Skip to main content

Simulated Annealing Approach to Verify Vertex Adjacencies in the Traveling Salesperson Polytope

  • Conference paper
  • First Online:
Mathematical Optimization Theory and Operations Research (MOTOR 2019)

Abstract

We consider 1-skeletons of the symmetric and asymmetric traveling salesperson polytopes whose vertices are all possible Hamiltonian tours in the complete directed or undirected graph, and the edges are geometric edges or one-dimensional faces of the polytope. It is known that the question whether two vertices of the symmetric or asymmetric traveling salesperson polytopes are nonadjacent is NP-complete. A sufficient condition for nonadjacency can be formulated as a combinatorial problem: if from the edges of two Hamiltonian tours we can construct two complementary Hamiltonian tours, then the corresponding vertices of the traveling salesperson polytope are not adjacent. We consider a heuristic simulated annealing approach to solve this problem. It is based on finding a vertex-disjoint cycle cover and a perfect matching. The algorithm has a one-sided error: the answer “not adjacent” is always correct, and was tested on random and pyramidal Hamiltonian tours.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ageev, A.A., Pyatkin, A.V.: A 2-approximation algorithm for the metric 2-peripatetic salesman problem. In: Kaklamanis, C., Skutella, M. (eds.) WAOA 2007. LNCS, vol. 4927, pp. 103–115. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-77918-6_9

    Chapter  MATH  Google Scholar 

  2. Aguilera, N.E., Katz, R.D., Tolomei, P.B.: Vertex adjacencies in the set covering polyhedron. Discrete Appl. Math. 218, 40–56 (2017). https://doi.org/10.1016/j.dam.2016.10.024

    Article  MathSciNet  MATH  Google Scholar 

  3. Arthanari, T.S.: On pedigree polytopes and Hamiltonian cycles. Discrete Math. 306(14), 1474–1492 (2006). https://doi.org/10.1016/j.disc.2005.11.030

    Article  MathSciNet  MATH  Google Scholar 

  4. Balinski, M.L.: Signature methods for the assignment problem. Oper. Res. 33(3), 527–536 (1985). https://doi.org/10.1287/opre.33.3.527

    Article  MathSciNet  MATH  Google Scholar 

  5. Baburin, A.E., Della Croce, F., Gimadi, E.K., Glazkov, Y.V., Paschos, V.Th.: Approximation algorithms for the 2-peripatetic salesman problem with edge weights 1 and 2. Discrete Appl. Math. 157, 1988–1992 (2009). https://doi.org/10.1016/j.dam.2008.06.025

    Article  MathSciNet  Google Scholar 

  6. Bondarenko, V.A.: Nonpolynomial lower bounds for the complexity of the traveling salesman problem in a class of algorithms. Autom. Rem. Contr. 44, 1137–1142 (1983)

    MathSciNet  MATH  Google Scholar 

  7. Bondarenko, V.A., Maksimenko, A.N.: Geometricheskie konstruktsii i slozhnost’ v kombinatornoy optimizatsii (Geometric constructions and complexity in combinatorial optimization), LKI, Moscow (2008). (in Russian)

    Google Scholar 

  8. Bondarenko, V.A., Nikolaev, A.V.: On graphs of the cone decompositions for the min-cut and max-cut problems. Int. J. Math. Sci. 2016 (2016). Article ID 7863650, 6 p. https://doi.org/10.1155/2016/7863650

    Article  MathSciNet  Google Scholar 

  9. Bondarenko, V.A., Nikolaev, A.V.: Some properties of the skeleton of the pyramidal tours polytope. Electron. Notes Discrete Math. 61, 131–137 (2017). https://doi.org/10.1016/j.endm.2017.06.030

    Article  MATH  Google Scholar 

  10. Bondarenko, V.A., Nikolaev, A.V.: On the skeleton of the polytope of pyramidal tours. J. Appl. Ind. Math. 12, 9–18 (2018). https://doi.org/10.1134/S1990478918010027

    Article  MathSciNet  MATH  Google Scholar 

  11. Chegireddy, C.R., Hamacher, H.W.: Algorithms for finding K-best perfect matchings. Discrete Appl. Math. 18, 155–165 (1987). https://doi.org/10.1016/0166-218X(87)90017-5

    Article  MathSciNet  MATH  Google Scholar 

  12. Christof, T., Reinelt, G.: Decomposition and parallelization techniques for enumerating the facets of combinatorial polytopes. Int. J. Comput. Geom. Appl. 11, 423–437 (2001). https://doi.org/10.1142/S0218195901000560

    Article  MathSciNet  MATH  Google Scholar 

  13. Combarro, E.F., Miranda, P.: Adjacency on the order polytope with applications to the theory of fuzzy measures. Fuzzy Set. Syst. 161, 619–641 (2010). https://doi.org/10.1016/j.fss.2009.05.004

    Article  MathSciNet  MATH  Google Scholar 

  14. De Kort, J.B.J.M.: Bounds for the symmetric 2-peripatetic salesman problem. Optim. 23, 357–367 (1992). https://doi.org/10.1080/02331939208843770

