Skip to main content

Hsp90: Is There an Unknown Role in Pain Neurobiology

  • Chapter
  • First Online:
Heat Shock Protein 90 in Human Diseases and Disorders

Part of the book series: Heat Shock Proteins ((HESP,volume 19))

  • 534 Accesses

Abstract

Heat shock protein 90 (Hsp90) is a highly conserved molecular chaperone that is essential in protein homeostasis and normal cell growth and survival, assisting protein folding, protein degradation and being highly recruited in cellular stress conditions. The implication of Hsp90 in several pathological conditions is being increasingly recognized, particularly in cancer, an area of intense research on the use of different Hsp90 inhibitors as a possible therapeutic approach, as well as on the associated mechanisms of action. There is also strong indication that the Hsp90 chaperone is involved in inflammation and neuroinflammation, and neurodegeneration events. Here we summarize some scientific evidence suggesting that Hsp90, and possibly its mitochondrial-compartimentalized homologue Tumour Necrosis Factor Receptor-Associated Protein 1 (TRAP-1), participate also in pain processing mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

17-AAG:

17-demethoxygeldanamycin

17-DMAG:

17-Dimethylaminoethylamino-17-demethoxygeldanamycin

ATF3:

Activating transcription factor 3

CCI:

Chronic constriction injury

CGRP:

Calcitonin-gene-related peptide

CHIP:

Carboxyl terminus of Hsp70-interacting protein

CypD:

Cyclophilin D

DAMP:

Danger-associated molecular pattern

ERK:

Extracellular signal-regulated kinases

GFAP:

Glial fibrillary acidic protein

GHKL:

Gyrase, Hsp90, Histidine Kinase and MutL

HSE:

Heat shock element

HSF1:

Heat shock factor 1

HSP:

Heat shock proteins

Hsp70:

Heat shock protein 70

Hsp90:

Heat shock protein 90

IKK:

Inhibitor of κB (IκB) Kinase complex

IL-10:

Interleukin 10

IL-1β:

Interleukin 1 beta

IL-6:

Interleukin 6

IκB:

Inhibitor of κB

JAK2:

JAK/Signal Transducer and Activator of Transcription (STATs)

JNK:

c-Jun N-terminal kinase

MAPKs:

Mitogen-activated protein kinases

MOR:

Mu-opioid receptor

mPTP:

Mitochondrial permeability transition pore

NADPH:

Nicotinamide adenine dinucleotide phosphate

NF-κB:

Nuclear factor-kappa B

NO:

Nitric oxide

NOS:

NO synthases

NOX:

Nicotinamide adenine dinucleotide phosphate (NADPH) oxidases

PINK-1:

PTEN-induced Putative Kinase 1

PRRs:

Pattern recognition receptors

RIP:

Receptor interacting kinase

RNS:

Reactive nitrogen species

ROS:

Reactive oxygen species

siRNA:

Small interference RNA

SP:

Substance P

STATs:

Signal transducer and activator of transcription

TAK-1/IKK:

TGF-β-activated kinase-1/Inhibitor of κB (IκB) Kinase complex

TLR2:

Toll-like-receptor 2

TLR4:

Toll like-receptor 4

TNFα:

Tumour necrosis factor alpha

TRAP-1:

Tumour necrosis factor receptor-associated protein 1

β-HIVS:

β-hydroxyisovalerylshikonin

References

  • Abul-Husn NS, Annangudi SP, Ma’ayan A et al (2011) Chronic morphine alters the presynaptic protein profile: identification of novel molecular targets using proteomics and network analysis. PLoS One 6:e25535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Adaes S, Ferreira-Gomes J, Mendonca M et al (2015) Injury of primary afferent neurons may contribute to osteoarthritis induced pain: an experimental study using the collagenase model in rats. Osteoarthr Cartil 23:914–924

    Article  CAS  Google Scholar 

  • Adaes S, Almeida L, Potes CS et al (2017) Glial activation in the collagenase model of nociception associated with osteoarthritis. Mol Pain 13:1744806916688219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Afzal E, Ebrahimi M, Najafi SM et al (2011) Potential role of heat shock proteins in neural differentiation of murine embryonal carcinoma stem cells (P19). Cell Biol Int 35:713–720

    Article  CAS  PubMed  Google Scholar 

  • Agliarulo I, Matassa DS, Amoroso MR et al (2015) TRAP1 controls cell migration of cancer cells in metabolic stress conditions: correlations with AKT/p70S6K pathways. Biochim Biophys Acta (BBA) Mol Cell Res 1853:2570–2579

    Article  CAS  Google Scholar 

  • Alfonso Romero-Sandoval E, Sweitzer S (2015) Nonneuronal central mechanisms of pain: glia and immune response. Prog Mol Biol Transl Sci 131:325–358

    Article  CAS  PubMed  Google Scholar 

  • Altieri DC (2013) Hsp90 regulation of mitochondrial protein folding from organelle integrity to cellular homeostasis. Cell Mol Life Sci 70:2463–2472

    Article  CAS  PubMed  Google Scholar 

  • Ardura-Fabregat A, Boddeke E, Boza-Serrano A et al (2017) Targeting neuroinflammation to treat Alzheimer’s disease. CNS Drugs 31:1057–1082

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bagatell R, Whitesell L (2004) Altered Hsp90 function in cancer: a unique therapeutic opportunity. Mol Cancer Ther 3:1021–1030

    Article  CAS  PubMed  Google Scholar 

  • Bartsch K, Hombach-Barrigah A, Clos J (2017) Hsp90 inhibitors radicicol and geldanamycin have opposing effects on Leishmania Aha1-dependent proliferation. Cell Stress Chaperones 22:729–742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Basit F, Van Oppen LM, Schockel L et al (2017) Mitochondrial complex I inhibition triggers a mitophagy-dependent ROS increase leading to necroptosis and ferroptosis in melanoma cells. Cell Death Dis 8:e2716

    Article  PubMed  PubMed Central  Google Scholar 

  • Beck R, Verrax J, Gonze T et al (2009) Hsp90 cleavage by an oxidative stress leads to its client proteins degradation and cancer cell death. Biochem Pharmacol 77:375–383

    Article  CAS  PubMed  Google Scholar 

  • Benitez MJ, Sanchez-Ponce D, Garrido JJ et al (2014) Hsp90 activity is necessary to acquire a proper neuronal polarization. Biochim Biophys Acta 1843:245–252

    Article  CAS  PubMed  Google Scholar 

  • Berta T, Qadri YJ, Chen G et al (2016) Microglial signaling in chronic pain with a special focus on caspase 6, p38 MAP kinase, and sex dependence. J Dent Res 95:1124–1131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bharadwaj S, Ali A, Ovsenek N (1999) Multiple components of the HSP90 chaperone complex function in regulation of heat shock factor 1 in vivo. Mol Cell Biol 19:8033–8041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boczek EE, Reefschläger LG, Dehling M et al (2015) Conformational processing of oncogenic v-Src kinase by the molecular chaperone Hsp90. Proc Nat Acad Sci 112:E3189–E3E98

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boles RG, Hornung HA, Moody AE et al (2015) Hurt, tired and queasy: specific variants in the ATPase domain of the TRAP1 mitochondrial chaperone are associated with common, chronic “functional” symptomatology including pain, fatigue and gastrointestinal dysmotility. Mitochondrion 23:64–70

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brown KK, Heitmeyer SA, Hookfin EB et al (2008) P38 MAP kinase inhibitors as potential therapeutics for the treatment of joint degeneration and pain associated with osteoarthritis. J Inflamm (Lond) 5:22

    Article  CAS  Google Scholar 

  • Buchner J (1999) Hsp90 & Co. – a holding for folding. Trends Biochem Sci 24:136–141

    Article  CAS  PubMed  Google Scholar 

  • Calderwood SK (2018) Heat shock proteins and cancer: intracellular chaperones or extracellular signalling ligands? Philos Trans R Soc Lond Ser B Biol Sci 373

    Google Scholar 

  • Carrasco C, Naziroglu M, Rodriguez AB et al (2018) Neuropathic pain: delving into the oxidative origin and the possible implication of transient receptor potential channels. Front Physiol 9:95

    Article  PubMed  PubMed Central  Google Scholar 

  • Castro-Lopes JM, Neto F (2014) Neurobiology of nociceptors. In: Raja SN, Sommer CL (eds) Pain 2014 refresher courses. 15th World Congress on Pain. IASP Press, Washington, DC, pp 407–418

    Google Scholar 

  • Chatterjee A, Dimitropoulou C, Drakopanayiotakis F et al (2007) Heat shock protein 90 inhibitors prolong survival, attenuate inflammation, and reduce lung injury in murine sepsis. Am J Respir Crit Care Med 176:667–675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen B, Zhong D, Monteiro A (2006) Comparative genomics and evolution of the HSP90 family of genes across all kingdoms of organisms. BMC Genomics 7:156–156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chio A, Mora G, Lauria G (2017) Pain in amyotrophic lateral sclerosis. Lancet Neurol 16:144–157

    Article  PubMed  Google Scholar 

  • Christians ES, Zhou Q, Renard J et al (2003) Heat shock proteins in mammalian development. Semin Cell Dev Biol 14:283–290

    Article  CAS  PubMed  Google Scholar 

  • Citri A, Harari D, Shohat G et al (2006) Hsp90 recognizes a common surface on client kinases. J Biol Chem 281:14361–14369

    Article  CAS  PubMed  Google Scholar 

  • Clark AK, Yip PK, Grist J et al (2007) Inhibition of spinal microglial cathepsin S for the reversal of neuropathic pain. Proc Natl Acad Sci U S A 104:10655–10660

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clark AK, Old EA, Malcangio M (2013) Neuropathic pain and cytokines: current perspectives. J Pain Res 6:803–814

    PubMed  PubMed Central  Google Scholar 

  • Connor RE, Marnett LJ, Liebler DC (2011) Protein-selective capture to analyze electrophile adduction of hsp90 by 4-hydroxynonenal. Chem Res Toxicol 24:1275–1282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Costigan M, Mannion RJ, Kendall G et al (1998) Heat shock protein 27: developmental regulation and expression after peripheral nerve injury. J Neurosci 18:5891–5900

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Craig EA (1993) Chaperones: helpers along the pathways to protein folding. Science 260:1902–1903

    Article  CAS  PubMed  Google Scholar 

  • Csermely P, Schnaider T, Soti C et al (1998) The 90-kDa molecular chaperone family: structure, function, and clinical applications. A comprehensive review. Pharmacol Ther 79:129–168

    Article  CAS  PubMed  Google Scholar 

  • Cui Y, Liao XX, Liu W et al (2008) A novel role of minocycline: attenuating morphine antinociceptive tolerance by inhibition of p38 MAPK in the activated spinal microglia. Brain Behav Immun 22:114–123

    Article  CAS  PubMed  Google Scholar 

  • Das V (2015) Chapter One – An introduction to pain pathways and pain “targets”. In: Price TJ, Dussor G (eds) Prog Mol Biol Transl Sci 131:1–30. Elsevier

    Google Scholar 

  • Dello Russo C, Polak PE, Mercado PR et al (2006) The heat-shock protein 90 inhibitor 17-allylamino-17-demethoxygeldanamycin suppresses glial inflammatory responses and ameliorates experimental autoimmune encephalomyelitis. J Neurochem 99:1351–1362

    Article  CAS  Google Scholar 

  • Didelot C, Schmitt E, Brunet M et al (2006) Heat shock proteins: endogenous modulators of apoptotic cell death. Handb Exp Pharmacol 172:171–198

    Article  CAS  Google Scholar 

  • Didenko T, Duarte AMS, Karagöz GE et al (2012) Hsp90 structure and function studied by NMR spectroscopy. Biochim Biophys Acta 1823:636–647

    Article  CAS  PubMed  Google Scholar 

  • Dobrowsky RT (2016) Targeting the diabetic chaperome to improve peripheral neuropathy. Curr Diab Rep 16:71

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duval M, Le Bœuf F, Huot J et al (2007) Src-mediated phosphorylation of Hsp90 in response to Vascular Endothelial Growth Factor (VEGF) is required for VEGF Receptor-2 signaling to endothelial NO synthase. Mol Biol Cell 18:4659–4668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eckl JM, Richter K (2013) Functions of the Hsp90 chaperone system: lifting client proteins to new heights. Int J Biochem Mol Biol 4:157–165

    PubMed  PubMed Central  Google Scholar 

  • Ellis A, Bennett DLH (2013) Neuroinflammation and the generation of neuropathic pain. Br J Anaesth 111:26–37

    Article  CAS  PubMed  Google Scholar 

  • Elmore S (2007) Apoptosis: a review of programmed cell death. Toxicol Pathol 35:495–516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Felts SJ, Owen BL, Nguyen P et al (2000) The hsp90-related protein TRAP1 is a mitochondrial protein with distinct functional properties. J Biol Chem 275:3305–3312

    Article  CAS  PubMed  Google Scholar 

  • Ferreira-Gomes J, Adaes S, Sousa RM et al (2012) Dose-dependent expression of neuronal injury markers during experimental osteoarthritis induced by monoiodoacetate in the rat. Mol Pain 8:50

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fujikake N, Nagai Y, Popiel HA et al (2008) Heat shock transcription factor 1-activating compounds suppress polyglutamine-induced neurodegeneration through induction of multiple molecular chaperones. J Biol Chem 283:26188–26197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fulda S, Debatin KM (2006) Extrinsic versus intrinsic apoptosis pathways in anticancer chemotherapy. Oncogene 25:4798

    Article  CAS  PubMed  Google Scholar 

  • Gallo KA (2006) Targeting HSP90 to halt neurodegeneration. Chem Biol 13:115–116

    Article  CAS  PubMed  Google Scholar 

  • Gangadharan V, Kuner R (2013) Pain hypersensitivity mechanisms at a glance. Dis Model Mech 6:889–895

    Article  PubMed  PubMed Central  Google Scholar 

  • García-Descalzo L, Alcazar A, Baquero F et al (2011) Identification of in vivo HSP90-interacting proteins reveals modularity of HSP90 complexes is dependent on the environment in psychrophilic bacteria. Cell Stress Chaperones 16:203–218

    Article  CAS  PubMed  Google Scholar 

  • Gaudet AD, Popovich PG, Ramer MS (2011) Wallerian degeneration: gaining perspective on inflammatory events after peripheral nerve injury. J Neuroinflammation 8:110

    Article  PubMed  PubMed Central  Google Scholar 

  • Georgakis GV, Younes A (2005) Heat-shock protein 90 inhibitors in cancer therapy: 17AAG and beyond. Future Oncol 1:273–281

    Article  CAS  PubMed  Google Scholar 

  • Gey M, Wanner R, Schilling C et al (2016) Atf3 mutant mice show reduced axon regeneration and impaired regeneration-associated gene induction after peripheral nerve injury. Open Biol 6

    Google Scholar 

  • Grace PM, Gaudet AD, Staikopoulos V et al (2016) Nitroxidative signaling mechanisms in pathological pain. Trends Neurosci 39:862–879

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gu Y, Chen Y, Zhang X et al (2010) Neuronal soma-satellite glial cell interactions in sensory ganglia and the participation of purinergic receptors. Neuron Glia Biol 6:53–62

    Article  PubMed  PubMed Central  Google Scholar 

  • Hadden MK, Lubbers DJ, Blagg BS (2006) Geldanamycin, radicicol, and chimeric inhibitors of the Hsp90 N-terminal ATP binding site. Curr Top Med Chem 6:1173–1182

    Article  CAS  PubMed  Google Scholar 

  • Han J, Goldstein LA, Hou W et al (2018) HSP90 inhibition targets autophagy and induces a CASP9-dependent resistance mechanism in NSCLC. Autophagy 14:958–971

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hansen RR, Malcangio M (2013) Astrocytes—multitaskers in chronic pain. Eur J Pharmacol 716:120–128

    Article  CAS  PubMed  Google Scholar 

  • Hartl FU (1996) Molecular chaperones in cellular protein folding. Nature 381:571–579

    Article  CAS  PubMed  Google Scholar 

  • Hartl FU, Hayer-Hartl M (2002) Molecular chaperones in the cytosol: from nascent chain to folded protein. Science 295:1852–1858

    Article  CAS  PubMed  Google Scholar 

  • Hensold JO, Hunt CR, Calderwood SK et al (1990) DNA binding of heat shock factor to the heat shock element is insufficient for transcriptional activation in murine erythroleukemia cells. Mol Cell Biol 10:1600–1608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hessling M, Richter K, Buchner J (2009) Dissection of the ATP-induced conformational cycle of the molecular chaperone Hsp90. Nat Struct Mol Biol 16:287–293

    Article  CAS  PubMed  Google Scholar 

  • Horwich AL (2014) Molecular chaperones in cellular protein folding: the birth of a field. Cell 157:285–288

    Article  CAS  PubMed  Google Scholar 

  • Houlihan JL, Metzler JJ, Blum JS (2009) HSP90α and HSP90β isoforms selectively modulate MHC class II antigen presentation in B cells. J Immunol 182:7451–7458

    Article  CAS  PubMed  Google Scholar 

  • Huang J, Zhang X, Mcnaughton PA (2006) Inflammatory pain: the cellular basis of heat hyperalgesia. Curr Neuropharmacol 4:197–206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Humphries F, Yang S, Wang B et al (2015) RIP kinases: key decision makers in cell death and innate immunity. Cell Death Differ 22:225–236

    Article  CAS  PubMed  Google Scholar 

  • Hunt D, Raivich G, Anderson PN (2012) Activating transcription factor 3 and the nervous system. Front Mol Neurosci 5:7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hutchinson MR, Ramos KM, Loram LC et al (2009) Evidence for a role of heat shock protein-90 in toll like receptor 4 mediated pain enhancement in rats. Neuroscience 164:1821–1832

    Article  CAS  PubMed  Google Scholar 

  • Hutchinson MR, Northcutt AL, Hiranita T et al (2012) Opioid activation of toll-like receptor 4 contributes to drug reinforcement. J Neurosci 32:11187–11200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ikwegbue PC, Masamba P, Oyinloye BE et al (2017) Roles of heat shock proteins in apoptosis, oxidative stress, human inflammatory diseases, and cancer. Pharmaceuticals (Basel) 11

    Google Scholar 

  • Israel A (2010) The IKK complex, a central regulator of NF-kappaB activation. Cold Spring Harb Perspect Biol 2:a000158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jackson SE (2013) Hsp90: structure and function. Top Curr Chem 328:155–240

    Article  CAS  PubMed  Google Scholar 

  • Ji RR (2004) Peripheral and central mechanisms of inflammatory pain, with emphasis on MAP kinases. Curr Drug Targets Inflamm Allergy 3:299–303

    Article  CAS  PubMed  Google Scholar 

  • Ji RR, Gereau RWT, Malcangio M et al (2009) MAP kinase and pain. Brain Res Rev 60:135–148

    Article  CAS  PubMed  Google Scholar 

  • Ji RR, Berta T, Nedergaard M (2013) Glia and pain: is chronic pain a gliopathy? Pain 154(Suppl 1):S10–S28

    Article  PubMed  PubMed Central  Google Scholar 

  • Ji RR, Chamessian A, Zhang YQ (2016) Pain regulation by non-neuronal cells and inflammation. Science 354:572–577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson JL (2012) Evolution and function of diverse Hsp90 homologs and cochaperone proteins. Biochim Biophys Acta 1823:607–613

    Article  CAS  PubMed  Google Scholar 

  • Kacimi R, Yenari MA (2015) Pharmacologic heat shock protein 70 induction confers cytoprotection against inflammation in gliovascular cells. Glia 63:1200–1212

    Article  PubMed  PubMed Central  Google Scholar 

  • Kang BH, Siegelin MD, Plescia J et al (2010) Preclinical characterization of mitochondria-targeted small molecule Hsp90 inhibitors, Gamitrinibs, in advanced prostate cancer. Clin Cancer Res 16:4779–4788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kang BH, Tavecchio M, Goel HL et al (2011) Targeted inhibition of mitochondrial Hsp90 suppresses localised and metastatic prostate cancer growth in a genetic mouse model of disease. Br J Cancer 104:629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kijima T, Prince TL, Tigue ML et al (2018) HSP90 inhibitors disrupt a transient HSP90-HSF1 interaction and identify a noncanonical model of HSP90-mediated HSF1 regulation. Sci Rep 8:6976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim HY, Chung JM, Chung K (2008) Increased production of mitochondrial superoxide in the spinal cord induces pain behaviors in mice: the effect of mitochondrial electron transport complex inhibitors. Neurosci Lett 447:87–91

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim D, You B, Jo EK et al (2010) NADPH oxidase 2-derived reactive oxygen species in spinal cord microglia contribute to peripheral nerve injury-induced neuropathic pain. Proc Natl Acad Sci U S A 107:14851–14856

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim N, Kim JY, Yenari MA (2012) Anti-inflammatory properties and pharmacological induction of Hsp70 after brain injury. Inflammopharmacology 20:177–185

    Article  CAS  PubMed  Google Scholar 

  • Kim N, Kim JY, Yenari MA (2015) Pharmacological induction of the 70-kDa heat shock protein protects against brain injury. Neuroscience 284:912–919

    Article  CAS  PubMed  Google Scholar 

  • Koshimizu TA, Tsuchiya H, Tsuda H et al (2010) Inhibition of heat shock protein 90 attenuates adenylate cyclase sensitization after chronic morphine treatment. Biochem Biophys Res Commun 392:603–607

    Article  CAS  PubMed  Google Scholar 

  • Krukenberg KA, Street TO, Lavery LA et al (2011) Conformational dynamics of the molecular chaperone Hsp90. Q Rev Biophys 44:229–255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kundrat L, Regan L (2010) Identification of residues on Hsp70 and Hsp90 ubiquitinated by the cochaperone CHIP. J Mol Biol 395:587–594

    Article  CAS  PubMed  Google Scholar 

  • Lacagnina MJ, Watkins LR, Grace PM (2018) Toll-like receptors and their role in persistent pain. Pharmacol Ther 184:145–158

    Article  CAS  PubMed  Google Scholar 

  • Lackie RE, Maciejewski A, Ostapchenko VG et al (2017) The Hsp70/Hsp90 chaperone machinery in neurodegenerative diseases. Front Neurosci 11:254

    Article  PubMed  PubMed Central  Google Scholar 

  • Latremoliere A, Woolf CJ (2009) Central sensitization: a generator of pain hypersensitivity by central neural plasticity. J Pain 10:895–926

    Article  PubMed  PubMed Central  Google Scholar 

  • Lei W, Mullen N, Mccarthy S et al (2017) Heat-shock protein 90 (Hsp90) promotes opioid-induced anti-nociception by an ERK mitogen-activated protein kinase (MAPK) mechanism in mouse brain. J Biol Chem 292:10414–10428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lemasters JJ (2005) Selective mitochondrial autophagy, or mitophagy, as a targeted defense against oxidative stress, mitochondrial dysfunction, and aging. Rejuvenation Res 8:3–5

    Article  CAS  PubMed  Google Scholar 

  • Lewis SS, Hutchinson MR, Rezvani N et al (2010) Evidence that intrathecal morphine-3-glucuronide may cause pain enhancement via toll-like receptor 4/MD-2 and interleukin-1beta. Neuroscience 165:569–583

    Article  CAS  PubMed  Google Scholar 

  • Lewis SS, Loram LC, Hutchinson MR et al (2012) (+)-naloxone, an opioid-inactive toll-like receptor 4 signaling inhibitor, reverses multiple models of chronic neuropathic pain in rats. J Pain 13:498–506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li J, Soroka J, Buchner J (2012) The Hsp90 chaperone machinery: conformational dynamics and regulation by co-chaperones. Biochim Biophys Acta 1823:624–635

