Skip to main content

On Vertex Adjacencies in the Polytope of Pyramidal Tours with Step-Backs

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11548))

Abstract

We consider the traveling salesperson problem in a directed graph. The pyramidal tours with step-backs are a special class of Hamiltonian tours for which the traveling salesperson problem is solved by dynamic programming in polynomial time. The polytope of pyramidal tours with step-backs \(\mathrm{{PSB}}(n)\) is defined as the convex hull of the characteristic vectors of all possible pyramidal tours with step-backs in a complete directed graph. The skeleton of \({\mathrm{{PSB}}} (n)\) is the graph whose vertex set is the vertex set of \({\mathrm{{PSB}}} (n)\) and the edge set is the set of geometric edges or one-dimensional faces of \({\mathrm{{PSB}}} (n)\). The main result of the paper is a necessary and sufficient condition for vertex adjacencies in the skeleton of the polytope \({\mathrm{{PSB}}} (n)\) that can be verified in polynomial time.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Aguilera, N.E., Katz, R.D., Tolomei, P.B.: Vertex adjacencies in the set covering polyhedron. Discrete Appl. Math. 218, 40–56 (2017). https://doi.org/10.1016/j.dam.2016.10.024

    Article  MathSciNet  MATH  Google Scholar 

  2. Arthanari, T.S.: Study of the pedigree polytope and a sufficiency condition for nonadjacency in the tour polytope. Discrete Optim. 10(3), 224–232 (2013). https://doi.org/10.1016/j.disopt.2013.07.001

    Article  MathSciNet  MATH  Google Scholar 

  3. Balinski, M.L.: Signature methods for the assignment problem. Oper. Res. 33(3), 527–536 (1985). https://doi.org/10.1287/opre.33.3.527

    Article  MathSciNet  MATH  Google Scholar 

  4. Bondarenko, V.A., Maksimenko, A.N.: Geometricheskie konstruktsii i slozhnost’ v kombinatornoy optimizatsii (Geometric constructions and complexity in combinatorial optimization). LKI, Moscow (2008). [in Russian]

    Google Scholar 

  5. Bondarenko, V.A., Nikolaev, A.V.: On graphs of the cone decompositions for the min-cut and max-cut problems. Int. J. Math. Sci. 2016 (2016). Article ID 7863650, 6 p. https://doi.org/10.1155/2016/7863650

    Article  MathSciNet  Google Scholar 

  6. Bondarenko, V.A., Nikolaev, A.V.: Some properties of the skeleton of the pyramidal tours polytope. Electron. Notes Discrete Math. 61, 131–137 (2017). https://doi.org/10.1016/j.endm.2017.06.030

    Article  MATH  Google Scholar 

  7. Bondarenko, V.A., Nikolaev, A.V.: On the skeleton of the polytope of pyramidal tours. J. Appl. Ind. Math. 12, 9–18 (2018). https://doi.org/10.1134/S1990478918010027

    Article  MathSciNet  MATH  Google Scholar 

  8. Bondarenko, V.A., Nikolaev, A.V., Shovgenov, D.A.: 1-skeletons of the spanning tree problems with additional constraints. Autom. Control Comput. Sci. 51(7), 682–688 (2017). https://doi.org/10.3103/s0146411617070033

    Article  Google Scholar 

  9. Bondarenko, V.A., Nikolaev, A.V., Shovgenov, D.A.: Polyhedral characteristics of balanced and unbalanced bipartite subgraph problems. Autom. Control Comput. Sci. 51(7), 576–585 (2017). https://doi.org/10.3103/s0146411617070276

    Article  Google Scholar 

  10. Chegireddy, C.R., Hamacher, H.W.: Algorithms for finding K-best perfect matchings. Discrete Appl. Math. 18, 155–165 (1987). https://doi.org/10.1016/0166-218X(87)90017-5

    Article  MathSciNet  MATH  Google Scholar 

  11. Combarro, E.F., Miranda, P.: Adjacency on the order polytope with applications to the theory of fuzzy measures. Fuzzy Sets Syst. 161, 619–641 (2010). https://doi.org/10.1016/j.fss.2009.05.004

    Article  MathSciNet  MATH  Google Scholar 

  12. Enomoto, H., Oda, Y., Ota, K.: Pyramidal tours with step-backs and the asymmetric traveling salesman problem. Discrete Appl. Math. 87, 57–65 (1998). https://doi.org/10.1016/S0166-218X(98)00048-1

    Article  MathSciNet  MATH  Google Scholar 

  13. Gabow, H.N.: Two algorithms for generating weighted spanning trees in order. SIAM J. Comput. 6, 139–150 (1977). https://doi.org/10.1137/0206011

    Article  MathSciNet  MATH  Google Scholar 

  14. Gilmore, P.C., Lawler, E.L., Shmoys, D.B.: Well-solved special cases. In: Lawler, E., Lenstra, J.K., Rinnooy Kan, A., Shmoys, D. (eds.) The Traveling Salesman Problem: A Guided Tour of Combinatorial Optimization, pp. 87–143. Wiley, Chichester (1985)

    Google Scholar 

  15. Grötschel, M., Padberg, M.: Polyhedral theory. In: Lawler, E., Lenstra, J.K., Rinnooy Kan, A., Shmoys, D. (eds.) The Traveling Salesman Problem: A Guided Tour of Combinatorial Optimization, pp. 251–305. Wiley, Chichester (1985)

    Google Scholar 

  16. Khachay, M., Neznakhina, K.: Generalized pyramidal tours for the generalized traveling salesman problem. In: Gao, X., Du, H., Han, M. (eds.) COCOA 2017. LNCS, vol. 10627, pp. 265–277. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-71150-8_23

    Chapter  Google Scholar 

  17. Matsui, T.: NP-completeness of non-adjacency relations on some 0–1 polytopes. In: Proceedings of ISORA 1995. Lecture Notes in Operations Research, vol. 1, pp. 249–258 (1995)

    Google Scholar 

  18. Oda, Y.: An asymmetric analogue of van der Veen conditions and the traveling salesman problem. Discrete Appl. Math. 109, 279–292 (2001). https://doi.org/10.1016/S0166-218X(00)00273-0

    Article  MathSciNet  MATH  Google Scholar 

  19. Papadimitriou, C.H.: The adjacency relation on the traveling salesman polytope is NP-Complete. Math. Program. 14, 312–324 (1978). https://doi.org/10.1007/BF01588973

    Article  MathSciNet  MATH  Google Scholar 

  20. Sierksma, G.: The skeleton of the symmetric traveling salesman polytope. Discrete Appl. Math. 43, 63–74 (1993). https://doi.org/10.1016/0166-218X(93)90169-O

    Article  MathSciNet  MATH  Google Scholar 

  21. Sierksma, G., Teunter, R.H., Tijssen, G.A.: Faces of diameter two on the Hamiltonian cycle polytype. Oper. Res. Lett. 18(2), 59–64 (1995). https://doi.org/10.1016/0167-6377(95)00035-6

    Article  MathSciNet  MATH  Google Scholar 

  22. Simanchev, R.Yu.: On the vertex adjacency in a polytope of connected k-factors. Trudy Inst. Mat. i Mekh. UrO RAN 24(2), 235–242 (2018). https://doi.org/10.21538/0134-4889-2018-24-2-235-242

    Article  Google Scholar 

Download references

Acknowledgments

The research is supported by the grant of the President of the Russian Federation MK-2620.2018.1 (agreement no. 075-015-2019-746).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrei Nikolaev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nikolaev, A. (2019). On Vertex Adjacencies in the Polytope of Pyramidal Tours with Step-Backs. In: Khachay, M., Kochetov, Y., Pardalos, P. (eds) Mathematical Optimization Theory and Operations Research. MOTOR 2019. Lecture Notes in Computer Science(), vol 11548. Springer, Cham. https://doi.org/10.1007/978-3-030-22629-9_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-22629-9_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-22628-2

  • Online ISBN: 978-3-030-22629-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics