Skip to main content

Proso Millet (Panicum miliaceum L.) Breeding: Progress, Challenges and Opportunities

  • Chapter
  • First Online:
Advances in Plant Breeding Strategies: Cereals

Abstract

Proso millet (Panicum miliaceum L.) is an annual cereal crop domesticated approximately 10,000 years ago in the semiarid regions of China. It is primarily grown in India, Nigeria, Niger, and China. Proso millet is used in Europe and North America as fodder and birdseed despite its highly nutritive and health-promoting benefits. Recently, the high content of different minerals and amino acids along with a low glycemic index and gluten-free property of the grains have attracted the industry and scientific communities. Proso millet has been used as a rotational crop in the winter wheat-fallow cropping system in the western Great Plains of the USA owing to its high water-use efficiency. This practice not only prevents the loss of organic matter from the no-till soil but also reduces weed and disease pressure. Regardless of the impeccable environmental and health benefits of proso millet, it remains as an under researched and underutilized crop. Plant breeders across the globe are trying to develop superior varieties using both classical and advanced breeding procedures. However, the lack of a genetic map and adequate genomic resources has slowed the crop improvement process. Proso millet germplasm representing a wide genetic diversity is conserved in gene banks maintained by several countries. The rapid growth in genomic research in the form of a linkage map development, novel molecular marker identification and availability of next-generation sequencing, together with high-throughput phenotyping promise to accelerate proso millet breeding. The development of proso millet cultivars which are high yielding, lodging and seed-shattering tolerant, direct combine-ready and nutrient enriched, would promote its increased cultivation, and use in the food industry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acosta DAV, Denicol AC, Tribulo P et al (2016) Effects of rumen-protected methionine and choline supplementation on the preimplantation embryo in Holstein cows. Theriogenology 85:1669–1679

    Article  CAS  PubMed  Google Scholar 

  • Agdag M, Nelson L, Baltensperger D et al (2006) Row spacing affects grain yield and other agronomic characters of proso millet. https://doi.org/10.1081/CSS-120000266

    Article  CAS  Google Scholar 

  • Ambavane AR, Sawardekar SV, Sawantdesai SA, Gokhale NB (2015) Studies on mutagenic effectiveness and efficiency of gamma rays and its effect on quantitative traits in finger millet (Eleusine coracana L. Gaertn). J Radiat Res Appl Sci 8(1):120–125. https://doi.org/10.1016/j.jrras.2014.12.004

    Article  Google Scholar 

  • Anderson RL (2011) Synergism: a rotation effect of improved growth efficiency. Adv Agron 112:205–226

    Article  Google Scholar 

  • Anderson RL, Bowman RA, Nielsen DC et al (1999) Alternative crop rotations for the central great plains. J Prod Agric 12:95–99

    Article  Google Scholar 

  • Araki M, Numaoka A, Kawase M, Fukunaga K (2012) Origin of waxy common millet, Panicum miliaceum L. in Japan. Genet Resour Crop Evol 59:1303–1308

    Article  Google Scholar 

  • Araus JL, Cairns JE (2014) Field high-throughput phenotyping: the new crop breeding frontier. Trends Plant Sci 19:52–61

    Article  CAS  PubMed  Google Scholar 

  • Baltensperger DD (2002) Progress with proso, pearl and other millets. In: Janick J, Whipkey A (eds) Trends in new crops and new uses. ASHS Press, Alexandria, pp 100–103

    Google Scholar 

  • Baltensperger D, Lyon D, Anderson R et al (1995a) Producing and marketing proso millet in the high plains. Coop Ext Fact Sheet EC95-137-C, University of Nebraska, Lincoln

    Google Scholar 

  • Baltensperger DD, Nelson LA, Frickel GE (1995b) Registration of ‘Earlybird’proso millet. Crop Sci 35(4):1204–1205

    Article  Google Scholar 

  • Baltensperger DD, Nelson LA, Frickel GE, Anderson RL (1995c) Registration of ‘Huntsman’ proso millet. Crop Sci 35(3):941

    Article  Google Scholar 

  • Baltensperger DD, Nelson LA, Frickel GE, Anderson RL (1997) Registration of ‘Sunrise’ proso millet. Crop Sci 37(4):1380

    Article  Google Scholar 

  • Baltensperger DD, Frickel GE, Nelson LA et al (2004) Registration of ‘Horizon’ proso millet. Crop Sci 44:688–689

    Article  Google Scholar 

  • Bobkov S, Suvorova G (2012) Temperature stress in anther culture of proso millet (Panicum miliaceum L.). In: Yan C, Baili F (eds) Proceedings of the 1st international broomcorn millet symposium: advances in broomcorn millet research. ISBN 978-7-81092-742-0, pp 82–88

    Google Scholar 

  • Boncompagni E, Orozco-Arroyo G, Cominelli E et al (2018) Antinutritional factors in pearl millet grains: phytate and goitrogens content variability and molecular characterization of genes involved in their pathways. PLoS One 13:e0198394

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bortesi L, Fischer R (2015) The CRISPR/Cas9 system for plant genome editing and beyond. Biotechnol Adv 33(1):41–52. https://doi.org/10.1016/j.biotechadv.2014.12.006

    Article  CAS  PubMed  Google Scholar 

  • Byrne PF, Volk GM, Gardner C et al (2018) Sustaining the future of plant breeding: the critical role of the USDA-ARS national plant germplasm system. Crop Sci 58:451–468

    Article  Google Scholar 

  • Carpenter JL, Hopen HJ (1983) A comparison of the biology of wild and cultivated proso millet (Panicum miliaceum). Weed Sci 33:795–799

    Article  Google Scholar 

  • Chandra D, Chandra S, Pallavi, Sharma AK (2016) Review of finger millet (Eleusine coracana (L.) Gaertn): a power house of health benefiting nutrients. Food Sci Human Wellness 5:149–155

    Article  Google Scholar 

  • Changmei S, Dorothy J (2014) Millet – the frugal grain. Int J Sci Res Rev 3(4):75–90

    Google Scholar 

  • Chen D, Neumann K, Friedel S et al (2014) Dissecting the phenotypic components of crop plant growth and drought responses based on high-throughput image analysis. Plant Cell Online 26:4636–4655

    Article  CAS  Google Scholar 

  • Cho Y II, Chung JW, Lee GA et al (2010) Development and characterization of twenty-five new polymorphic microsatellite markers in proso millet (Panicum miliaceum L.). Genes Genom 32:267–273

    Article  CAS  Google Scholar 

  • Comis D (2002) Glomalin: hiding place for a third of the world’s stored soil carbon. USDA ARS Online Magazine, pp 4–7

    Google Scholar 

  • De Wet JMJ, Brink DE, Rao KEP, Mengesha MH (1983) Diversity in kodo millet, Paspalum scrobiculatum. Econ Bot 37:159–163

    Article  Google Scholar 

  • Diao X, Jia G (2017) Origin and domestication of foxtail millet. In: Doust A, Diao X (eds) Genetics and genomics of Setaria. Plant genetics and genomics: crops and models, vol 19. Springer, Cham, pp 61–72

    Chapter  Google Scholar 

  • Dussert Y, Snirc A, Robert T (2015) Inference of domestication history and differentiation between early- and late-flowering varieties in pearl millet. Mol Ecol 24:1387–1402

    Article  CAS  PubMed  Google Scholar 

  • Dwivedi S, Upadhyaya H, Senthilvel S et al (2011) In: Janick J (ed) Millets: genetic and genomic resources. Plant breeding reviews. Wiley, Hoboken, pp 247–375

    Google Scholar 

  • Fahlgren N, Feldman M, Gehan MA et al (2015) A versatile phenotyping system and analytics platform reveals diverse temporal responses to water availability in Setaria. Mol Plant 8:1520–1535

    Article  CAS  PubMed  Google Scholar 

  • FAOSTAT (2018) Food and Agriculture Organization of the United Nations. http://www.fao.org/faostat/en/#data/QC/visualize

  • Fuller DQ (2014) Finger millet: origins and development. In: Encyclopedia of global archaeology. Springer, New York, pp 2783–2785

    Chapter  Google Scholar 

  • Ge Y, Geng B, Vincent S, James S (2016) Temporal dynamics of maize plant growth, water use, and leaf water content using automated high throughput RGB and hyperspectral imaging. Comput Electron Agric 127:625–632

    Article  Google Scholar 

  • Golzarian MR, Frick RA, Rajendran K et al (2011) Accurate inference of shoot biomass from high-throughput images of cereal plants. Plant Methods 7:1–11