    Article  CAS  PubMed  Google Scholar 

  • Li W, Tsen F, Sahu D et al (2013) Chapter Five – Extracellular Hsp90 (eHsp90) as the actual target in clinical trials: Intentionally or unintentionally. In: Jeon KW (ed) Int Rev Cell Mol Biol 303:203–35. Academic

    Google Scholar 

  • Li J, Yang F, Guo J et al (2015) 17-AAG post-treatment ameliorates memory impairment and hippocampal CA1 neuronal autophagic death induced by transient global cerebral ischemia. Brain Res 1610:80–88

    Article  CAS  PubMed  Google Scholar 

  • Lindberg I, Shorter J, Wiseman RL et al (2015) Chaperones in neurodegeneration. J Neurosci 35:13853–13859

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lopez-Hernandez FJ, Ortiz MA, Piedrafita FJ (2006) The extrinsic and intrinsic apoptotic pathways are differentially affected by temperature upstream of mitochondrial damage. Apoptosis 11:1339–1347

    Article  CAS  PubMed  Google Scholar 

  • Luo W, Sun W, Taldone T et al (2010) Heat shock protein 90 in neurodegenerative diseases. Mol Neurodegener 5:24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luo Q, Boczek EE, Wang Q et al (2017) Hsp90 dependence of a kinase is determined by its conformational landscape. Sci Rep 7:43996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Madrigal-Matute J, Lopez-Franco O, Blanco-Colio LM et al (2010) Heat shock protein 90 inhibitors attenuate inflammatory responses in atherosclerosis. Cardiovasc Res 86:330–337

    Article  CAS  PubMed  Google Scholar 

  • Mahalingam D, Swords R, Carew JS et al (2009) Targeting HSP90 for cancer therapy. Br J Cancer 100:1523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martini R, Willison H (2016) Neuroinflammation in the peripheral nerve: cause, modulator, or bystander in peripheral neuropathies? Glia 64:475–486

    Article  PubMed  Google Scholar 

  • Marzec M, Eletto D, Argon Y (2012) GRP94: an HSP90-like protein specialized for protein folding and quality control in the endoplasmic reticulum. Biochim Biophys Acta 1823:774–787

    Article  CAS  PubMed  Google Scholar 

  • Masgras I, Sanchez-Martin C, Colombo G et al (2017) The chaperone TRAP1 as a modulator of the mitochondrial adaptations in cancer cells. Front Oncol 7:58

    Article  PubMed  PubMed Central  Google Scholar 

  • Masuda Y, Shima G, Aiuchi T et al (2004) Involvement of tumor necrosis factor receptor-associated protein 1 (TRAP1) in apoptosis induced by beta-hydroxyisovalerylshikonin. J Biol Chem 279:42503–42515

    Article  CAS  PubMed  Google Scholar 

  • Matassa DS, Amoroso MR, Maddalena F et al (2012) New insights into TRAP1 pathway. Am J Cancer Res 2:235–248

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mayer MP, Bukau B (1999) Molecular chaperones: the busy life of Hsp90. Curr Biol 9:R322–RR25

    Article  CAS  PubMed  Google Scholar 

  • Miao W, Li L, Wang Y (2018) Identification of helicase proteins as clients for HSP90. Anal Chem 90:11751–11755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Milligan ED, Watkins LR (2009) Pathological and protective roles of glia in chronic pain. Nat Rev Neurosci 10:23–36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mizushima N, Komatsu M (2011) Autophagy: renovation of cells and tissues. Cell 147:728–741

    Article  CAS  PubMed  Google Scholar 

  • Mollapour M, Neckers L (2011) Detecting HSP90 phosphorylation. Methods Mol Biol 787:67–74

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mollapour M, Neckers L (2012) Post-translational modifications of Hsp90 and their contributions to chaperone regulation. Biochim Biophys Acta 1823:648–655

    Article  CAS  PubMed  Google Scholar 

  • Montesano Gesualdi N, Chirico G, Pirozzi G et al (2007) Tumor necrosis factor-associated protein 1 (TRAP-1) protects cells from oxidative stress and apoptosis. Stress 10:342–350

    Article  CAS  PubMed  Google Scholar 

  • Muralidharan S, Mandrekar P (2013) Cellular stress response and innate immune signaling: integrating pathways in host defense and inflammation. J Leukoc Biol 94:1167–1184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nahleh Z, Tfayli A, Najm A et al (2012) Heat shock proteins in cancer: targeting the ‘chaperones’. Future Med Chem 4:927–935

    Article  CAS  PubMed  Google Scholar 

  • Nascimento D, Pozza DH, Castro-Lopes JM et al (2011) Neuronal injury marker ATF-3 is induced in primary afferent neurons of monoarthritic rats. Neurosignals 19:210–221

    Article  CAS  PubMed  Google Scholar 

  • Nascimento DS, Castro-Lopes JM, Moreira Neto FL (2014) Satellite glial cells surrounding primary afferent neurons are activated and proliferate during monoarthritis in rats: is there a role for ATF3? PLoS One 9:e108152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nascimento DSM, Potes CS, Soares ML et al (2017) Drug-induced HSP90 inhibition alleviates pain in monoarthritic rats and alters the expression of new putative pain players at the DRG. Mol Neurobiol. https://doi.org/10.1007/s12035-017-0628-x

  • Neckers L, Kern A, Tsutsumi S (2007) Hsp90 inhibitors disrupt mitochondrial homeostasis in cancer cells. Chem Biol 14:1204–1206

    Article  CAS  PubMed  Google Scholar 

  • Neto F (2018) Commentary on paper “drug-induced HSP90 inhibition alleviates pain in monoarthritic rats and alters the expression of new putative pain players at the DRG”. J Immunol Sci 2:17–21

    Article  Google Scholar 

  • Neuer A, Mele C, Liu HC et al (1998) Monoclonal antibodies to mammalian heat shock proteins impair mouse embryo development in vitro. Hum Reprod 13:987–990

    Article  CAS  PubMed  Google Scholar 

  • Ohara PT, Vit JP, Bhargava A et al (2009) Gliopathic pain: when satellite glial cells go bad. Neuroscientist 15:450–463

    Article  PubMed  PubMed Central  Google Scholar 

  • Old EA, Clark AK, Malcangio M (2015) The role of glia in the spinal cord in neuropathic and inflammatory pain. Handb Exp Pharmacol 227:145–170

    Article  PubMed  Google Scholar 

  • Ou J-R, Tan M-S, Xie A-M et al (2014) Heat shock protein 90 in Alzheimer’s disease. BioMed Res Intern 2014:7

    Article  CAS  Google Scholar 

  • Pearl LH (2016) Review: the HSP90 molecular chaperone—an enigmatic ATPase. Biopolymers 105:594–607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Piao Y, Gwon DH, Kang DW et al (2018) TLR4-mediated autophagic impairment contributes to neuropathic pain in chronic constriction injury mice. Mol Brain 11:11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pinho-Ribeiro FA, Verri WA, Chiu IM (2017) Nociceptor sensory neuron-immune interactions in pain and inflammation. Trends Immunol 38:5–19

    Article  CAS  PubMed  Google Scholar 

  • Pratt WB, Toft DO (2003) Regulation of signaling protein function and trafficking by the hsp90/hsp70-based chaperone machinery. Exp Biol Med (Maywood) 228:111–133

    Article  CAS  Google Scholar 

  • Price BD, Calderwood SK (1991) Ca2+ is essential for multistep activation of the heat shock factor in permeabilized cells. Mol Cell Biol 11:3365–3368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pridgeon JW, Olzmann JA, Chin L-S et al (2007) PINK1 protects against oxidative stress by phosphorylating mitochondrial chaperone TRAP1. PLoS Biol 5:e172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prodromou C, Siligardi G, O’brien R et al (1999) Regulation of Hsp90 ATPase activity by tetratricopeptide repeat (TPR)-domain co-chaperones. EMBO J 18:754–762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pullen L, Bolon DN (2011) Enforced N-domain proximity stimulates Hsp90 ATPase activity and is compatible with function in vivo. J Biol Chem 286:11091–11098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qi J, Han X, Liu HT et al (2014) 17-Dimethylaminoethylamino-17-demethoxygeldanamycin attenuates inflammatory responses in experimental stroke. Biol Pharm Bull 37:1713–1718

    Article  CAS  PubMed  Google Scholar 

  • Rabindran SK, Giorgi G, Clos J et al (1991) Molecular cloning and expression of a human heat shock factor, HSF1. Proc Natl Acad Sci U S A 88:6906–6910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rabindran SK, Haroun RI, Clos J et al (1993) Regulation of heat shock factor trimer formation: role of a conserved leucine zipper. Science 259:230–234

    Article  CAS  PubMed  Google Scholar 

  • Raghavendra V, Rutkowski MD, Deleo JA (2002) The role of spinal neuroimmune activation in morphine tolerance/hyperalgesia in neuropathic and sham-operated rats. J Neurosci 22:9980–9989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raghavendra V, Tanga FY, Deleo JA (2004) Attenuation of morphine tolerance, withdrawal-induced hyperalgesia, and associated spinal inflammatory immune responses by propentofylline in rats. Neuropsychopharmacology 29:327–334

    Article  CAS  PubMed  Google Scholar 

  • Rauch JN, Tse E, Freilich R et al (2017) BAG3 is a modular, scaffolding protein that physically links heat shock protein 70 (Hsp70) to the small heat shock proteins. J Mol Biol 429:128–141

    Article  CAS  PubMed  Google Scholar 

  • Ren K, Dubner R (2016) Activity-triggered tetrapartite neuron-glial interactions following peripheral injury. Curr Opin Pharmacol 26:16–25

    Article  CAS  PubMed  Google Scholar 

  • Rice JW, Veal JM, Fadden RP et al (2008) Small molecule inhibitors of Hsp90 potently affect inflammatory disease pathways and exhibit activity in models of rheumatoid arthritis. Arthritis Rheum 58:3765–3775

    Article  CAS  PubMed  Google Scholar 

  • Ritossa F (1962) A new puffing pattern induced by temperature shock and DNP in drosophila. Experientia 18:571–573

    Article  CAS  Google Scholar 

  • Rondanin R, Lettini G, Oliva P et al (2018) New TRAP1 and Hsp90 chaperone inhibitors with cationic components: preliminary studies on mitochondrial targeting. Bioorg Med Chem Lett 28:2289–2293

    Article  CAS  PubMed  Google Scholar 

  • Sager RA, Woodford MR, Neckers L et al (2018) Detecting posttranslational modifications of Hsp90. Methods Mol Biol 1709:209–219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sajic M, Ida KK, Canning R et al (2018) Mitochondrial damage and “plugging” of transport selectively in myelinated, small-diameter axons are major early events in peripheral neuroinflammation. J Neuroinflammation 15:61

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salminen A, Paimela T, Suuronen T et al (2008) Innate immunity meets with cellular stress at the IKK complex: regulation of the IKK complex by HSP70 and HSP90. Immunol Lett 117:9–15

    Article  CAS  PubMed  Google Scholar 

  • Salter MW (2005) Cellular signalling pathways of spinal pain neuroplasticity as targets for analgesic development. Curr Top Med Chem 5:557–567

    Article  CAS  PubMed  Google Scholar 

  • Sarge KD, Murphy SP, Morimoto RI (1993) Activation of heat shock gene transcription by heat shock factor 1 involves oligomerization, acquisition of DNA-binding activity, and nuclear localization and can occur in the absence of stress. Mol Cell Biol 13:1392–1407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schwartz ES, Lee I, Chung K et al (2008) Oxidative stress in the spinal cord is an important contributor in capsaicin-induced mechanical secondary hyperalgesia in mice. Pain 138:514–524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schwartz ES, Kim HY, Wang J et al (2009) Persistent pain is dependent on spinal mitochondrial antioxidant levels. J Neurosci 29:159–168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seijffers R, Mills CD, Woolf CJ (2007) ATF3 increases the intrinsic growth state of DRG neurons to enhance peripheral nerve regeneration. J Neurosci 27:7911–7920

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seo YH (2015) Organelle-specific Hsp90 inhibitors. Arch Pharm Res 38:1582–1590

    Article  CAS  PubMed  Google Scholar 

  • Sevin M, Girodon F, Garrido C et al (2015) HSP90 and HSP70: implication in inflammation processes and therapeutic approaches for myeloproliferative neoplasms. Mediat Inflamm 2015:970242

    Article  CAS  Google Scholar 

  • Sharp S, Workman P (2006) Inhibitors of the HSP90 molecular chaperone: current status. Adv Cancer Res 95:323–348

    Article  CAS  PubMed  Google Scholar 

  • Sofroniew MV (2014) Multiple roles for astrocytes as effectors of cytokines and inflammatory mediators. Neuroscientist 20:160–172

    Article  CAS  PubMed  Google Scholar 

  • Song P, Zhao ZQ (2001) The involvement of glial cells in the development of morphine tolerance. Neurosci Res 39:281–286

    Article  CAS  PubMed  Google Scholar 

  • Song X, Wang X, Zhuo W et al (2010) The regulatory mechanism of extracellular Hsp90{alpha} on matrix metalloproteinase-2 processing and tumor angiogenesis. J Biol Chem 285:40039–40049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stellas D, El Hamidieh A, Patsavoudi E (2010) Monoclonal antibody 4C5 prevents activation of MMP2 and MMP9 by disrupting their interaction with extracellular HSP90 and inhibits formation of metastatic breast cancer cell deposits. BMC Cell Biol 11:51

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Subbarao Sreedhar A, Kalmár É, Csermely P et al (2004) Hsp90 isoforms: functions, expression and clinical importance. FEBS Lett 562:11–15

    Article  CAS  Google Scholar 

  • Sung N, Lee J, Kim JH et al (2016) Mitochondrial Hsp90 is a ligand-activated molecular chaperone coupling ATP binding to dimer closure through a coiled-coil intermediate. Proc Natl Acad Sci U S A 113:2952–2957

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taipale M, Krykbaeva I, Koeva M et al (2012) Quantitative analysis of Hsp90-client interactions reveals principles of substrate recognition. Cell 150:987–1001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taves S, Berta T, Liu DL et al (2016) Spinal inhibition of p38 MAP kinase reduces inflammatory and neuropathic pain in male but not female mice: sex-dependent microglial signaling in the spinal cord. Brain Behav Immun 55:70–81

    Article  CAS  PubMed  Google Scholar 

  • Thakur M, Rahman W, Hobbs C et al (2012) Characterisation of a peripheral neuropathic component of the rat monoiodoacetate model of osteoarthritis. PLoS One 7:e33730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thomas M, Harrell JM, Morishima Y et al (2006) Pharmacologic and genetic inhibition of hsp90-dependent trafficking reduces aggregation and promotes degradation of the expanded glutamine androgen receptor without stress protein induction. Hum Mol Genet 15:1876–1883

    Article  CAS  PubMed  Google Scholar 

  • Toyama S, Shimoyama N, Szeto HH et al (2018) Protective effect of a mitochondria-targeted peptide against the development of chemotherapy-induced peripheral neuropathy in mice. ACS Chem Neurosci 9:1566–1571

    Article  CAS  PubMed  Google Scholar 

  • Triantafilou M, Triantafilou K (2004) Heat-shock protein 70 and heat-shock protein 90 associate with Toll-like receptor 4 in response to bacterial lipopolysaccharide. Biochem Soc Trans 32:636–639

    Article  CAS  PubMed  Google Scholar 

  • Triantafilou M, Sawyer D, Nor A et al (2008) Cell surface molecular chaperones as endogenous modulators of the innate immune response. Novartis Found Symp 291:74–79; discussion 79–85, 137–40

    Article  CAS  PubMed  Google Scholar 

  • Tsai RY, Cheng YC, Wong CS (2015) (+)-Naloxone inhibits morphine-induced chemotaxis via prevention of heat shock protein 90 cleavage in microglia. J Formos Med Assoc 114:446–455

    Article  CAS  PubMed  Google Scholar 

  • Tsuda M (2016) Microglia in the spinal cord and neuropathic pain. J Diabetes Investig 7:17–26

    Article  CAS  PubMed  Google Scholar 

  • Tsujino H, Kondo E, Fukuoka T et al (2000) Activating transcription factor 3 (ATF3) induction by axotomy in sensory and motoneurons: a novel neuronal marker of nerve injury. Mol Cell Neurosci 15:170–182

    Article  CAS  PubMed  Google Scholar 

  • Tsutsumi S, Neckers L (2007) Extracellular heat shock protein 90: a role for a molecular chaperone in cell motility and cancer metastasis. Cancer Sci 98:1536–1539

    Article  CAS  PubMed  Google Scholar 

  • Tukaj S, Wegrzyn G (2016) Anti-Hsp90 therapy in autoimmune and inflammatory diseases: a review of preclinical studies. Cell Stress Chaperones 21:213–218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Udono H, Ichiyanagi T, Mizukami S et al (2009) Heat shock proteins in antigen trafficking–implications on antigen presentation to T cells. Int J Hyperth 25:617–625

    Article  Google Scholar 

  • Urban MJ, Li C, Yu C et al (2010) Inhibiting heat-shock protein 90 reverses sensory hypoalgesia in diabetic mice. ASN Neuro 2:e00040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Urban MJ, Pan P, Farmer KL et al (2012) Modulating molecular chaperones improves sensory fiber recovery and mitochondrial function in diabetic peripheral neuropathy. Exp Neurol 235:388–396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vettoretti G, Moroni E, Sattin S et al (2016) Molecular dynamics simulations reveal the mechanisms of allosteric activation of Hsp90 by designed ligands. Sci Rep 6:23830

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vlug AS, Teuling E, Haasdijk ED et al (2005) ATF3 expression precedes death of spinal motoneurons in amyotrophic lateral sclerosis-SOD1 transgenic mice and correlates with c-Jun phosphorylation, CHOP expression, somato-dendritic ubiquitination and Golgi fragmentation. Eur J Neurosci 22:1881–1894

    Article  PubMed  Google Scholar 

  • Voisine C, Orton K, Morimoto RI (2007) Protein Misfolding, chaperone networks, and the heat shock response in the nervous system. In: Waxman SG (ed) Mol neurol. Academic, San Diego, pp 59–76

    Chapter  Google Scholar 

  • Walsh D, Grantham J, Zhu XO et al (1999) The role of heat shock proteins in mammalian differentiation and development. Environ Med 43:79–87

    CAS  PubMed  Google Scholar 

  • Wang Y, Mcalpine SR (2015a) Heat-shock protein 90 inhibitors: will they ever succeed as chemotherapeutics? Future Med Chem 7:87–90

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Mcalpine SR (2015b) N-terminal and C-terminal modulation of Hsp90 produce dissimilar phenotypes. Chem Commun (Camb) 51:1410–1413

    Article  CAS  Google Scholar 

  • Wang B, Chen Z, Yu F et al (2016) Hsp90 regulates autophagy and plays a role in cancer therapy. Tumour Biol 37:1–6

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Koay YC, Mcalpine SR (2017) Redefining the phenotype of heat shock protein 90 (Hsp90) inhibitors. Chemistry 23:2010–2013

    Article  CAS  PubMed  Google Scholar 

  • Watkins LR, Hutchinson MR, Rice KC et al (2009) The “toll” of opioid-induced glial activation: improving the clinical efficacy of opioids by targeting glia. Trends Pharmacol Sci 30:581–591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wayne N, Mishra P, Bolon DN (2011) Hsp90 and client protein maturation. Methods Mol Biol 787:33–44

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Westwood JT, Wu C (1993) Activation of Drosophila heat shock factor: conformational change associated with a monomer-to-trimer transition. Mol Cell Biol 13:3481–3486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Whitesell L, Lindquist SL (2005) HSP90 and the chaperoning of cancer. Nat Rev Cancer 5:761–772

    Article  CAS  PubMed  Google Scholar 

  • Wiesgigl M, Clos J (2001) Heat shock protein 90 homeostasis controls stage differentiation in Leishmania donovani. Mol Biol Cell 12:3307–3316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wong DS, Jay DG (2016) Chapter Six – Emerging roles of extracellular Hsp90 in cancer. In: Isaacs J, Whitesell L (eds) Adv Cancer Res 129:141–63: Academic

    Google Scholar 

  • Woolf CJ (2011) Central sensitization: implications for the diagnosis and treatment of pain. Pain 152:S2–S15

    Article  PubMed  Google Scholar 

  • Wu XB, Cao DL, Zhang X et al (2016) CXCL13/CXCR5 enhances sodium channel Nav1.8 current density via p38 MAP kinase in primary sensory neurons following inflammatory pain. Sci Rep 6:34836

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xie Y, Chen C, Stevenson MA et al (2002) Heat shock factor 1 represses transcription of the IL-1beta gene through physical interaction with the nuclear factor of interleukin 6. J Biol Chem 277:11802–11810

    Article  CAS  PubMed  Google Scholar 

  • Young JC, Moarefi I, Hartl FU (2001) Hsp90: a specialized but essential protein-folding tool. J Cell Biol 154:267–274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yun TJ, Harning EK, Giza K et al (2011) EC144, a synthetic inhibitor of heat shock protein 90, blocks innate and adaptive immune responses in models of inflammation and autoimmunity. J Immunol 186:563–575

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Burrows F (2004) Targeting multiple signal transduction pathways through inhibition of Hsp90. J Mol Med (Berl) 82:488–499

    CAS  Google Scholar 

  • Zhang D, Lin J, Han J (2010) Receptor-interacting protein (RIP) kinase family. Cell Mol Immunol 7:243–249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang L, Zhao H, Blagg BS et al (2012) C-terminal heat shock protein 90 inhibitor decreases hyperglycemia-induced oxidative stress and improves mitochondrial bioenergetics in sensory neurons. J Proteome Res 11:2581–2593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang L, Karsten P, Hamm S et al (2013) TRAP1 rescues PINK1 loss-of-function phenotypes. Hum Mol Gen 22:2829–2841

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao H, Alam A, Chen Q et al (2017) The role of microglia in the pathobiology of neuropathic pain development: what do we know? Br J Anaesth 118:504–516

    Article  CAS  PubMed  Google Scholar 

  • Zierer BK, Rubbelke M, Tippel F et al (2016) Importance of cycle timing for the function of the molecular chaperone Hsp90. Nat Struct Mol Biol 23:1020–1028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zou J, Guo Y, Guettouche T et al (1998) Repression of heat shock transcription factor HSF1 activation by HSP90 (HSP90 complex) that forms a stress-sensitive complex with HSF1. Cell 94:471–480

    Article  CAS  PubMed  Google Scholar 

  • Zuehlke AD, Moses MA, Neckers L (2018). Heat shock protein 90: its inhibition and function. Philos Trans R Soc Lond Ser B Biol Sci 373

    Google Scholar 

  • Zuo J, Rungger D, Voellmy R (1995) Multiple layers of regulation of human heat shock transcription factor 1. Mol Cell Biol 15:4319–4330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fani L. Moreira Neto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dias-Ferreira, J., Moreira Neto, F.L. (2019). Hsp90: Is There an Unknown Role in Pain Neurobiology. In: Asea, A., Kaur, P. (eds) Heat Shock Protein 90 in Human Diseases and Disorders. Heat Shock Proteins, vol 19. Springer, Cham. https://doi.org/10.1007/978-3-030-23158-3_25

Download citation

Publish with us

Policies and ethics