Skip to main content

Auto-labelling of Markers in Optical Motion Capture by Permutation Learning

  • Conference paper
  • First Online:
Advances in Computer Graphics (CGI 2019)

Abstract

Optical marker-based motion capture is a vital tool in applications such as motion and behavioural analysis, animation, and biomechanics. Labelling, that is, assigning optical markers to the pre-defined positions on the body, is a time consuming and labour intensive post-processing part of current motion capture pipelines. The problem can be considered as a ranking process in which markers shuffled by an unknown permutation matrix are sorted to recover the correct order. In this paper, we present a framework for automatic marker labelling which first estimates a permutation matrix for each individual frame using a differentiable permutation learning model and then utilizes temporal consistency to identify and correct remaining labelling errors. Experiments conducted on the test data show the effectiveness of our framework.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adams, R.P., Zemel, R.S.: Ranking via Sinkhorn propagation. ArXiv, pp. 1106–1925 (2011)

    Google Scholar 

  2. Bergstra, J., Bengio, Y.: Random search for hyper-parameter optimization. J. Mach. Learn. Res. 13, 281–305 (2012)

    MathSciNet  MATH  Google Scholar 

  3. Birkhoff, G.: Three observations on linear algebra. Univ. Nac. Tacuman, Rev. Ser. A 5, 147–151 (1946)

    MathSciNet  MATH  Google Scholar 

  4. Etemad, S.A., Arya, A.: Expert-driven perceptual features for modeling style and affect in human motion. IEEE Trans. Hum.-Mach. Syst. 46(4), 534–545 (2016)

    Article  Google Scholar 

  5. Han, S., Liu, B., Wang, R., Ye, Y., Twigg, C.D., Kin, K.: Online optical marker-based hand tracking with deep labels. ACM Trans. Graph. 37(4), 166 (2018)

    Article  Google Scholar 

  6. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: IEEE Conference on Computer Vision and Pattern Recognition (2016)

    Google Scholar 

  7. Herda, L., Fua, P., Plänkers, R., Boulic, R., Thalmann, D.: Using skeleton-based tracking to increase the reliability of optical motion capture. Hum. Mov. Sci. 20(3), 313–341 (2001). https://doi.org/10.1016/S0167-9457(01)00050-1

    Article  Google Scholar 

  8. Holden, D.: Robust solving of optical motion capture data by denoising. ACM Trans. Graph. 38(1), 1–12 (2018). https://doi.org/10.11499/sicejl1962.40.735

    Article  Google Scholar 

  9. Holzreiter, S.: Autolabeling 3D tracks using neural networks. Clin. Biomech. 20(1), 1–8 (2005)

    Article  Google Scholar 

  10. Ionescu, C., Papava, D., Olaru, V., Sminchisescu, C.: Human3.6M: large scale datasets and predictive methods for 3d human sensing in natural environments. IEEE Trans. Pattern Anal. Mach. Intell. 36(7), 1325–1339 (2014)

    Article  Google Scholar 

  11. Loper, M., Mahmood, N., Black, M.J.: MoSh: motion and shape capture from sparse markers. ACM Trans. Graph. 33(6), 220 (2014)

    Article  Google Scholar 

  12. Maycock, J., Röhlig, T., Schröder, M., Botsch, M., Ritter, H.: Fully automatic optical motion tracking using an inverse kinematics approach. In: IEEE/RAS International Conference on Humanoid Robots, pp. 2–7 (2015). https://doi.org/10.1109/HUMANOIDS.2015.7363590

  13. Meyer, J., Kuderer, M., Muller, J., Burgard, W.: Online marker labeling for fully automatic skeleton tracking in optical motion capture. In: Proceedings of IEEE International Conference on Robotics and Automation, pp. 5652–5657 (2014). https://doi.org/10.1109/ICRA.2014.6907690

  14. Pons-Moll, G., Romero, J., Mahmood, N., Black, M.J.: Dyna: a model of dynamic human shape in motion. ACM Trans. Graph. (TOG) 34(4), 120 (2015)

    Article  Google Scholar 

  15. Rezatofighi, S.H., et al.: Deep perm-set net: learn to predict sets with unknown permutation and cardinality using deep neural networks. arXiv preprint arXiv:1805.00613 (2018)

  16. Santa Cruz, R., Fernando, B., Cherian, A., Gould, S.: DeepPermNet: visual permutation learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3949–3957 (2017)

    Google Scholar 

  17. Schubert, T., Gkogkidis, A., Ball, T., Burgard, W.: Automatic initialization for skeleton tracking in optical motion capture. In: Proceedings of IEEE International Conference on Robotics and Automation, pp. 734–739. IEEE (2015)

    Google Scholar 

  18. Sigal, L., Balan, A.O., Black, M.J.: HumanEva: synchronized video and motion capture dataset and baseline algorithm for evaluation of articulated human motion. Int. J. Comput. Vis. 87(1–2), 4 (2010)

    Article  Google Scholar 

  19. Sinkhorn, R.: A relationship between arbitrary positive matrices and doubly stochastic matrices. Ann. Math. Stat. 35(2), 876–879 (1964)

    Article  MathSciNet  Google Scholar 

  20. Troje, N.F.: Retrieving information from human movement patterns. In: Shipley, T.F., Zacks, J.M. (eds.) Understanding Events: How Humans See, Represent, and Act on Events. Oxford University, New York, vol. 1, pp. 308–334 (2008)

    Chapter  Google Scholar 

  21. Yu, Q., Li, Q., Deng, Z.: Online motion capture marker labeling for multiple interacting articulated targets. Comput. Graph. Forum 26(3), 477–483 (2007). https://doi.org/10.1111/j.1467-8659.2007.01070.x

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saeed Ghorbani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ghorbani, S., Etemad, A., Troje, N.F. (2019). Auto-labelling of Markers in Optical Motion Capture by Permutation Learning. In: Gavrilova, M., Chang, J., Thalmann, N., Hitzer, E., Ishikawa, H. (eds) Advances in Computer Graphics. CGI 2019. Lecture Notes in Computer Science(), vol 11542. Springer, Cham. https://doi.org/10.1007/978-3-030-22514-8_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-22514-8_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-22513-1

  • Online ISBN: 978-3-030-22514-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics