Skip to main content

On \((1+\varepsilon )\)-approximate Data Reduction for the Rural Postman Problem

  • Conference paper
  • First Online:
Book cover Mathematical Optimization Theory and Operations Research (MOTOR 2019)

Abstract

Given a graph \(G=(V,E)\) with edge weights and a subset \(R\subseteq E\) of required edges, the NP-hard Rural Postman Problem (RPP) is to find a closed walk of minimum total weight containing all edges of R. The number b of vertices incident to an odd number of edges of R and the number c of connected components formed by the edges in R are both bounded from above by the number of edges that has to be traversed additionally to the required ones. We show how to reduce any RPP instance I to an RPP instance \(I'\) with \(2b+O(c/\varepsilon )\) vertices in \(O(n^3)\) time so that any \(\alpha \)-approximate solution for \(I'\) gives an \(\alpha (1+\varepsilon )\)-approximate solution for I, for any \(\alpha \ge 1\) and \(\varepsilon >0\). That is, we provide a polynomial-size approximate kernelization scheme (PSAKS). We make first steps towards a PSAKS with respect to the parameter c.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    All omitted proofs can be found in the full version of this paper, available on arXiv: https://arxiv.org/abs/1812.10131.

  2. 2.

    That is, \(T_i\) is the folklore 2-approximation of a Steiner tree with terminals \(B_i\) in \(G\langle R_i\rangle \).

References

  1. Belenguer, J.M., Benavent, E., Lacomme, P., Prins, C.: Lower and upper bounds for the mixed capacitated arc routing problem. Comput. Oper. Res. 33(12), 3363–3383 (2006)

    Article  MathSciNet  Google Scholar 

  2. van Bevern, R., Fluschnik, T., Tsidulko, O.Yu.: Parameterized algorithms and data reduction for safe convoy routing. In: Proceedings of 18th ATMOS, OASIcs, vol. 65, pp. 10:1–10:19. Schloss Dagstuhl-Leibniz-Zentrum für Informatik (2018)

    Google Scholar 

  3. van Bevern, R., Hartung, S., Nichterlein, A., Sorge, M.: Constant-factor approximations for capacitated arc routing without triangle inequality. Oper. Res. Lett. 42(4), 290–292 (2014)

    Article  MathSciNet  Google Scholar 

  4. van Bevern, R., Komusiewicz, C., Sorge, M.: A parameterized approximation algorithm for the mixed and windy capacitated arc routing problem: theory and experiments. Networks 70(3), 262–278 (2017)

    Article  MathSciNet  Google Scholar 

  5. van Bevern, R., Niedermeier, R., Sorge, M., Weller, M.: Complexity of arc routing problems. In: Arc Routing: Problems, Methods, and Applications, MOS-SIAM Series on Optimization, vol. 20. SIAM (2014)

    Google Scholar 

  6. Brandão, J., Eglese, R.: A deterministic tabu search algorithm for the capacitated arc routing problem. Comput. Oper. Res. 35(4), 1112–1126 (2008)

    Article  MathSciNet  Google Scholar 

  7. Corberán, Á., Laporte, G. (eds.): Arc Routing: Problems, Methods, and Applications. SIAM, Philadelphia (2014)

    MATH  Google Scholar 

  8. Cygan, M., et al.: Parameterized Algorithms. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21275-3

    Book  MATH  Google Scholar 

  9. Dorn, F., Moser, H., Niedermeier, R., Weller, M.: Efficient algorithms for Eulerian extension and Rural Postman. SIAM J. Discrete Math. 27(1), 75–94 (2013)

    Article  MathSciNet  Google Scholar 

  10. Edmonds, J., Johnson, E.L.: Matching, Euler tours and the Chinese postman. Math. Program. 5, 88–124 (1973)

    Article  MathSciNet  Google Scholar 

  11. Eiben, E., Hermelin, D., Ramanujan, M.S.: Lossy kernels for hitting subgraphs. In: Proceedings of 42nd MFCS, LIPIcs, vol. 83, pp. 67:1–67:14. Schloss Dagstuhl-Leibniz-Zentrum für Informatik, Dagstuhl (2017)

    Google Scholar 

  12. Eiben, E., Kumar, M., Mouawad, A.E., Panolan, F., Siebertz, S.: Lossy kernels for connected dominating set on sparse graphs. In: Proceedings of 35th STACS, LIPIcs, vol. 96, pp. 29:1–29:15. Schloss Dagstuhl-Leibniz-Zentrum für Informatik (2018)

    Google Scholar 

  13. Eiselt, H.A., Gendreau, M., Laporte, G.: Arc routing problems, Part II: The Rural Postman Problem. Oper. Res. 43(3), 399–414 (1995)

    Article  Google Scholar 

  14. Etscheid, M., Kratsch, S., Mnich, M., Röglin, H.: Polynomial kernels for weighted problems. J. Comput. Syst. Sci. 84, 1–10 (2017)

    Article  MathSciNet  Google Scholar 

  15. Fellows, M.R., Kulik, A., Rosamond, F.A., Shachnai, H.: Parameterized approximation via fidelity preserving transformations. J. Comput. Syst. Sci. 93, 30–40 (2018)

    Article  MathSciNet  Google Scholar 

  16. Frank, A., Tardos, É.: An application of simultaneous diophantine approximation in combinatorial optimization. Combinatorica 7(1), 49–65 (1987)

    Article  MathSciNet  Google Scholar 

  17. Ghiani, G., Improta, G.: The laser-plotter beam routing problem. J. Oper. Res. Soc. 52(8), 945–951 (2001)

    Article  Google Scholar 

  18. Ghiani, G., Laporte, G.: Eulerian location problems. Networks 34(4), 291–302 (1999)

    Article  MathSciNet  Google Scholar 

  19. Golden, B.L., Wong, R.T.: Capacitated arc routing problems. Networks 11(3), 305–315 (1981)

    Article  MathSciNet  Google Scholar 

  20. Grötschel, M., Jünger, M., Reinelt, G.: Optimal control of plotting and drilling machines: a case study. Z. Oper. Res. 35(1), 61–84 (1991)

    MATH  Google Scholar 

  21. Guo, J., Niedermeier, R.: Invitation to data reduction and problem kernelization. ACM SIGACT News 38(1), 31–45 (2007)

    Article  Google Scholar 

  22. Gutin, G., Wahlström, M., Yeo, A.: Rural Postman parameterized by the number of components of required edges. J. Comput. Syst. Sci. 83(1), 121–131 (2017)

    Article  MathSciNet  Google Scholar 

  23. Hermelin, D., Kratsch, S., Sołtys, K., Wahlström, M., Wu, X.: A completeness theory for polynomial (Turing) kernelization. Algorithmica 71(3), 702–730 (2015)

    Article  MathSciNet  Google Scholar 

  24. Jansen, K.: Bounds for the general capacitated routing problem. Networks 23(3), 165–173 (1993)

    Article  MathSciNet  Google Scholar 

  25. Karpinski, M., Lampis, M., Schmied, R.: New inapproximability bounds for TSP. J. Comput. Syst. Sci. 81(8), 1665–1677 (2015)

    Article  MathSciNet  Google Scholar 

  26. Kratsch, S.: Recent developments in kernelization: A survey. Bull. EATCS 113 (2014)

    Google Scholar 

  27. Krithika, R., Majumdar, D., Raman, V.: Revisiting connected vertex cover: FPT algorithms and lossy kernels. Theor. Comput. Syst. 62(8), 1690–1714 (2018)

    Article  MathSciNet  Google Scholar 

  28. Krithika, R., Misra, P., Rai, A., Tale, P.: Lossy kernels for graph contraction problems. In: Proceedings 36th FSTTCS, LIPIcs, vol. 65, pp. 23:1–23:14. Schloss Dagstuhl-Leibniz-Zentrum für Informatik, Dagstuhl (2016)

    Google Scholar 

  29. Lokshtanov, D., Panolan, F., Ramanujan, M.S., Saurabh, S.: Lossy kernelization. In: Proceedings 49th STOC, pp. 224–237. ACM (2017)

    Google Scholar 

  30. Marx, D., Végh, L.A.: Fixed-parameter algorithms for minimum-cost edge-connectivity augmentation. ACM Trans. Algorithms 11(4), 27:1–27:24 (2015)

    Article  MathSciNet  Google Scholar 

  31. Orloff, C.S.: A fundamental problem in vehicle routing. Networks 4(1), 35–64 (1974)

    Article  MathSciNet  Google Scholar 

  32. Sorge, M., van Bevern, R., Niedermeier, R., Weller, M.: From few components to an Eulerian graph by adding arcs. In: Kolman, P., Kratochvíl, J. (eds.) WG 2011. LNCS, vol. 6986, pp. 307–318. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25870-1_28

    Chapter  MATH  Google Scholar 

  33. Sorge, M., van Bevern, R., Niedermeier, R., Weller, M.: A new view on Rural Postman based on Eulerian extension and matching. J. Discrete Algorithms 16, 12–33 (2012)

    Article  MathSciNet  Google Scholar 

  34. Ulusoy, G.: The fleet size and mix problem for capacitated arc routing. Eur. J. Oper. Res. 22(3), 329–337 (1985)

    Article  MathSciNet  Google Scholar 

  35. Wøhlk, S.: An approximation algorithm for the capacitated arc routing problem. Open Oper. Res. J. 2, 8–12 (2008)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

René van Bevern and Oxana Yu. Tsidulko are supported by the Russian Foundation for Basic Research, project 18-501-12031 NNIO_a, and by the Ministry of Science and Higher Education of the Russian Federation under the 5-100 Excellence Programme. Till Fluschnik is supported by the German Research Foundation, project TORE (NI 369/18).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to René van Bevern .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

van Bevern, R., Fluschnik, T., Tsidulko, O.Y. (2019). On \((1+\varepsilon )\)-approximate Data Reduction for the Rural Postman Problem. In: Khachay, M., Kochetov, Y., Pardalos, P. (eds) Mathematical Optimization Theory and Operations Research. MOTOR 2019. Lecture Notes in Computer Science(), vol 11548. Springer, Cham. https://doi.org/10.1007/978-3-030-22629-9_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-22629-9_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-22628-2

  • Online ISBN: 978-3-030-22629-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics