Skip to main content

Inland Waterway Efficiency Through Skipper Collaboration and Joint Speed Optimization

  • Conference paper
  • First Online:
Mathematical Optimization Theory and Operations Research (MOTOR 2019)

Abstract

We address the problem of minimizing the aggregated fuel consumption by the vessels in an inland waterway (a river) with a single lock. The fuel consumption of a vessel depends on its velocity and the slower it moves, the less fuel it consumes. Given entry times of the vessels into the waterway and the deadlines before which they need to leave the waterway, we decide on optimal velocities of the vessels that minimize their private fuel consumption. Presence of the lock and possible congestions on the waterway make the problem computationally challenging. First, we prove that in general Nash equilibria might not exist, i.e., if there is no supervision on the vessels velocities, there might not exist a strategy profile from which no vessel can unilaterally deviate to decrease its private fuel consumption. Next, we introduce simple supervision methods to guarantee existence of Nash equilibria. Unfortunately, though a Nash equilibrium can be computed, the aggregated fuel consumption of such a stable solution is high compared to the consumption in a social optimum, where the total fuel consumption is minimized. Therefore, we propose a mechanism involving payments between vessels, guaranteeing Nash equilibria while minimizing the fuel consumption. This mechanism is studied for both the offline setting, where all information is known beforehand, and online setting, where we only know the entry time and deadline of a vessel when it enters the waterway.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bialystockia, N., Konovessis, K.: On the estimation of vessel’s fuel consumption and speed curve: a statistical approach. J. Ocean Eng. Sci. 1(2), 157–166 (2016)

    Article  Google Scholar 

  2. Eurostat: Navigable inland waterways, by horizontal dimensions of vessels and pushed convoys (2016). http://appsso.eurostat.ec.europa.eu/nui/show.do?dataset=iww_if_hordim&lang=en. Accessed 1 Apr 2019

  3. Inland Navigation in Europe, Market Observation. Central commission for the navigation of the Rhine, annual report (2017). https://www.inland-navigation-market.org/wp-content/uploads/2017/09/CCNR_annual_report_EN_Q2_2017_BD_-1.pdf. Accessed 1 Apr 2019

  4. Günther, E., Lübbecke, M.E., Möhring, R.H.: Vessel traffic optimization for the Kiel canal. TRISTAN VII Book of Extended Abstracts 104 (2010)

    Google Scholar 

  5. Nauss, R.M.: Optimal sequencing in the presence of setup times for tow/barge traffic through a river lock. Eur. J. Oper. Res. 187(3), 1268–1281 (2008)

    Article  Google Scholar 

  6. Passchyn, W., Briskorn, D., and Spieksma, F.C.R.: No-wait scheduling for locks. Technical Report KBI\(\_\)1605, KU Leuven, Research group Operations Research and Business Statistics, Leuven, Belgium (2016)

    Google Scholar 

  7. Passchyn, W., Briskorn, D., Spieksma, F.C.R.: Mathematical programming models for lock scheduling with an emission objective. Eur. J. Oper. Res. 248(3), 802–814 (2016)

    Article  MathSciNet  Google Scholar 

  8. Passchyn, W., Coene, S., Briskorn, D., Hurink, J.L., Spieksma, F.C.R., Vanden Berghe, G.: The lockmaster’s problem. Eur. J. Oper. Res. 251(2), 432–441 (2016)

    Article  MathSciNet  Google Scholar 

  9. Petersen, E.R., Taylor, A.J.: An optimal scheduling system for the Welland Canal. Transp. Sci. 22(3), 173–185 (1988)

    Article  Google Scholar 

  10. Prandtstetter, M., Ritzinger, U., Schmidt, P., Ruthmair, M.: A variable neighborhood search approach for the interdependent lock scheduling problem. In: Ochoa, G., Chicano, F. (eds.) EvoCOP 2015. LNCS, vol. 9026, pp. 36–47. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-16468-7_4

    Chapter  Google Scholar 

  11. Psaraftis, H.N., Kontovas, C.A.: Speed models for energy-efficient maritime transportation: a taxonomy and survey. Transp. Res. Part C: Emerg. Technol. 26, 331–351 (2013)

    Article  Google Scholar 

  12. Smith, L.D., Nauss, R.M., Mattfeld, D.C., Li, J., Ehmke, J.F., Reindl, M.: Scheduling operations at system choke points with sequence-dependent delays and processing times. Transp. Res. Part E: Logistics Transp. Rev. 47(5), 669–680 (2011)

    Article  Google Scholar 

  13. Smith, L.D., Sweeney, D.C., Campbell, J.F.: Simulation of alternative approaches to relieving congestion at locks in a river transportion system. J. Oper. Res. Soc. 60(4), 519–533 (2009)

    Article  Google Scholar 

  14. Ching-Jung, T., Schonfeld, P.: Effects of speed control on tow travel costs. J. Waterw. Port Coastal Ocean Eng. 125(4), 203–206 (1999)

    Article  Google Scholar 

  15. Ching-Jung, T., Schonfeld, P.: Control alternatives at a waterway lock. J. Waterw. Port Coastal Ocean Eng. 127(2), 89–96 (2001)

    Article  Google Scholar 

  16. Verstichel, J., De Causmaecker, P., Spieksma, F.C.R., Vanden Berghe, G.: Exact and heuristic methods for placing vessels in locks. Eur. J. Oper. Res. 235(2), 387–398 (2014)

    Article  Google Scholar 

  17. Verstichel, J., De Causmaecker, P., Spieksma, F.C.R., Vanden Berghe, G.: The generalized lock scheduling problem: an exact approach. Transp. Res. Part E: Logistics Transp. Rev. 65, 16–34 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Grigoriev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Defryn, C., Golak, J., Grigoriev, A., Timmermans, V. (2019). Inland Waterway Efficiency Through Skipper Collaboration and Joint Speed Optimization. In: Khachay, M., Kochetov, Y., Pardalos, P. (eds) Mathematical Optimization Theory and Operations Research. MOTOR 2019. Lecture Notes in Computer Science(), vol 11548. Springer, Cham. https://doi.org/10.1007/978-3-030-22629-9_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-22629-9_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-22628-2

  • Online ISBN: 978-3-030-22629-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics