Skip to main content

Plant Biotechnology and Milk Thistle

  • Chapter
  • First Online:
Plant Biotechnology and Medicinal Plants

Abstract

Silybum marianum is one of the most extensively studied medicinal herbs with well-known hepatoprotective activity. This chapter gives an overview of the various approaches used to optimize induction of cell, suspension, organ, root, and transgenic cultures from S. marianum. Additionally, examples of using these different approaches are shown and discussion for the production of silymarin from S. marianum tissue culture is also detailed. This chapter summarizes the recent research work of various in vitro culture, abiotic and biotic elicitors, and precursor feeding applied to S. marianum cultural system and their stimulating effects on the accumulation of silymarin.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbasi BH, Khan MA, Mahmood T, Ahmad M, Chaudhary MF, Khan Mir A (2010) Shoot regeneration and free-radical scavenging activity in Silybum marianum L. Plant Cell Tissue Organ Cult 101:371–376

    Article  CAS  Google Scholar 

  • Abbasi BH, Ali H, Yucesan B, Saeed S, Rehman K, Khan MA (2016) Evaluation of biochemical markers during somatic embryogenesis in Silybum marianum L. 3 Biotech 6:71

    Article  PubMed  PubMed Central  Google Scholar 

  • Abraham F, Bhatt A, Keng CL, Indrayanto G, Sulaiman SF (2011) Effect of yeast extract and chitosan on shoot proliferation, morphology and antioxidant activity of Curcuma mangga in vitro plantlets. Afr J Biotechnol 10(40):7787–7795

    Article  CAS  Google Scholar 

  • Ahmad N, Fatima N, Ahmad I, Anis M (2015) Effect of PGRs in adventitious root culture in vitro: present scenario and future prospects. Rend Fis Acc Lincei 26:307–321

    Article  Google Scholar 

  • Al-Hawamdeh FM, Shibli RA, Al-Qudah TS (2013) In-vitro production of silymarin from Silybum marianum L. Med Aromat Plants S1:001

    Google Scholar 

  • Al-Hawamdeh FM, Shibli RA, Al-Qudah TS (2014) In vitro propagation of Silybum marianum L. Jordan J Agric Sci 10(1):120–129

    Google Scholar 

  • Angelova Z, Georgiev S, Roos W (2006) Elicitation of plants. Biotechnol Biotechnol Equip 20:72–83

    Article  CAS  Google Scholar 

  • Baenas N, Garcia-Viguera C, Moreno DA (2014) Elicitation: a tool for enriching the bioactive composition of foods. Molecules 19(9):13541–13563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bais HP, Loyola-Vargas VM, Flores HE, Vivanco JM (2001) Root-specific metabolism: the biology and biochemistry of underground organs. In Vitro Cel Dev Biol Plant 37:730–741

    Article  CAS  Google Scholar 

  • Bekheet SA (2015) Effect of drought stress induced by mannitol and polyethylene glycol on growth and silymarin content of milk thistle callus cultures. World J Pharm Res 4(8):116–127

    CAS  Google Scholar 

  • Bekheet SA, Taha HS, Gabr AMM (2013) Protocol for in vitro morphogenesis and hairy root cultures of Milk thistle (Silybum marianum L. Gaertn). J Appl Sci Res 9(1):860–866

    CAS  Google Scholar 

  • Bekheet SA, El-Bahr MK, Ali SA, Hamed MA (2014) Callus production of globe artichoke and milk thistle: in vitro hypolipidemic and antioxidant activities. World J Pharm Res 3(4):01–17

    Google Scholar 

  • Belchi-Navarro S, Pedreno MA, Corchete P (2011) Methyl jasmonate increases silymarin production in Silybum marianum (L.) Gaernt cell cultures treated with β-cyclodextrins. Biotechnol Lett 33:179–184

    Article  CAS  PubMed  Google Scholar 

  • Biedermann D, Vavrikov E, Cvak L, Kren V (2014) Chemistry of silybin. Nat Prod Rep 31:1138–1157

    Article  CAS  PubMed  Google Scholar 

  • Boerjan W, Ralph J, Baucher M (2003) Lignin biosynthesis. Annu Rev Plant Biol 54:519–546

    Article  CAS  PubMed  Google Scholar 

  • Bota C, Deliu C (2011) The effect of copper sulphate on the production of flavonoids in Digitalis lanata cell cultures. Farmacia 59(1):11–118

    Google Scholar 

  • Cacho M, Moran M, Corchete P, Fernandez-Tarrago J (1999) Influence of medium composition on the accumulation of flavonolignans in cultured cells of Silybum marianum L. Gaertn. Plant Sci 144:77–84

    Article  Google Scholar 

  • Chen Z, Silva H, Klessig DF (1993) Active oxygen species in the induction of plant systemic resistance by salisylic acid. Science 262:1883–1886

    Article  CAS  PubMed  Google Scholar 

  • Cimino C, Cavalli SV, Spina F, Natalucci C, Priolo N (2006) Callus cultures for biomass production of milk thistle as a potential source of milk clotting peptidases. Electron J Biotechnol 9(3):1–4

    Article  CAS  Google Scholar 

  • Corchete P (2008) Silybum marianum (L.) Gaertn: the source of silymarin. In: Ramawat KG, Merillon JM (eds) Bioactive molecules and medicinal plants chapter 6, pp 123–148

    Chapter  Google Scholar 

  • Cui XH, Chakrabarty D, Lee EJ, Paek KY (2010) Production of adventitious roots and secondary metabolites by Hypericum perforatum L. in a bioreactor. Bioresour Technol 101:4708–4716

    Article  CAS  PubMed  Google Scholar 

  • Dewick PM (2002) Medicinal natural products. A Biosynthetic Approach. Second Edition Chichester, UK: Wiley

    Google Scholar 

  • Doares SH, Syrovets T, Weiler EW, Ryan CA (1995) Oligogalacturonides and chitosan activate plant defensive genes through the octadecanoid pathway. Proc Natl Acad Sci U S A 92:4095–4098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dubreuil-Maurizi C, Vitecek J, Marty L, Branciard L, Frettinger P, Wendehenne D, Meyer AJ, Mauch F, Poinssot B (2011) Glutathione deficiency of the Arabidopsis mutant pad2-1 affects oxidative stress-related events, defense gene expression, and the hypersensitive response. Plant Physiol 157(4):2000–2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eari S, Aghdasi M, Ahmadzadeh E, Mianabadi M (2017) Influence of plant growth regulators on callus induction, silymarin production and antioxidant activity in Milk Thistle (Silybum marianum L. Gaertn.) under tissue culture medium. J Med Plants By-Products 1:59–69

    Google Scholar 

  • Elhaak M, Zayed Mattar M, Gad D, Dietz K (2016) Optimization of Silybum marianum L. callus production and magnifying callus silymarin accumulation by elicitors or precursors. Intr J Adv Pharm Biol Chem 5(2):148–163

    CAS  Google Scholar 

  • Elsharnouby ME, Hassan FAS (2018) Improvement of silymarin content in cell cultures of Silybum marianum by copper sulphate elicitor. Acta Sci Pol Hortorum Cultus 17(2):105–114

    Article  Google Scholar 

  • El-Sherif F, Khattab S, Ghoname E, Salem N, Radwan K (2011) Effect of gamma irradiation on enhancement of some economic traits and molecular changes in Hibiscus Sabdariffa L. Life Science J 8(3):220–229

    Google Scholar 

  • El-Sherif F, Khattab S, Ibrahim AK, Ahmed SA (2013) Improved silymarin content in elicited multiple shoot cultures of Silybum marianum L. Physiol Mol Biol Plants 19(1):127–136

    Article  CAS  PubMed  Google Scholar 

  • El-wekeel A, AbouZid S, Sokkar N, Elfishway A (2012) Studies on flavanolignans from cultured cells of Silybum marianum. Acta Physiol Plant 34:1445–1449

    Article  CAS  Google Scholar 

  • Feveriro P, Carbal JMS, Fonceca MMR, Novais JM, Salom M (1986) Callus and suspension culture of Silybum marianum biosynthesis of proteins with clotting activity. Biotechnol Lett 8(1):19–24

    Article  Google Scholar 

  • Gabay R, Plitmann U, Danin A (1994) Factors affecting the dominance of Silybum marianum L. (Asteraceae) in its specific habitats. Flora 189:201–206

    Article  Google Scholar 

  • Gabr AMM, Ghareeb H, El Shabrawi HM, Smetanska I, Bekheet SA (2016) Enhancement of silymarin and phenolic compound accumulation in tissue culture of Milk thistle using elicitor feeding and hairy root cultures. J Genet Eng Biotechnol 14(2):327–333

    Article  PubMed  PubMed Central  Google Scholar 

  • Gamborg OL, Miller RA, Ojima K (1968) Nutrient requirements of suspension culture of soybean root cells. Exp Cell Res 50 (1):151–158

    Google Scholar 

  • Graham LS, Sticklen MB (1994) Plant chitinases. Can J Bot 72:1057–1083

    Article  CAS  Google Scholar 

  • Han YS, Van der Heijden R, Verpoorte R (2001) Biosynthesis of anthraquinones in cell cultures of the Rubiaceae. Plant Cell Tissue Organ Cult 67:201–220

    Article  CAS  Google Scholar 

  • Hasanloo T, Rahnama H, Sepehrifar R, Shams MR (2008a) The influence of yeast extract on the production of flavonolignans in hairy root cultures of Silybum marianum L. Gaertn. IFMBE Proc 21:358–361

    Article  Google Scholar 

  • Hasanloo T, Khavari-Nejad RA, Majidi E, Shams MR (2008b) Flavonolignan production in cell suspension culture of Silybum marianum. Pharm Biol 46(12):876–882

    Article  CAS  Google Scholar 

  • Hasanloo T, Sepehrifar R, Rahnama H, Shams MR (2009) Evaluation of the yeast-extract signaling pathway leading to silymarin biosynthesis in milk thistle hairy root culture. World J Microbiol Biotechnol 25:1901–1909

    Article  CAS  Google Scholar 

  • Hasanloo T, Ahmadi M, Nekoei SMK, Jouzani GS (2013) Improvement of silymarin production in hairy root cultures of Silybum marianum (L.) Gaertn using fungal elicitors. Romanian Biotechnol Lett 18(3):8221–8232

    Google Scholar 

  • Hasanloo T, Eskandari S, Najafi F (2014) Chitosan (middle-viscous) as an effective elicitor for silymarin production in Silybum marianum hairy root cultures. Res J Pharm 1:9–13

    CAS  Google Scholar 

  • Hasanloo T, Eskandari S, Kowsari M (2015) Trichoderma strains- Silybum marianum hairy root cultures interactions. Res J Pharm 2(2):33–46

    CAS  Google Scholar 

  • Hidalgo D, Martınez-Marquez A, Cusido R, Bru-Martınez R, Palazon J, Corchete P (2017) Silybum marianum cell cultures stably transformed with Vitis vinifera stilbene synthase accumulate t-resveratrol in the extracellular medium after elicitation with methyl jasmonate or methylated β-cyclodextrins. Eng Life Sci 17:686–694

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iqbal SM, Srivastava PS (2000) In vitro micropropagation of Silybum marianum L. from various explants and silybin Content. J Plant Biochem Biotechnol 9:81–87

    Article  CAS  Google Scholar 

  • Iri S, Aghdasi M, Mianabadi M (2013) Induction of root formation to produce silymarin in Silybium marianum plant in tissue culture condition. J Plant Process Funct 2(2):1–12

    Google Scholar 

  • Jabeen Z, Rahman KU, Zia MA, Jhan N (2019) Establishment of an efficient and reproducible in vitro protocol for callogenesis of Silybum marianum. Int J Biosci 14(1):402–410

    Article  CAS  Google Scholar 

  • Jamwal K, Bhattacharya S, Puri S (2018) Plant growth regulator mediated consequences of secondary metabolites in medicinal plants. J Appl Res Med Aromatic Plants 9:26–38

    Article  Google Scholar 

  • John SA, Koperuncholan M (2012) Direct root regeneration and indirect organogenesis in Silybum marianum and preliminary phytochemical, antibacterial studies of its callus. Int J Pharm 2(2):392–400

    Google Scholar 

  • Khalili M, Hasanloo T, Tabar SKK, Rahnama H (2009) Influence of exogenous salicylic acid on flavonolignans and lipoxygenase activity in the hairy root cultures of Silybum marianum. Cell Biol Int 33:988–994

    Article  CAS  PubMed  Google Scholar 

  • Khalili M, Hasanloo T, Kazemi Tabar SK, Sepehrifar R (2010a) Effect of salicylic acid on antioxidant activity in Milk Thistle hairy root cultures. J of Medicinal Plants 9(35):51–60

    CAS  Google Scholar 

  • Khalili M, Hasanloo T, SKk T (2010b) Ag+ enhanced silymarin production in hairy root cultures of Silybum marianum (L.) Gaertn. Plant Omics J 3(4):109–114

    CAS  Google Scholar 

  • Khan MA, Abbasi BH, Ahmed N, Ali H (2013) Effects of light regimes on in vitro seed germination and silymarin content in Silybum marianum. Ind Crop Prod 46:105–110

    Article  CAS  Google Scholar 

  • Khan MA, Abbasi BH, Khan Z, Shi ZK (2014) Thidiazuron enhanced regeneration and silymarin content in Silybum marianum L. Pak J Bot 46(1):185–190

    CAS  Google Scholar 

  • Khan MA, Abbasi BH, Shah NA, Yucesan B, Ali H (2015a) Analysis of metabolic variations throughout growth and development of adventitious roots in Silybum marianum L. (Milk thistle), a medicinal plant. Plant Cell Tissue Organ Cult 123:501–510

    Article  CAS  Google Scholar 

  • Khan MA, Abbasi BH, Ali H, Ali M, Adil M, Hussain I (2015b) Temporal variations in metabolite profiles at different growth phases during somatic embryogenesis of Silybum marianum L. Plant Cell Tissue Organ Cult 120:127–139

    Article  CAS  Google Scholar 

  • Kim Y, Wyslouzil BE, Weathers PJ (2002) Secondary metabolism of hairy root cultures in bioreactors. In Vitro Cell Dev Bio Plant 38:1–10

    Article  CAS  Google Scholar 

  • Kim NC, Graf TN, Sparacino CM, Wani MC, Wall ME (2003) Complete isolation and characterization of silybins and isosilybins from milk thistle (Silybum marianum). Org Biomol Chem 1:1684–1689

    Article  CAS  PubMed  Google Scholar 

  • Kim JH, Baek MH, Chung BY, Wi SG, Kim JS (2004) Alterations in the photosynthetic pigments and antioxidant machineries of red pepper (Capsicum annuum L.) seedlings from gamma-irradiated seeds. J Plant Biol 47:314–321

    Article  CAS  Google Scholar 

  • Lee DYW, Liu YZ (2003) Molecular structure and stereochemistry of silybin A,silybin B, isosilybin A, and isosilybin B, isolated from Silybum marianum (milkthistle). J Nat Prod 66:1171–1174

    Article  CAS  PubMed  Google Scholar 

  • Liu S-Q, Cai Q-G (1990) Callus formation from protoplasts and plant regeneration from tissue culture of Silybum marianum Gaertn. Acta Bot Sin 32(1):19–25

    Google Scholar 

  • Lv Y, Gao S, Xu S, Du G, Zhou J, Chen J (2017a) Spatial organization of silybin biosynthesis in milk thistle [Silybum marianum (L.) Gaertn]. The Plant J 92(6):995–1004

    Article  CAS  PubMed  Google Scholar 

  • Lv Y-W, Rui-Jie W, Lv Y-W, Ze-Shang Y, Wang Y-J (2017b) In vitro propagation of silybum marianum (l.) gaertn. and genetic fidelity assessment of micropropagated plants. Pak J Bot 49(2):673–680

    CAS  Google Scholar 

  • Madrid E, Corchete P (2010) Silymarin secretion and its elicitation by methyl jasmonate in cell cultures of Silybum marianum is mediated by phospholipase D-phosphatidic acid. J Exp Bot 61(3):747–754

    Article  CAS  PubMed  Google Scholar 

  • Manaf HH, Rabie KAE, Abd El-Aal MS (2009) In vitro callus formation and plant regeneration of S. marianum L. Gaertin. Annals Agric Sci Ain Shams Univ 54(2):283–289

    Google Scholar 

  • Manaf HH, Rabie KAE, Ibrahim IS, Eltantawy MEI (2016) Effects of BAP, NAA and NaCl on growth characters and silymarin concentration of Silybum marianum callus. J Biol Chem Environ Sci 11(4):139–151

    Google Scholar 

  • Mittler R, Vanderauwera S, Gollery M, Breusegem FV (2004) Abiotic stress series. Reactive oxygen gene network of plants. Trends Plant Sci 9(10):490–498

    Article  CAS  PubMed  Google Scholar 

  • Montesano M, Brader G, Palva ET (2003) Pathogen derived elicitors: searching for receptors in plants. Mol Plant Pathol 4:73–79

    Article  CAS  PubMed  Google Scholar 

  • Morazzoni P, Bombardelli E (1995) Silybum marianum (Carduus marianum). Fitoterapia 66:3–42

    CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Nikolova MT, Ivancheva SV (2005) Quantitative flavonoid variations of Artemisia vulgaris L. and Veronica chamaedrys L. in relation to altitude and polluted environment. Acta Biol Szeged 49:29–32

    Google Scholar 

  • Owolabi LO, Yupanqui CT, Siripongvutikorn S (2018) Enhancing secondary metabolites (emphasis on phenolics and antioxidants) in plants through elicitation and metabolomics. Pak J Nutr 17:411–420

    Article  Google Scholar 

  • Petrussa E, Braidot E, Zancani M, Peresson C, Bertolini A, Patui S, Vianello A (2013) Plant flavonoids—biosynthesis, transport and involvement in stress responses. Int J Mol Sci 14:14950–14973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poppe L, Petersen M (2016) Variation in the flavonolignan composition of fruits from different Silybum marianum chemotypes and suspension cultures derived therefrom. Phytochemistry 131:68–75

    Article  CAS  PubMed  Google Scholar 

  • Pourjabar A, Mohammadi SA, Ghahramanzadeh R, Gh S (2012) Effect of genotype, explant type and growth regulators on the accumulation of flavonoides of (Silybum marianum L.) in in vitro culture. Int J Biol Biomol Agric Food Biotech Eng 6(7):514–516

    Google Scholar 

  • Pourjabar A, Azimi MR, Mostafaie A, Kahrizi D, Cheghamirza K (2018) Proteome analysis of Milk thistle (Silybum marianum L.) cell suspension cultures in response to methyl jasmonate and yeast extract elicitors. Appl Ecol Environ Res 17(1):547–560

    Article  Google Scholar 

  • Rabie KAE, Abd El-Aal MS, Manaf HH (2010) Enhanced silymarin accumulation as influence of medium composition in cell suspension cultures of Silybum marianum (L.) Gaertin. J of Plant Production 1(2):319–332

    Google Scholar 

  • Rady MR, Matter MA, Ghareeb HA, Hanafy MS, Saker MM, Eid SA, Hammoda FM, Imbaby SI, Nazief NH (2014) In vitro cultures of Silybum marianum and silymarin accumulation. J Genetic Eng Biotechnol 12:75–79

    Article  Google Scholar 

  • Rahimi S, Hasanloo T (2016) The effect of temperature and pH on biomass and bioactive compounds production in Silybum marianum hairy root cultures. Res J Pharm 3(2):53–59

    Google Scholar 

  • Rahimi S, Hasanloo T, Bihamta MR (2010) Enhanced production of silymarin by Ag+ elicitor in cell suspension cultures of Silybum marianum. Pharm Biol 48(6):708–715

    Article  Google Scholar 

  • Rahimi S, Hasanloo T, Najafi F, Khavari-Nejad RA (2011) Enhancement of silymarin accumulation using precursor feeding in Silybum marianum hairy root cultures. Plant Omic J 4(1):34–39

    CAS  Google Scholar 

  • Rahnama H, Hasanloo T, Shams MR, Sepehrifar R (2008) Silymarin production by hairy root culture of Silybum marianum (L.) Gaertn. Iran J Biotechnol 6(2):113–118

    CAS  Google Scholar 

  • Rahnama H, Razi Z, Dadgar MN, Hasanloo T (2013) Enhanced production of flavonolignans in hairy root cultures of Silybum marianum by over-expression of chalcone synthase gene. J Plant Biochem Biotechnol 22(1):138–143

    Article  CAS  Google Scholar 

  • Riasat R, Riasat Z, Abbasi BH, Liu C, Khan MA (2015) Silybum marianum: adventitious roots induction along with free radical scavenging activity. J Plant Bio Res 4(1):12–21

    CAS  Google Scholar 

  • Russo GL, Russo M, Spagnuolo C, Tedesco I, Bilotto S, Iannitti R, Palumbo R (2014) Quercetin a pleiotropic kinase inhibitor against cancer. Cancer Treat Res 159:185–205

    Article  CAS  PubMed  Google Scholar 

  • Sagar SM (2007) Future directions for research on Silybum marianum for cancer patients. Integr Cancer Ther 6:166–173

    Article  CAS  PubMed  Google Scholar 

  • Sanchez-Sampedro MA, Fernandez-Tarrago J, Corchete P (2005a) Enhanced silymarin accumulation is related to calcium deprivation in cell suspension cultures of Silybum marianum (L.) Gaertn. J Plant Physiol 162:1177–1182

    Article  CAS  Google Scholar 

  • Sanchez-Sampedro MA, Fernandez-Tarrago J, Corchete P (2005b) Yeast extract and methyl jasmonate-induced silymarin production in cell cultures of Silybum marianum (L.) Gaertn. J Biotechnol 119(1):60–69

    Article  CAS  PubMed  Google Scholar 

  • Sanchez-Sampedro A, Kim HK, Choi YH, Verpoorte R, Corchete P (2007) Metabolomic alterations in elicitor treated Silybum marianum suspension cultures monitored by nuclear magnetic resonance spectroscopy. J Biotechnol 130:133–142

    Article  CAS  PubMed  Google Scholar 

  • Sathiyabama M, Balasubramanian R (1998) Chitosan induces resistance component in Arachis hipogaea leaf rust caused by Puccinia arachidis. Speg Crop Prot 17:307–313

    Article  CAS  Google Scholar 

  • Schenk RU, Hildebrandt AC (1972) Medium and techniques for induction and growth of monocotyledonous and dicotyledonous plant cell cultures. Can J Bot 50:199–204

    Article  CAS  Google Scholar 

  • Seibert M, Kadkade PG (1980) Environmental factors. A.Light. In: Staba EJ (ed) Plant tissue culture as a source of Biochemicals. CRC Press, Boca Raton, pp 123–141

    Google Scholar 

  • Shah J, Klessig DF (1999) Salicylic acid: signal perception and transduction. In: Libbenga K, Hall M, Hooykaas PJJ (eds) Biochemistry and molecular biology of plant hormones. Elsevier, Oxford, pp 513–541

    Chapter  Google Scholar 

  • Shokrpour M, Mohammadi SA, Moghaddam M, Ziai SA, Javanshir A (2007) Variation in flavonolignan concentration of milk thistle (Silybum marianum) fruits grown in Iran. J Herbs Spices Med Plants 13:55–69

    Article  CAS  Google Scholar 

  • Shualev V, Leon J, Raskin I (1995) Is salicylic acid a translocated signal of systemic acquired resistance in tobacco. Plant Cell 7:1691–1701

    Article  Google Scholar 

  • Sivakumar G, Alagumanian S, Rao MV (2006) High frequency in vitro multiplication of Centella asiatica: an Important Industrial Medicinal Herb. Eng Life Sci 6:597–601

    Article  CAS  Google Scholar 

  • Sivanandhan G, Dev GK, Jeyaraj M, Rajesh M, Arjunan A, Muthuselvam M, Manickavasagam M, Selvaraj N, Ganapathi A (2013) Increased production of withanolide A, withanone, and withaferin A in hairy root cultures of Withania somnifera (L.) Dunal elicited with methyl jasmonate and salicylic acid. Plant Cell Tissue Organ Cult 114:121–129

    Article  CAS  Google Scholar 

  • Tumova L, Gallova K, Rimakova J (2001) Silybum marianum. In vitro. Ceska Slov Farm 53:135–140

    Google Scholar 

  • Tumova L, Gallova K, Rimakova J, Dolezal M, Tuma J (2005) The effect of substituted amides of pyrazine-2-carboxylic acids on flavonolignan production in Silybum marianum culture in vitro. Acta Physiol Plant 27(38):357–362

    Article  CAS  Google Scholar 

  • Tůmová L, Řimáková J, Tůma J, DuÅ¡ek J (2006) Silybum marianum in vitro-flavonolignan production. Plant Soil Environ 52(10):454–458

    Article  Google Scholar 

  • Tůmová L, Tůma J, MeguÅ¡ar K, Doležal M (2010) Substituted pyrazinecarboxamides as abiotic elicitors of flavolignan production in Silybum marianum (L.) Gaertn cultures in vitro. Molecules 15:331–340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tumova L, Tuma J, Dolezal M (2011) Pyrazinecarboxamides as potential elicitors of flavonolignan and flavonoid production in Silybum marianum and Ononis arvensis cultures in vitro. Molecules 16:9142–9152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van Loon LC, Pierpoint WS, Voller T, Conejero V (1994) Recommendations for naming plant pathogenesis related protein. Plant Mol Biol Report 12:245–264

    Article  Google Scholar 

  • Vander P, Varum KM, Domard A, Gueddari NEE, Moerschbacher BM (1998) Comparison of the ability of partially N-acetylated chitosans and chitooligosaccharides to elicit resistance reactions in wheat leaves. Plant Physiol 118:1353–1359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vanisree M, Lee CY, Lo SF, Nalawade SM, Lin CY, Tsay HS (2004) Studies on the production of some important secondary metabolites from medicinal plants by tissue culture. Bot Bull Acad Sin 45:1–22

    CAS  Google Scholar 

  • Vasconsuelo A, Boland R (2007) Molecular aspects of the early stages of elicitation of secondary metabolites in plants. Plant Sci 172:861–875

    Article  CAS  Google Scholar 

  • Vildová A, Hendrychová H, KubeÅ¡ J, Tůmová L (2014) Influence of AgNO3 treatment on the flavonolignan production in cell suspension culture of Silybum marianum (L.) Gaertn. Int J Biol Biomol Agric Food Biotech Eng 8(8):959–962

    Google Scholar 

  • Wi SG, Chung BY, Kim JH, Baek MH, Yang DH, Lee JW, Kim JS (2005) Ultrastructural changes of cell organelles in Arabidopsis stem after gamma irradiation. J Plant Biol 48(2):195–200

    Article  Google Scholar 

  • Yoshikawa T, Furuya T (1987) Saponin production by cultures of Panax ginseng transformed with Agrobacterium rhizogenes. Plant Cell Rep 6:449–453

    CAS  PubMed  Google Scholar 

  • Younas M, Drouet S, Nadeem M, Giglioli-Guivarch N, Hano C, Bilal Haider Abbasi BH (2018) Differential accumulation of silymarin induced by exposure of Silybum marianum L callus cultures to several spectres of monochromatic lights. J Photochem Photobiol B: Biol 184:61–70

    Article  CAS  Google Scholar 

  • Zhang SL, Zhang TZ, Yang SH (2014) Establishment of culture system of Silybum marianum hairy roots and determination of silybin. China J Chinese Mater Med Zhongguo Zhong Yao Za Zhi 39(11):2005–2010

    CAS  Google Scholar 

  • Zhao J, Davis LC, Verpoorte R (2005) elicitor signal transduction leading to production of plant secondary metabolites. Biotechnol Adv 23:283–333

    Article  CAS  PubMed  Google Scholar 

  • Zhao J, Hu Q, Zhu WH (2001) Enhanced catharanthine production in Catharanthus roseus cell cultures by combined elicitor treatment in shake flasks and bioreactors. Enzyme Microb Technol 28:673–681

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rady, M.R. (2019). Plant Biotechnology and Milk Thistle. In: Plant Biotechnology and Medicinal Plants. Springer, Cham. https://doi.org/10.1007/978-3-030-22929-0_2

Download citation

Publish with us

Policies and ethics