    Article  Google Scholar 

  • Gomashe SS (2017) Proso millet, Panicum miliaceum (L.): genetic improvement and research needs. In: Patil JV (ed) Millets and sorghum: biology and genetic improvement. Wiley, Chichester, pp 150–169

    Chapter  Google Scholar 

  • Goron TL, Raizada MN (2015) Genetic diversity and genomic resources available for the small millet crops to accelerate a new green revolution. Front Plant Sci 6:157. https://doi.org/10.3389/fpls.2015.00157

    Article  PubMed  PubMed Central  Google Scholar 

  • Graybosch RA, Baltensperger DD (2009) Evaluation of the waxy endosperm trait in proso millet (Panicum miliaceum). Plant Breed 128:70–73

    Article  CAS  Google Scholar 

  • Habiyaremye C, Matanguihan JB, D’Alpoim Guedes J et al (2017a) Proso millet (Panicum miliaceum L.) and its potential for cultivation in the pacific northwest, US: a review. Front Plant Sci 7:1–17

    Google Scholar 

  • Habiyaremye C, Barth V, Highet K et al (2017b) Phenotypic responses of twenty diverse proso millet (Panicum miliaceum L.) accessions to irrigation. Sustain 9(3):389:1–389:38914

    Article  Google Scholar 

  • Haussmann BIG, Hess DE, Omanya GO et al (2004) Genomic regions influencing resistance to the parasitic weed Striga hermonthica in two recombinant inbred populations of sorghum. Theor Appl Genet 109:1005–1016

    Article  CAS  PubMed  Google Scholar 

  • Henry WB, Nielsen DC, Vigil MF et al (2008) Proso millet yield and residue mass following direct harvest with a stripper-header. Agron J 100(3):580–584

    Article  Google Scholar 

  • Heyser JW, Nabors MW (1982) Regeneration of proso millet from embryogenic calli derived from various plant parts 1. Crop Sci 22(5):1070–1074

    Article  Google Scholar 

  • Hou S, Sun Z, Li Y et al (2017) Transcriptomic analysis, genic SSR development, and genetic diversity of proso millet (Panicum miliaceum ; Poaceae). Appl Plant Sci 5:1600137. https://doi.org/10.3732/apps.1600137

    Article  Google Scholar 

  • Hu YG, Zhu J, Liu F et al (2008) Genetic diversity among Chinese landraces and cultivars of broomcorn millet (Panicum miliaceum) revealed by the polymerase chain reaction. Ann Appl Biol 153:357–364

    Article  CAS  Google Scholar 

  • Hu X, Wang J, Lu P, Zhang H (2009) Assessment of genetic diversity in broomcorn millet (Panicum miliaceum L.) using SSR markers. J Genet Genom 36:491–500

    Article  CAS  Google Scholar 

  • Hunt HV, Vander Linden M, Liu X et al (2008) Millets across Eurasia: chronology and context of early records of the genera Panicum and Setaria from archaeological sites in the Old World. Veg Hist Archaeobotany 17:5–18

    Article  Google Scholar 

  • Hunt HV, Denyer K, Packman LC et al (2010) Molecular basis of the waxy endosperm starch phenotype in broomcorn millet (Panicum miliaceum L.). Mol Biol Evol 27:1478–1494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hunt HV, Campana MG, Lawes MC et al (2011) Genetic diversity and phylogeography of broomcorn millet (Panicum miliaceum L.) across Eurasia. Mol Ecol 20:4756–4771

    Article  PubMed  PubMed Central  Google Scholar 

  • Hunt HV, Moots HM, Graybosch RA et al (2013) Waxy phenotype evolution in the allotetraploid cereal broomcorn millet: mutations at the GBSSI locus in their functional and phylogenetic context. Mol Biol Evol 30:109–122

    Article  CAS  PubMed  Google Scholar 

  • Hunt HV, Badakshi F, Romanova O et al (2014) Reticulate evolution in Panicum (Poaceae): the origin of tetraploid broomcorn millet, P. miliaceum. J Exp Bot 65:3165–3175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jia J, Li H, Zhang X et al (2017) Genomics-based plant germplasm research (GPGR). Crop J 5:166–174

    Article  Google Scholar 

  • Jnawali P, Kumar V, Tanwar B (2016) Celiac disease: overview and considerations for development of gluten-free foods. Food Sci Human Wellness 5:169–176

    Article  Google Scholar 

  • Kalinová J (2007) Nutritionally important components of proso millet (Panicum miliaceum L.). Food 1:91–100

    Google Scholar 

  • Kalinova J, Moudry J (2006) Content and quality of protein in proso millet (Panicum miliaceum L.) varieties. Plant Foods Hum Nutr 61:45–49

    Article  CAS  PubMed  Google Scholar 

  • Karam D, Westra P, Nissen SJ et al (2004) Genetic diversity among proso millet (Panicum miliaceum) biotypes assessed by AFLP technique. Planta Daninha 22:167–174

    Article  Google Scholar 

  • Khound R, Santra M, Baenziger PS, Santra DK (2013) Effect of cold-mediated pretreatment on microspore culture in winter and spring wheat. Am J Plant Sci 4:2259–2264

    Article  Google Scholar 

  • Kole C, Muthamilarasan M, Henry R et al (2015) Application of genomics-assisted breeding for generation of climate resilient crops: progress and prospects. Front Plant Sci 6:1–16

    Article  Google Scholar 

  • Lágler R, Gyulai G, Humphreys M et al (2005) Morphological and molecular analysis of common millet (P. miliaceum) cultivars compared to an aDNA sample from the 15th century (Hungary). Euphytica 146(1–2):77–85

    Article  CAS  Google Scholar 

  • Liu M, Xu Y, He J et al (2016) Genetic diversity and population structure of broomcorn millet (Panicum miliaceum L.) cultivars and landraces in China based on microsatellite markers. Int J Mol Sci 17:1–18

    Google Scholar 

  • Lu H, Zhang J, Wu N et al (2009a) Phytoliths analysis for the discrimination of foxtail millet (Setaria italica) and common millet (Panicum miliaceum). PLoS One 4(2):e4448

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lu H, Zhang J, Liu K-B et al (2009b) Earliest domestication of common millet (Panicum miliaceum) in East Asia extended to 10,000 years ago. Proc Natl Acad Sci 106:7367–7372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lyon DJ, Baltensperger DD (1993) Proso millet (Panicum miliaceum) tolerance to several postemergence herbicides. Weed Technol 7:230–233

    Article  CAS  Google Scholar 

  • M’Ribu HK, Hilu KW (1994) Detection of interspecific and intraspecific variation in Panicum millets through random amplified polymorphic DNA. Theor Appl Genet 88:412–416

    Article  PubMed  Google Scholar 

  • Ma L, Cao YH, Cheng MH et al (2013) Phylogenetic diversity of bacterial endophytes of Panax notoginseng with antagonistic characteristics towards pathogens of root-rot disease complex. Antonie Van Leeuwenhoek 103:299–312

    Article  PubMed  Google Scholar 

  • McSweeney MB, Ferenc A, Smolkova K et al (2017) Glycaemic response of proso millet-based (Panicum miliaceum) products. Int J Food Sci Nutr 68:873–880

    Article  CAS  PubMed  Google Scholar 

  • Miller NF, Spengler RN, Frachetti M (2016) Millet cultivation across Eurasia: origins, spread, and the influence of seasonal climate. The Holocene 26:1566–1575

    Article  Google Scholar 

  • Moose SP, Mumm RH (2008) Molecular plant breeding as the foundation for 21st century crop improvement. Plant Physiol 147:969–977

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Motta Romero H, Santra D, Rose D, Zhang Y (2017) Dough rheological properties and texture of gluten-free pasta based on proso millet flour. J Cereal Sci 74:238–243

    Article  CAS  Google Scholar 

  • Muduli KC, Misra RC (2007) Efficacy of mutagenic treatments in producing useful mutants in finger millet (Eleusine coracana Gaertn.). Indian J Genet Plant Breed 67(3):232–237

    Google Scholar 

  • Nass LL, Sigrist MS, Ribeiro CS da C, Reifschneider FJB (2012) Genetic resources: the basis for sustainable and competitive plant breeding. Crop Breed Appl Biotech 12:75–86

    Article  Google Scholar 

  • Nelson LA (1984) Technique for crossing proso millet. Crop Sci 24(1):205–206

    Article  Google Scholar 

  • Nelson LA (1990) Registration of ‘Sunup’ proso millet. Crop Sci 30:746–747

    Article  Google Scholar 

  • Nickel R (2015) Crop residue as a soil saving strategy. https://www.agriculture.com/crops/tillage/crop-residue-as-a-soil-saving-strategy_187-ar51056

  • Nielsen DC, Calderón FJ (2011) Fallow effects on soil. In: Hatfield JL, Sauer TJ (eds) Soil management: building a stable base for agriculture. American Society of Agronomy and Soil Science Society of America, Madison, pp 287–300. https://doi.org/10.2136/2011.soilmanagement.c19

    Chapter  Google Scholar 

  • Nielsen DC, Unger PW, Miller PR (2005) Efficient water use in dryland cropping systems in the great plains. Agron J 97:364–372

    Article  Google Scholar 

  • Nirmalakumari A, Arulselvi S, Ganapathy S et al (2007) Gamma ray induced variation for lodging resistance and its associated characters in little millet (Panicum sumatrense Roth Ex-roem and schult). Madras Agric J 94(7–12):151–155

    Google Scholar 

  • Oumar I, Mariac C, Pham J-L, Vigouroux Y (2008) Phylogeny and origin of pearl millet (Pennisetum glaucum [L.] R. Br) as revealed by microsatellite loci. Theor Appl Genet 117:489–497

    Article  CAS  PubMed  Google Scholar 

  • Ozainne S, Lespez L, Garnier A et al (2014) A question of timing: spatio-temporal structure and mechanisms of early agriculture expansion in West Africa. J Archaeol Sci 50:359–368

    Article  Google Scholar 

  • Pandey P, Ge Y, Stoerger V, Schnable JC (2017) High throughput in vivo analysis of plant leaf chemical properties using hyperspectral imaging. Front Plant Sci 8:1348

    Article  PubMed  PubMed Central  Google Scholar 

  • Pathirana R (2011) Plant mutation breeding in agriculture. CAB Rev Perspect Agric Vet Sci Nutr Nat Resour 6(032):1–20. https://doi.org/10.1079/PAVSNNR20116032

    Article  CAS  Google Scholar 

  • Petolino JF (2015) Genome editing in plants via designed zinc finger nucleases. In Vitro Cell Dev Biol Plant 51(1):1–8. https://doi.org/10.1007/s11627-015-9663-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rajput SG, Santra DK (2016) Evaluation of genetic diversity of proso millet germplasm available in the United States using simple-sequence repeat markers. Crop Sci 56:2401

    Article  CAS  Google Scholar 

  • Rajput SG, Plyler-Harveson T, Santra DK (2014) Development and characterization of SSR markers in proso millet based on switchgrass genomics. Am J Plant Sci 5:175–186

    Article  CAS  Google Scholar 

  • Rajput SG, Santra DK, Schnable J (2016) Mapping QTLs for morpho-agronomic traits in proso millet (Panicum miliaceum L.). Mol Breed 36(4):37. https://doi.org/10.1007/s11032-016-0460-4

    Article  CAS  Google Scholar 

  • Rasmussen K (1988) Ploughing, direct drilling and reduced cultivation for cereals. Danish J Plant Soil Sci 92:233–248

    Google Scholar 

  • Rasmussen PE, Albrecht SL, Smiley RW (1998) Soil C and N changes under tillage and cropping systems in semi-arid Pacific Northwest agriculture. Soil Tillage Res 47:197–205

    Article  Google Scholar 

  • Rose DJ, Santra DK (2013) Proso millet (Panicum miliaceum L.) fermentation for fuel ethanol production. Ind Crop Prod 43:602–605

    Article  CAS  Google Scholar 

  • Saha D, Gowda MV, Arya L et al (2016) Genetic and genomic resources of small millets. CRC Crit Rev Plant Sci 35:56–79

    Article  CAS  Google Scholar 

  • Saleh ASM, Zhang Q, Chen J, Shen Q (2013) Millet grains: nutritional quality, processing, and potential health benefits. Compr Rev Food Sci Food Saf 12:281–295

    Article  CAS  Google Scholar 

  • Santra DK (2013) Proso millet varieties for western Nebraska western Nebraska. University of Nebraska-Lincoln NebGuide, G2219

    Google Scholar 

  • Santra DK, Rose D (2013) Alternative uses of proso millet. University of Nebraska-Lincoln Neb Guide G, 2218, pp 3–6

    Google Scholar 

  • Santra DK, Heyduck RF, Baltensperger DD et al (2015) Registration of ‘Plateau’ waxy (amylose-free) proso millet. J Plant Regist 9:41

    Article  Google Scholar 

  • Sateesh PV (2010) Millets: future of food and farming. Millet Network of India Deccan Development Society FIAN, Hyderabad, pp 2–9

    Google Scholar 

  • Schnable JC, Liang Z, Maio C et al (2018) High-throughput phenotyping in millet and allied species. In: Santra DK, Johnson JJ (eds) International millet symposium and the 3rd international symposium on broomcorn millet. Program and abstracts, August 8–12, 2018, Fort Collins, CO, USA

    Google Scholar 

  • Seghatoleslami MJ, Kafi M, Majidi E (2008) Effect of drought stress at different growth stages on yield and water efficiency of five proso millet (Panicum miliaceum L.) genotypes. Pak J Bot 40:1427–1432

    Google Scholar 

  • Singode A, Balakrishna D, Bhat V et al (2018) Improving yield using EMS mutation in proso millet (Panicum miliaceum L). In: Santra DK, Johnson JJ (eds) The 3rd international broomcorn millet symposium, August 8–12, 2018, Fort Collins, Colorado, USA, pp 68–69

    Google Scholar 

  • Soda N, Verma L, Giri J (2018) CRISPR-Cas9 based plant genome editing: significance, opportunities and recent advances. Plant Physiol Biochem 13:2–11. https://doi.org/10.1016/j.plaphy.2017.10.024

    Article  CAS  Google Scholar 

  • Tako E, Reed SM, Budiman J et al (2015) Higher iron pearl millet (Pennisetum glaucum L.) provides more absorbable iron that is limited by increased polyphenolic content. Nutr J 14:11. https://doi.org/10.1186/1475-2891-14-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taylor JRN, Belton PS, Beta T, Duodu KG (2014) Increasing the utilisation of sorghum, millets and pseudocereals: developments in the science of their phenolic phytochemicals, biofortification and protein functionality. J Cereal Sci 59:257–275

    Article  CAS  Google Scholar 

  • Upadhyaya HD, Sharma S, Gowda CLL et al (2011) Developing proso millet (Panicum miliaceum L.) core collection using geographic and morpho-agronomic data. Crop Past Sci 62:383–389

    Article  Google Scholar 

  • Upadhyaya HD, Dronavalli N, Dwivedi SL et al (2013) Mini core collection as a resource to identify new sources of variation. Crop Sci 53:2506–2517

    Article  Google Scholar 

  • Upadhyaya HD, Dwivedi SL, Upadhyaya HD et al (2014) Forming core collections in barnyard, kodo, and little millets using morphoagronomic descriptors. Crop Sci 54:2673–2682

    Article  Google Scholar 

  • Upadhyaya HD, Vetriventhan M, Dwivedi SL et al (2016) Proso, barnyard, little, and kodo millets. In: Singh M, Upadhyaya HD (eds) Genetic and genomic resources for grain cereals improvement. Academic, Waltham, pp 321–343

    Chapter  Google Scholar 

  • USDA (2018) Crop production. http://usda.mannlib.cornell.edu/usda/nass/CropProd//2010s/2018/CropProd-01-12-2018.pdf

  • Varshney RK, Graner A, Sorrells ME (2005) Genomics-assisted breeding for crop improvement. Trends Plant Sci 10:621–630

    Article  CAS  PubMed  Google Scholar 

  • Varshney RK, Glaszmann JC, Leung H, Ribaut JM (2010) More genomic resources for less-studied crops. Trends Biotechnol 28(9):452–460. https://doi.org/10.1016/j.tibtech.2010.06.007

    Article  CAS  PubMed  Google Scholar 

  • Varshney RK, Terauchi R, McCouch SR (2014) Harvesting the promising fruits of genomics: applying genome sequencing technologies to crop breeding. PLoS Biol 12:1–8

    Article  Google Scholar 

  • Varshney RK, Singh VK, Kumar A et al (2018) Can genomics deliver climate-change ready crops? Curr Opin Plant Biol 45(B):205–211

    Article  CAS  Google Scholar 

  • Vetriventhan M, Upadhyaya HD (2018) Diversity and trait-specific sources for productivity and nutritional traits in the global proso millet (Panicum miliaceum L.) germplasm collection. Crop J 6(5):451–463

    Article  Google Scholar 

  • Vetriventhan M, Dwivedi SL, Pattanashetti SK, Singh SK (2016) Finger and foxtail millets. In: Genetic and genomic resources for grain cereals improvement. Academic, Amsterdam, pp 291–319

    Chapter  Google Scholar 

  • Vinoth A, Ravindhran R (2017) Biofortification in millets: a sustainable approach for nutritional security. Front Plant Sci 8:29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Williams JT, Nyle CB (1991) Plant genetic resources: some new directions. Adv Agron 45:61–91

    Article  CAS  Google Scholar 

  • Wright DA, Yang BL, Spalding MH (2014) TALEN-mediated genome editing: prospects and perspectives. Biochem J 462(1):15–24. https://doi.org/10.1042/BJ20140295

    Article  CAS  PubMed  Google Scholar 

  • Yan G, Liu H, Wang H et al (2017) Accelerated generation of selfed pure line plants for gene identification and crop breeding. Front Plant Sci 8:1786. https://doi.org/10.3389/fpls.2017.01786

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang W, Duan L, Chen G et al (2013) Plant phenomics and high-throughput phenotyping: accelerating rice functional genomics using multidisciplinary technologies. Curr Opin Plant Biol 16:180–187

    Article  CAS  PubMed  Google Scholar 

  • Yue H, Wang L, Liu H et al (2016) De novo assembly and characterization of the transcriptome of broomcorn millet (Panicum miliaceum L.) for gene discovery and marker development. Front Plant Sci 7:1–11

    Google Scholar 

  • Zhao Z (2011) New archaeobotanic data for the study of the origins of agriculture in China. Curr Anthropol 52:S295–S306

    Article  Google Scholar 

  • Zhu C, Bortesi L, Baysal C et al (2017a) Characteristics of genome editing mutations in cereal crops. Trends Plant Sci 22(1):38–52. https://doi.org/10.1016/j.tplants.2016.08.009

    Article  CAS  PubMed  Google Scholar 

  • Zhu C, Yang J, Shyu C (2017b) Setaria comes of age: meeting report on the second international Setaria genetics conference. Front Plant Sci 8:1–5. https://doi.org/10.3389/fpls.2017.01562

    Article  Google Scholar 

  • Zotikov VI, Sidorenko VS, Bobkov SV et al (2012) Area and production of proso millet (Panicum miliaceum L.) in Russia. In: Xiaosu D (ed) Advances in broomcorn millet research. Proceedings of the 1st international millet symposium on broomcorn millet (1st ISBM), August 25–29, 2012, Yangling, China

    Google Scholar 

  • Zou C, Zhu X, Liu R et al (2018) The Genome of broomcorn millet (Panicum miliaceum L.). In: Santra DK, Johnson JJ (eds) International millet symposium and the 3rd international symposium on broomcorn millet. Program and abstracts, August 8–12, 2018, Marriot Inn, Fort Collins, CO, USA, p 61

    Google Scholar 

Download references

Acknowledgments

The authors acknowledge informal contributions on various aspects of proso millet genetic and breeding (often unpublished) by global proso millet scientists at various national and international scientific meetings.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dipak K. Santra .

Editor information

Editors and Affiliations

Appendices

Appendices

6.1.1 Appendix I: Research Institutes Relevant to Proso Millet

Institution

Specialization and research activities

Contact information and website

USDA-ARS North Central Regional Plant Introduction Station

Proso millet germplasm collection, conservation, and characterization

Plant Introduction Unit, G212 Agronomy Hall,

Iowa State University, Ames, IA 50011, USA.

E-mail: dbrenner@iastate.edu

Website: https://www.ars.usda.gov/midwest-area/ames/plant-introduction-research/

University of Nebraska-Lincoln Panhandle Research and Extension Center

Proso millet germplasm characterization, utilization, breeding, genetics, genomics, and biotechnology

University of Nebraska-Lincoln

4502 Avenue, Scottsbluff, NE 69361, USA

E-mail: dsantra2@unl.edu; schnable@unl.edu

Website: https://www.unl.edu/ https://extension.unl.edu/statewide/panhandle/

Institute of Crop Science, Chinese Academy of Agricultural Sciences (ICS-CAAS)

Proso millet germplasm collection and characterization

ICS-CAAS, No.12 Zhongguancun South St., Haidian

District, Beijing, China 100,081

Email:zuokesuo@caas.cn

Website: http://ics.caas.cn/en/

Northwest A&F University

Proso millet breeding, end-use characterization

Northwest A&F University, No.3 Taicheng Road, Yangling, Shaanxi, China, 712,100

Email: web@nwafu.edu.cn, fengbaili@nwsuaf.edu.cn

Website: http://en.nwsuaf.edu.cn/

Crop Research Institute, Gansu Academy of Agricultural Sciences

Proso millet breeding and germplasm evaluation

Nongkeyuan Xincun 1, Anning District, Lanzhou City, Gansu Province, China;

E-mail: yangtianyu@gsagr.ac.cn

Website: http://www.gsagr.ac.cn/

Shanghai Centre for Plant Stress Biology, Chinese Academy of Sciences

Proso millet genome sequencing and characteristics

No. 3888 Chenhua Road, Shanghai 201,602, China E-mail: zhangheng@sibs.ac.cn

Website: http://www.psc.ac.cn

International Crop Research Institute for the Semi-Arid Tropics (ICRISAT)

Germplasm characterization and conservation

ICRISAT, Hyderabad, India,

Email: ICRISAT@cgiar.org; m.vetriventhan@cgiar.org

Website: https://www.icrisat.org/

Indian Institute of Millet Research (IIMR)

Breeding and biotechnology

Hyderabad-500,030, Telangana. India,

E-mail: director.millets@icar.gov.in; avinash@millets.res.in

Website: http://millets.res.in/

Kangwon National University

Germplasm collection, conservation, and characterization

101–904, Ilsung Apt. Hyoja 3dong, Chuncheon, Korea.

E-mail: chpark@kangwon.ac.kr; Website: https://www.kangwon.ac.kr/english/index.do

All-Russia Research Institute of Legume and Groat Crops (GNU VNIIZBK)

Breeding, genetics, biotechnology, tissue culture

All-Russia Research Institute of Legume and Groat Crops (GNU VNIIZBK), Russia, Orel, E-mail: office@vniizbk.orel.ru; svbobkov@gmail.com,

Website: http://www.vniizbk.ru/en/structure/selection-center/laboratory-of-breeding-of-groat-crops.html

6.1.2 Appendix II: Proso Millet Genetic Resources

Cultivar

Important traits

Cultivation location

Dawn

Very early maturing; uniform ripening; large seed

USA

Rise

Stable under wide range of production environments; small seed. Tight panicle

USA

Sunup

Stable under a wide range of production environments

USA

Earlybird

Good straw strength, tight panicle; very large seed size, Early maturing

USA

Huntsman

Closed type panicle, large seed size, late maturity

USA

Sunrise

Large seed size, compact panicle

USA

Horizon

Large seed size; closed type panicle

USA

CO-3

Shining golden yellow grain

drought tolerant, leaf pubescent

India

Nagarjuna

Early maturity

India

Sagar

High seed yield

India

Bhawna

Stout, dwarf

India

CO(PV)5

Resistant to brown spot and tolerant to rust and grain smut

India

TNAU151

Tolerant to rust and shoot fly

India

TNAU164

Resistant to rust and grain smut

India

TNAU202

Drought resistant

India

Bistroye

High yielding early maturing

Russia

Kruppnoskoroe

High yield, early maturing, large grain

Russia

Sputnik, Slavjanskoe

High yield, mid-early maturing, resistant to smut, excellent groat quality

Russia

Alba

High yield, mid-early maturing, vigorous ripening, resistant to lodging, resistant to shattering, easy to hull, high output of groat

Russia

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Santra, D.K., Khound, R., Das, S. (2019). Proso Millet (Panicum miliaceum L.) Breeding: Progress, Challenges and Opportunities. In: Al-Khayri, J., Jain, S., Johnson, D. (eds) Advances in Plant Breeding Strategies: Cereals. Springer, Cham. https://doi.org/10.1007/978-3-030-23108-8_6

Download citation

Publish with us

Policies and ethics