    Article  MathSciNet  MATH  Google Scholar 

  15. Edmonds, J.: Paths, trees, and flowers. Can. J. Math. 17, 449–467 (1965). https://doi.org/10.4153/CJM-1965-045-4

    Article  MathSciNet  MATH  Google Scholar 

  16. Fiorini, S., Massar, S., Pokutta, S., Tiwary, H.R., De Wolf, R.: Exponential lower bounds for polytopes in combinatorial optimization. J. ACM 62 (2015). Article No. 17. https://doi.org/10.1145/2716307

    Article  MathSciNet  Google Scholar 

  17. Gabow, H.N.: Two algorithms for generating weighted spanning trees in order. SIAM J. Comput. 6, 139–150 (1977). https://doi.org/10.1137/0206011

    Article  MathSciNet  MATH  Google Scholar 

  18. Glebov, A.N., Zambalaeva, D.Z.: A polynomial algorithm with approximation ratio 7/9 for the maximum two peripatetic salesmen problem. J. Appl. Ind. Math. 6, 69–89 (2012). https://doi.org/10.1134/S1990478912010085

    Article  MathSciNet  Google Scholar 

  19. Grötschel, M., Padberg, M.: Polyhedral theory. In: Lawler, E., Lenstra, J.K., Rinnooy Kan, A., Shmoys, D. (eds.) The Traveling Salesman Problem: A Guided Tour of Combinatorial Optimization, pp. 251–305. Wiley, Chichester (1985)

    Google Scholar 

  20. Hopcroft, J.E., Karp, R.M.: An \(n^{5/2}\) algorithm for maximum matchings in bipartite graphs. SIAM J. Comp. 2(4), 225–231 (1973). https://doi.org/10.1137/0202019

    Article  MathSciNet  MATH  Google Scholar 

  21. Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated annealing. Science 220(4598), 671–680 (1983). https://doi.org/10.1126/science.220.4598.671

    Article  MathSciNet  MATH  Google Scholar 

  22. Kozlova, A.P., Nikolaev, A.V.: Proverka smezhnosti vershin mnogogrannika zadachi kommivoyazhyora (Verification of vertex adjacency in the traveling salesperson polytope). Zametki po informatike i matematike (Notes on Computer Science and Mathematics) 10, 51–58 (2018). (in Russian)

    Google Scholar 

  23. Kühn, D., Osthus, D.: Hamilton decompositions of regular expanders: a proof of Kelly’s conjecture for large tournaments. Adv. Math. 237, 62–146 (2013). https://doi.org/10.1016/j.aim.2013.01.005

    Article  MathSciNet  MATH  Google Scholar 

  24. Micali, S., Vazirani, V.V.: An \(O({\sqrt{|V|}}\cdot |E|)\) algorithm for finding maximum matching in general graphs. In: Proceedings of the 21st IEEE Symposium on Foundations of Computer Science, pp. 17–27 (1980). https://doi.org/10.1109/SFCS.1980.12

  25. Padberg, M.W., Rao, M.R.: The travelling salesman problem and a class of polyhedra of diameter two. Math. Program. 7(1), 32–45 (1974). https://doi.org/10.1007/BF01585502

    Article  MathSciNet  MATH  Google Scholar 

  26. Papadimitriou, C.H.: The adjacency relation on the traveling salesman polytope is NP-Complete. Math. Program. 14, 312–324 (1978). https://doi.org/10.1007/BF01588973

    Article  MathSciNet  MATH  Google Scholar 

  27. Rao, M.R.: Adjacency of the traveling salesman tours and 0-1 vertices. SIAM J. Appl. Math. 30, 191–198 (1976). https://doi.org/10.1137/0130021

    Article  MathSciNet  MATH  Google Scholar 

  28. Rispoli, F.J., Cosares, S.: A bound of \(4\) for the diameter of the symmetric traveling salesman polytope. SIAM J. Discrete Math. 11(3), 373–380 (1998). https://doi.org/10.1137/S0895480196312462

    Article  MathSciNet  MATH  Google Scholar 

  29. Sierksma, G.: The skeleton of the symmetric traveling salesman polytope. Discrete Appl. Math. 43, 63–74 (1993). https://doi.org/10.1016/0166-218X(93)90169-O

    Article  MathSciNet  MATH  Google Scholar 

  30. Tutte, W.T.: A short proof of the factor theorem for finite graphs. Can. J. Math. 6, 347–352 (1954). https://doi.org/10.4153/CJM-1954-033-3

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The research is supported by the grant of the President of the Russian Federation MK-2620.2018.1 (agreement no. 075-015-2019-746).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrei Nikolaev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kozlova, A., Nikolaev, A. (2019). Simulated Annealing Approach to Verify Vertex Adjacencies in the Traveling Salesperson Polytope. In: Khachay, M., Kochetov, Y., Pardalos, P. (eds) Mathematical Optimization Theory and Operations Research. MOTOR 2019. Lecture Notes in Computer Science(), vol 11548. Springer, Cham. https://doi.org/10.1007/978-3-030-22629-9_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-22629-9_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-22628-2

  • Online ISBN: 978-3-030-22629-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics