Skip to main content

Classes Lm and Their Characterization

  • Chapter
  • First Online:
  • 750 Accesses

Abstract

Selfdecomposable distributions are extensions of stable distributions and form a subclass of the class of infinitely divisible distributions. In this chapter we will introduce, between the class L 0 of selfdecomposable distributions and the class \(\mathfrak {S}\) of stable distributions, a chain of subclasses called L m, m = 1, …, :

$$\displaystyle L_{0}\supset L_{1}\supset L_{2}\supset \cdots \supset L_{\infty }\supset \mathfrak {S}. $$

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    In Loève’s book infinitely divisible distributions are named as infinitely decomposable.

  2. 2.

    The property (1.1) for Z nk is called infinitesimal by Gnedenko and Kolmogorov [26] (1968) and uniformly asymptotically negligible by Loève [58] (1977, 1978). Chung [19] (1974) uses the word holospoudic double array. We follow Feller [24] (1971) in using the word “null array”.

  3. 3.

    The proof of Proposition 1.22 uses Lévy– Khintchine representation in Theorem 1.28. But Theorem 1.28 is shown independently of the theory of stable distributions.

  4. 4.

    This definition of α-stability and strict α-stability is slightly different from that of [93], where trivial distributions do not have index in stability and δ 0 does not have index in strict stability. Thus neither (1.9) nor (1.10) is true if \(\mathfrak {S}_{\alpha }\) and \(\mathfrak {S}_{\alpha }^0\) are, respectively, the classes of α-stable and strictly α-stable distributions in the sense of [93].

  5. 5.

    We say that a statement S(ω) involving ω is true almost surely (or a.s.) if there is \(\Omega _0\in \mathcal {F}\) with P[ Ω0] = 1 such that S(ω) is true for all ω ∈ Ω0.

  6. 6.

    Cone-parameter Lévy processes in Chap. 4 do not have these properties (see Example 4.36).

  7. 7.

    If \(\mu \in \mathfrak {S}_{\alpha }\) with 1 < α < 2, then ∫|x|>1|x|ν(dx) < , which is shown by (1.40). For any μ ∈ ID, ∫|x|>1|x|ν(dx) <  and \(\int _{\mathbb {R}^d} |x|\mu (dx)<\infty \) are equivalent and, in this case, \(\int _{\mathbb {R}^d} x\mu (dx)=\gamma +\int _{|x|>1} x\nu (dx)\) ([93] Example 25.12).

References

  1. Akita, K., & Maejima, M. (2002). On certain self-decomposable self-similar processes with independent increments. Statistics & Probability Letters, 59, 53–59.

    Google Scholar 

  2. Barndorff-Nielsen, O. E. , Pedersen, J., & Sato, K. (2001). Multivariate subordination, selfdecomposability and stability. Advances in Applied Probability, 33, 160–187.

    Google Scholar 

  3. Bertoin, J. (1996). Lévy processes. Cambridge: Cambridge University Press.

    Google Scholar 

  4. Chung, K. L. (1974). A course in probability theory (2nd ed.). Orlando, FL: Academic Press.

    Google Scholar 

  5. Feller, W. (1971). An introduction to probability theory and its applications (2nd ed., Vol. 2). New York: Wiley.

    Google Scholar 

  6. Gnedenko, B. V., & Kolmogorov, A. N. (1968). Limit distributions for sums of independent random variables (2nd ed.). Reading, MA: Addison-Wesley (Russian original 1949).

    Google Scholar 

  7. Hartman, P., & Wintner, A. (1942). On the infinitesimal generators of integral convolutions. American Journal of Mathematics, 64, 273–298.

    Google Scholar 

  8. Khintchine, A. Ya. (1938). Limit laws for sums of independent random variables. Moscow: ONTI (in Russian).

    Google Scholar 

  9. Kumar, A., & Schreiber, B. M. (1978). Characterization of subclasses of class L probability distributions. Annals of Probability, 6, 279–293.

    Google Scholar 

  10. Kumar, A., & Schreiber, B. M. (1979). Representation of certain infinitely divisible probability measures on Banach spaces. Journal of Multivariate Analysis, 9, 288–303.

    Google Scholar 

  11. Lévy, P. (1937). Théorie de l’Addition des Variables Aléatoires. Paris: Gauthier-Villars. (2éd. 1954).

    Google Scholar 

  12. Linnik, J. V., & Ostrovskii, I. V. (1977). Decomposition of random variables and vectors. Providence, RI: American Mathematical Society.

    Google Scholar 

  13. Loève, M. (1977, 1978). Probability theory (4th ed., Vols. I and II). New York: Springer (1st ed., 1955).

    Google Scholar 

  14. Maejima, M., & Sato, K. (2003). Semi-Lévy processes, semi-selfsimilar additive processes, and semi-stationary Ornstein–Uhlenbeck type processes. Journal of Mathematics of Kyoto University, 43, 609–639.

    Google Scholar 

  15. Maejima, M., & Ueda, Y. (2009). Stochastic integral characterizations of semi-selfdecomposable distributions and related Ornstein–Uhlenbeck type processes. Communications on Stochastic Analysis, 3, 349–367.

    Google Scholar 

  16. Orey, S. (1968). On continuity properties of infinitely divisible distribution functions. Annals of Mathematical Statistics, 39, 936–937.

    Article  MathSciNet  Google Scholar 

  17. Sato, K. (1980). Class L of multivariate distributions and its subclasses. Journal of Multivariate Analysis, 10, 207–232.

    Article  MathSciNet  Google Scholar 

  18. Sato, K. (1982). Absolute continuity of multivariate distributions of class L. Journal of Multivariate Analysis, 12, 89–94.

    Article  MathSciNet  Google Scholar 

  19. Sato, K. (1994). Time evolution of distributions of Lévy processes from continuous singular to absolutely continuous. Research Bulletin, College of General Education, Nagoya University, Series B, 38, 1–11.

    Google Scholar 

  20. Sato, K. (1997). Time evolution of Lévy processes. In N. Kono & N.-R. Shieh (Eds.), Trends in Probability and Related Analysis, Proceedings SAP’96 (pp. 35–82). Singapore: World Scientific.

    Google Scholar 

  21. Sato, K. (1999). Lévy processes and infinitely divisible distributions. Cambridge: Cambridge University Press.

    Google Scholar 

  22. Sato, K. (2001b). Basic results on Lévy processes. In O. E. Barndorff-Nielsen, T. Mikosch & S. I. Resnick (Eds.), Lévy processes, theory and applications (pp. 3–37). Boston: Birkhäuser.

    Google Scholar 

  23. Sato, K. (2010). Fractional integrals and extensions of selfdecomposability. In Lévy matters I. Lecture notes in mathematics (Vol. 2001, pp. 1–91). Cham: Springer.

    Google Scholar 

  24. Sato, K. (2013). Lévy processes and infinitely divisible distributions (Revised ed.). Cambridge: Cambridge University Press.

    Google Scholar 

  25. Sato, K., & Yamazato, M. (1978). On distribution functions of class L. Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete, 43, 273–308.

    Google Scholar 

  26. Thu, N. V. (1979). Multiply self-decomposable probability measures on Banach spaces. Studia Mathematica, 66, 161–175.

    Article  MathSciNet  Google Scholar 

  27. Tucker, H. G. (1965). On a necessary and sufficient condition that an infinitely divisible distribution be absolutely continuous. Transactions of the American Mathematical Society, 118, 316–330.

    Article  MathSciNet  Google Scholar 

  28. Urbanik, K. (1972b). Slowly varying sequences of random variables. Bulletin L’Académie Polonaise des Science, Série des Sciences Mathématiques, Astronomiques et Physiques, 20, 679–682.

    Google Scholar 

  29. Urbanik, K. (1973). Limit laws for sequences of normed sums satisfying some stability conditions. In P. R. Krishnaiah (Ed.) Multivariate analysis-III (pp. 225–237). New York: Academic Press.

    Chapter  Google Scholar 

  30. Watanabe, T. (1999). On Bessel transforms of multimodal increasing Lévy processes. Japanese Journal of Mathematics, 25, 227–256.

    Article  MathSciNet  Google Scholar 

  31. Watanabe, T. (2000). Absolute continuity of some semi-selfdecomposable distributions and self-similar measures. Probability Theory and Related Fields, 117, 387–405.

    Article  MathSciNet  Google Scholar 

  32. Watanabe, T. (2001). Temporal change in distributional properties of Lévy processes. In O. E. Barndorff-Nielsen, T. Mikosch & S. I. Resnick (Eds.), Lévy processes, theory and applications (pp. 89–107). Boston: Birkhäuser.

    Google Scholar 

  33. Widder, D. V. (1946). The Laplace transform. Princeton, NJ: Princeton University Press.

    Google Scholar 

  34. Yamazato, M. (1978). Unimodality of infinitely divisible distribution functions of class L. Annals of Probability, 6, 523–531.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rocha-Arteaga, A., Sato, Ki. (2019). Classes Lm and Their Characterization. In: Topics in Infinitely Divisible Distributions and Lévy Processes, Revised Edition. SpringerBriefs in Probability and Mathematical Statistics. Springer, Cham. https://doi.org/10.1007/978-3-030-22700-5_1

Download citation

Publish with us

Policies and ethics