soluble geldanamycin derivative. Cancer Chemother Pharmacol 56:115–125

    Article  CAS  PubMed  Google Scholar 

  • Jensen MR, Schoepfer J, Radimerski T, Massey A, Guy CT, Brueggen J et al (2008) NVP-AUY922: a small molecule HSP90 inhibitor with potent antitumor activity in preclinical breast cancer models. Breast Cancer Res 10:R33

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jhaveri K, Taldone T, Modi S, Chiosis G (2012) Advances in the clinical development of heat shock protein 90 (Hsp90) inhibitors in cancers. Biochim Biophys Acta 1823:742–755

    Article  CAS  PubMed  Google Scholar 

  • Jhaveri K, Chandarlapaty S, Lake D, Gilewski T, Robson M, Goldfarb S et al (2014a) A phase II open-label study of ganetespib, a novel heat shock protein 90 inhibitor for patients with metastatic breast cancer. Clin Breast Cancer 14:154–160

    Article  CAS  PubMed  Google Scholar 

  • Jhaveri K, Ochiana SO, Dunphy MP, Gerecitano JF, Corben AD, Peter RI et al (2014b) Heat shock protein 90 inhibitors in the treatment of cancer: current status and future directions. Expert Opin Investig Drugs 23:611–628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jhaveri K, Wang R, Teplinsky E, Chandarlapaty S, Solit D, Cadoo K et al (2017) A phase I trial of ganetespib in combination with paclitaxel and trastuzumab in patients with human epidermal growth factor receptor-2 (HER2)-positive metastatic breast cancer. Breast Cancer Res 19:89

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kamal A, Thao L, Sensintaffar J, Zhang L, Boehm MF, Fritz LC et al (2003) A high-affinity conformation of Hsp90 confers tumour selectivity on Hsp90 inhibitors. Nature 425:407–410

    Article  CAS  PubMed  Google Scholar 

  • Kummar S, Gutierrez ME, Gardner ER, Chen X, Figg WD, Zajac-Kaye M et al (2010) Phase I trial of 17-dimethylaminoethylamino-17-demethoxygeldanamycin (17-DMAG), a heat shock protein inhibitor, administered twice weekly in patients with advanced malignancies. Eur J Cancer 46:340–347

    Article  CAS  PubMed  Google Scholar 

  • Lamberti D, Cristinziano G, Porru M, Leonetti C, Egan JB, Shi CX et al (2018) HSP90 inhibition drives degradation of FGFR2 fusion proteins: implications for treatment of cholangiocarcinoma. Hepatology 69:131–142

    PubMed  Google Scholar 

  • Lancet JE, Gojo I, Burton M, Quinn M, Tighe SM, Kersey K et al (2010a) Phase I study of the heat shock protein 90 inhibitor alvespimycin (KOS-1022, 17-DMAG) administered intravenously twice weekly to patients with acute myeloid leukemia. Leukemia 24:699–705

    Article  CAS  PubMed  Google Scholar 

  • Lancet JE, Smith BD, Bradley R, Komrokji RS, Teofilovici F, Rizzieri DA (2010b) A phase I/II trial of the potent Hsp90 inhibitor STA-9090 administered once weekly in patients with advanced hematologic malignancies. Blood 116:3294–3294

    Article  Google Scholar 

  • Li J, Sun L, Xu C, Yu F, Zhou H, Zhao Y et al (2012) Structure insights into mechanisms of ATP hydrolysis and the activation of human heat-shock protein 90. Acta Biochim Biophys Sin Shanghai 44:300–306

    Article  CAS  PubMed  Google Scholar 

  • Marcu MG, Schulte TW, Neckers L (2000) Novobiocin and related coumarins and depletion of heat shock protein 90-dependent signaling proteins. J Natl Cancer Inst 92:242–248

    Article  CAS  PubMed  Google Scholar 

  • Mbofung RM, McKenzie JA, Malu S, Liu C, Peng W, Kuiatse I et al (2016) Abstract B105: HSP90 inhibitor, ganetespib, enhances responses to cancer immunotherapy through increased expression of interferon response genes. Cancer Immunol Res 4:B105

    Google Scholar 

  • McCarthy MM, Pick E, Kluger Y, Gould-Rothberg B, Lazova R, Camp RL et al (2008) HSP90 as a marker of progression in melanoma. Ann Oncol 19:590–594

    Article  CAS  PubMed  Google Scholar 

  • Meehan R, Kummar S, Do K, O’Sullivan Coyne G, Juwara L, Zlott J et al (2018) A phase I study of Ganetespib and Ziv-Aflibercept in patients with advanced carcinomas and sarcomas. Oncologist 23:1269–e1125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mimnaugh EG, Chavany C, Neckers L (1996) Polyubiquitination and proteasomal degradation of the p185c-erbB-2 receptor protein-tyrosine kinase induced by geldanamycin. J Biol Chem 271:22796–22801

    Article  CAS  PubMed  Google Scholar 

  • Miyajima N, Tsutsumi S, Sourbier C, Beebe K, Mollapour M, Rivas C et al (2013) The HSP90 inhibitor ganetespib synergizes with the MET kinase inhibitor crizotinib in both crizotinib-sensitive and -resistant MET-driven tumor models. Cancer Res 73:7022–7033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Modi S, Stopeck A, Linden H, Solit D, Chandarlapaty S, Rosen N et al (2011) HSP90 inhibition is effective in breast cancer: a phase II trial of tanespimycin (17-AAG) plus trastuzumab in patients with HER2-positive metastatic breast cancer progressing on trastuzumab. Clin Cancer Res 17:5132–5139

    Article  CAS  PubMed  Google Scholar 

  • Modi S, Saura C, Henderson C, Lin NU, Mahtani R, Goddard J et al (2013) A multicenter trial evaluating retaspimycin HCL (IPI-504) plus trastuzumab in patients with advanced or metastatic HER2-positive breast cancer. Breast Cancer Res Treat 139:107–113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Multhoff G, Pfister K, Gehrmann M, Hantschel M, Gross C, Hafner M et al (2001) A 14-mer Hsp70 peptide stimulates natural killer (NK) cell activity. Cell Stress Chaperones 6:337–344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Neckers L, Workman P (2012) Hsp90 molecular chaperone inhibitors: are we there yet? Clin Cancer Res 18:64–76

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Normant E, Paez G, West KA, Lim AR, Slocum KL, Tunkey C et al (2011) The Hsp90 inhibitor IPI-504 rapidly lowers EML4-ALK levels and induces tumor regression in ALK-driven NSCLC models. Oncogene 30:2581–2586

    Article  CAS  PubMed  Google Scholar 

  • Obermann WM, Sondermann H, Russo AA, Pavletich NP, Hartl FU (1998) In vivo function of Hsp90 is dependent on ATP binding and ATP hydrolysis. J Cell Biol 143:901–910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ohkubo S, Kodama Y, Muraoka H, Hitotsumachi H, Yoshimura C, Kitade M et al (2015) TAS-116, a highly selective inhibitor of heat shock protein 90alpha and beta, demonstrates potent antitumor activity and minimal ocular toxicity in preclinical models. Mol Cancer Ther 14:14–22

    Article  CAS  PubMed  Google Scholar 

  • Pacey S, Wilson RH, Walton M, Eatock MM, Hardcastle A, Zetterlund A et al (2011) A phase I study of the heat shock protein 90 inhibitor alvespimycin (17-DMAG) given intravenously to patients with advanced solid tumors. Clin Cancer Res 17:1561–1570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Padmanabhan S, Kelly KR, Heaney M, Hodges S, Chanel S, Frattini M et al (2010) A phase I study of the potent Hsp90 inhibitor STA-9090 administered twice weekly in subjects with hematologic malignancies. Blood 116:2898–2898

    Article  Google Scholar 

  • Paraiso KH, Haarberg HE, Wood E, Rebecca VW, Chen YA, Xiang Y et al (2012) The HSP90 inhibitor XL888 overcomes BRAF inhibitor resistance mediated through diverse mechanisms. Clin Cancer Res 18:2502–2514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patel K, Wen J, Magliocca K, Muller S, Liu Y, Chen ZG et al (2014) Heat shock protein 90 (HSP90) is overexpressed in p16-negative oropharyngeal squamous cell carcinoma, and its inhibition in vitro potentiates the effects of chemoradiation. Cancer Chemother Pharmacol 74:1015–1022

    Article  CAS  PubMed  Google Scholar 

  • Pick E, Kluger Y, Giltnane JM, Moeder C, Camp RL, Rimm DL et al (2007) High HSP90 expression is associated with decreased survival in breast cancer. Cancer Res 67:2932–2937

    Article  CAS  PubMed  Google Scholar 

  • Powers MV, Clarke PA, Workman P (2008) Dual targeting of HSC70 and HSP72 inhibits HSP90 function and induces tumor-specific apoptosis. Cancer Cell 14:250–262

    Article  CAS  PubMed  Google Scholar 

  • Radons J (2016) The human HSP70 family of chaperones: where do we stand? Cell Stress Chaperones 21:379–404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramalingam SS, Zaric B, Ceric T, Ciuleanu TE, Spicer JF, Bondarenko I et al (2014) Galaxy-2 trial (NCT01798485): a randomized phase 3 study of ganetespib in combination with docetaxel versus docetaxel alone in patients with advanced lung adenocarcinoma. J Clin Oncol 32:TPS8118

    Article  Google Scholar 

  • Ramalingam S, Goss G, Rosell R, Schmid-Bindert G, Zaric B, Andric Z et al (2015) A randomized phase II study of ganetespib, a heat shock protein 90 inhibitor, in combination with docetaxel in second-line therapy of advanced non-small cell lung cancer (GALAXY-1). Ann Oncol 26:1741–1748

    Article  CAS  PubMed  Google Scholar 

  • Rappa F, Farina F, Zummo G, David S, Campanella C, Carini F et al (2012) HSP-molecular chaperones in cancer biogenesis and tumor therapy: an overview. Anticancer Res 32:5139–5150

    CAS  PubMed  Google Scholar 

  • Ravagnan L, Gurbuxani S, Susin SA, Maisse C, Daugas E, Zamzami N et al (2001) Heat-shock protein 70 antagonizes apoptosis-inducing factor. Nat Cell Biol 3:839–843

    Article  CAS  PubMed  Google Scholar 

  • Raveendran S, Rao A, Storkus W (2014) Combination immunotherapy of melanoma by inhibiting HSP90 and targeting its client proteins. (TUM7P.934). J Immunol 192:203.216

    Google Scholar 

  • Rerole AL, Jego G, Garrido C (2011) Hsp70: anti-apoptotic and tumorigenic protein. Methods Mol Biol 787:205–230

    Article  CAS  PubMed  Google Scholar 

  • Richardson PG, Chanan-Khan AA, Lonial S, Krishnan AY, Carroll MP, Alsina M et al (2011) Tanespimycin and bortezomib combination treatment in patients with relapsed or relapsed and refractory multiple myeloma: results of a phase 1/2 study. Br J Haematol 153:729–740

    Article  CAS  PubMed  Google Scholar 

  • Rodina A, Wang T, Yan P, Gomes ED, Dunphy MP, Pillarsetty N et al (2016) The epichaperome is an integrated chaperome network that facilitates tumour survival. Nature 538:397–401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ronnen EA, Kondagunta GV, Ishill N, Sweeney SM, Deluca JK, Schwartz L et al (2006) A phase II trial of 17-(Allylamino)-17-demethoxygeldanamycin in patients with papillary and clear cell renal cell carcinoma. Investig New Drugs 24:543–546

    Article  CAS  Google Scholar 

  • Saif MW, Takimoto C, Mita M, Banerji U, Lamanna N, Castro J et al (2014) A phase 1, dose-escalation, pharmacokinetic and Pharmacodynamic study of BIIB021 administered orally in patients with advanced solid tumors. Clin Cancer Res 20:445–455

    Article  CAS  PubMed  Google Scholar 

  • Saleh A, Srinivasula SM, Balkir L, Robbins PD, Alnemri ES (2000) Negative regulation of the Apaf-1 apoptosome by Hsp70. Nat Cell Biol 2:476–483

    Article  CAS  PubMed  Google Scholar 

  • Sang J, Acquaviva J, Friedland JC, Smith DL, Sequeira M, Zhang C et al (2013) Targeted inhibition of the molecular chaperone Hsp90 overcomes ALK inhibitor resistance in non-small cell lung cancer. Cancer Discov 3:430–443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schroder CP, Pedersen JV, Chua S, Swanton C, Akimov M, Ide S et al (2011) Use of biomarkers and imaging to evaluate the treatment effect of AUY922, an HSP90 inhibitor, in patients with HER2+ or ER+ metastatic breast cancer. J Clin Oncol 29:e11024

    Article  Google Scholar 

  • Sequist LV, Gettinger S, Senzer NN, Martins RG, Janne PA, Lilenbaum R et al (2010) Activity of IPI-504, a novel heat-shock protein 90 inhibitor, in patients with molecularly defined non-small-cell lung cancer. J Clin Oncol 28:4953–4960

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shapiro GI, Kwak E, Dezube BJ, Yule M, Ayrton J, Lyons J et al (2015) First-in-human phase I dose escalation study of a second-generation non-ansamycin HSP90 inhibitor, AT13387, in patients with advanced solid tumors. Clin Cancer Res 21:87–97

    Article  CAS  PubMed  Google Scholar 

  • Shi Y, Liu X, Lou J, Han X, Zhang L, Wang Q et al (2014) Plasma levels of heat shock protein 90 alpha associated with lung cancer development and treatment responses. Clin Cancer Res 20:6016–6022

    Article  CAS  PubMed  Google Scholar 

  • Socinski MA, Goldman J, El-Hariry I, Koczywas M, Vukovic V, Horn L et al (2013) A multicenter phase II study of ganetespib monotherapy in patients with genotypically defined advanced non-small cell lung cancer. Clin Cancer Res 19:3068–3077

    Article  CAS  PubMed  Google Scholar 

  • Soga S, Shiotsu Y, Akinaga S, Sharma SV (2003) Development of radicicol analogues. Curr Cancer Drug Targets 3:359–369

    Article  CAS  PubMed  Google Scholar 

  • Soga S, Akinaga S, Shiotsu Y (2013) Hsp90 inhibitors as anti-cancer agents, from basic discoveries to clinical development. Curr Pharm Des 19:366–376

    Article  CAS  PubMed  Google Scholar 

  • Solit DB, Osman I, Polsky D, Panageas KS, Daud A, Goydos JS et al (2008) Phase II trial of 17-allylamino-17-demethoxygeldanamycin in patients with metastatic melanoma. Clin Cancer Res 14:8302–8307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Specht HM, Ahrens N, Blankenstein C, Duell T, Fietkau R, Gaipl US et al (2015) Heat Shock Protein 70 (Hsp70) peptide activated natural killer (NK) cells for the treatment of patients with non-small cell lung Cancer (NSCLC) after Radiochemotherapy (RCTx) – from preclinical studies to a clinical phase II trial. Front Immunol 6:162

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Speranza G, Anderson L, Chen AP, Do K, Eugeni M, Weil M et al (2018) First-in-human study of the epichaperome inhibitor PU-H71: clinical results and metabolic profile. Investig New Drugs 36:230–239

    Article  CAS  Google Scholar 

  • Straume O, Shimamura T, Lampa MJ, Carretero J, Oyan AM, Jia D et al (2012) Suppression of heat shock protein 27 induces long-term dormancy in human breast cancer. Proc Natl Acad Sci U S A 109:8699–8704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Supko JG, Hickman RL, Grever MR, Malspeis L (1995) Preclinical pharmacologic evaluation of geldanamycin as an antitumor agent. Cancer Chemother Pharmacol 36:305–315

    Article  CAS  PubMed  Google Scholar 

  • Taipale M, Krykbaeva I, Koeva M, Kayatekin C, Westover KD, Karras GI et al (2012) Quantitative analysis of HSP90-client interactions reveals principles of substrate recognition. Cell 150:987–1001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vartholomaiou E, Echeverría PC, Picard D (2016) Chapter one – unusual suspects in the twilight zone between the Hsp90 interactome and carcinogenesis. In: Isaacs J, Whitesell L (eds) Advances in cancer research, vol 129. Academic, Cambridge, MA, pp 1–30

    Google Scholar 

  • Wagner AJ, Chugh R, Rosen LS, Morgan JA, George S, Gordon M et al (2013) A phase I study of the HSP90 inhibitor retaspimycin hydrochloride (IPI-504) in patients with gastrointestinal stromal tumors or soft-tissue sarcomas. Clin Cancer Res 19:6020–6029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wagner AJ, Agulnik M, Heinrich MC, Mahadevan D, Riedel RF, von Mehren M et al (2016) Dose-escalation study of a second-generation non-ansamycin HSP90 inhibitor, onalespib (AT13387), in combination with imatinib in patients with metastatic gastrointestinal stromal tumour. Eur J Cancer 61:94–101

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Chen M, Zhou J, Zhang X (2014) HSP27, 70 and 90, anti-apoptotic proteins, in clinical cancer therapy (review). Int J Oncol 45:18–30

    Article  PubMed  CAS  Google Scholar 

  • Whitesell L, Lindquist SL (2005) HSP90 and the chaperoning of cancer. Nat Rev Cancer 5:761–772

    Article  CAS  PubMed  Google Scholar 

  • Whitesell L, Sutphin PD, Pulcini EJ, Martinez JD, Cook PH (1998) The physical association of multiple molecular chaperone proteins with mutant p53 is altered by geldanamycin, an hsp90-binding agent. Mol Cell Biol 18:1517–1524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu J, Liu T, Rios Z, Mei Q, Lin X, Cao S (2017) Heat shock proteins and cancer. Trends Pharmacol Sci 38:226–256

    Article  CAS  PubMed  Google Scholar 

  • Yao Q, Nishiuchi R, Li Q, Kumar AR, Hudson WA, Kersey JH (2003) FLT3 expressing leukemias are selectively sensitive to inhibitors of the molecular chaperone heat shock protein 90 through destabilization of signal transduction-associated kinases. Clin Cancer Res 9:4483–4493

    CAS  PubMed  Google Scholar 

  • Yufu Y, Nishimura J, Nawata H (1992) High constitutive expression of heat shock protein 90 alpha in human acute leukemia cells. Leuk Res 16:597–605

    Article  CAS  PubMed  Google Scholar 

  • Yuno A, Lee MJ, Lee S, Tomita Y, Rekhtman D, Moore B et al (2018) Clinical evaluation and biomarker profiling of Hsp90 inhibitors. Methods Mol Biol 1709:423–441

    Article  CAS  PubMed  Google Scholar 

  • Zhao H, Anyika M, Girgis A, Blagg BS (2014) Novologues containing a benzamide side chain manifest anti-proliferative activity against two breast cancer cell lines. Bioorg Med Chem Lett 24:3633–3637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou D, Liu Y, Ye J, Ying W, Ogawa LS, Inoue T et al (2013) A rat retinal damage model predicts for potential clinical visual disturbances induced by Hsp90 inhibitors. Toxicol Appl Pharmacol 273:401–409

    Article  CAS  PubMed  Google Scholar 

  • Zuehlke A, Johnson JL (2010) Hsp90 and co-chaperones twist the functions of diverse client proteins. Biopolymers 93:211–217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Special thanks to Sarah Miller, PhD.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alice P. Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

O’Sullivan Coyne, G., Monge, C., Chen, A.P. (2019). Role of HSP90 Inhibitors in the Treatment of Cancer. In: Asea, A., Kaur, P. (eds) Heat Shock Protein 90 in Human Diseases and Disorders. Heat Shock Proteins, vol 19. Springer, Cham. https://doi.org/10.1007/978-3-030-23158-3_6

Download citation

Publish with us

Policies and ethics