Skip to main content

Overview of One-Pass and Discard-After-Learn Concepts for Classification and Clustering in Streaming Environment with Constraints

  • Chapter
  • First Online:
  • 6341 Accesses

Part of the book series: Unsupervised and Semi-Supervised Learning ((UNSESUL))

Abstract

With the advancement of internet technology and sensor networks, tremendous amount of data have been generated beyond our imagination. These data contain valuable and possibly relevant information for various fields of applications. Learning these data online by using current neural learning techniques is not so simple due to many technical constraints including data overflow, uncontrollable learning epochs, arbitrary class drift, and dynamic imbalanced class ratio. Recently, we have been attempted to tackle this neural learning problem under the non-stationary environment. In this article, we summarize the new concept of One-Pass-Learning-and-Discard and also new structures, called Malleable Hyper-ellipsoid and Hyper-cylinder, of neural network recently introduced to cope with supervised as well as unsupervised learning under the constraints of data overflow, preserving polynomial time and space complexities of learning process, arbitrary class drift, life of data, and dynamic imbalanced class ratio. Both structures are rotatable, transposable, and expandable according to the distribution and location of data cluster.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Abdulsalam, H., Skillicorn, D. B., & Martin, P. (2011, January). Classification using streaming random forests. IEEE Transactions on Knowledge and Data Engineering, 23(1), pp. 22–36.

    Article  Google Scholar 

  2. Aggarwal, C. C., Han, J., Wang, J., & Yu, P. S. (2003). A framework for clustering evolving data streams. In Proceedings of the 29th International Conference on Very Large Data Bases (pp. 81–92).

    Google Scholar 

  3. Brzezinski, D., & Stefanowski, J. (2014, January). Reacting to different types of concept drift: The accuracy updated ensemble algorithm. IEEE Transactions on Neural Networks and Learning Systems, 25(1), 81–94.

    Article  Google Scholar 

  4. Cao, F., Ester, M., Qian, W., & Zhou, A. (2006). Density-based clustering over an evolving data stream with noise. In SIAM International Conference on Data Mining (pp. 328–339).

    Google Scholar 

  5. Ditzler, G., Rosen, G., & Polikar, R. (2014, July). Domain adaptation bounds for multiple expert systems under concept drift. In Proceedings of the International Joint Conference on Neural Networks (pp. 595–601).

    Google Scholar 

  6. Elwell, R., & Polikar, R. (2011, October). Incremental learning of concept drift in non-stationary environments. IEEE Transactions on Neural Networks, 22(10), 1517–1531.

    Article  Google Scholar 

  7. Furao, S., & Hasegawa, O. (2008, December). A fast nearest neighbor classifier based on self-organizing incremental neural network. Neural Networks, 21(10), 1537–1547.

    Article  Google Scholar 

  8. Hahsler, M., & Dunham, M. H. (2010). rEMM: Extensible Markov model for data stream clustering in r. Journal of Statistical Software, 35(5).

    Google Scholar 

  9. He, H., Chen, S., Li, K., & Xu, X. (2011, December). Incremental learning from stream data. IEEE Transactions on Neural Networks, 22(12), 1901–1914.

    Article  Google Scholar 

  10. Hoens, T. R., Polikar, R., & Chawla, N. V. (2012, April). Learning from streaming data with concept drift and imbalance: An overview. Progress in Artificial Intelligence, 1(1), 89–101.

    Article  Google Scholar 

  11. Jaiyen, S., Lursinsap, C., Phimoltares, S. (2010, March). A very fast neural learning for classification using only new incoming datum. IEEE Transactions on Neural Networks, 21(3), 381–392.

    Article  Google Scholar 

  12. Junsawang, P., Phimoltares, S., & Lursinsap, C. (2016). A fast learning method for streaming and randomly ordered multi-class data chunks by using one-pass-throw-away class-wise learning concept. Expert Systems with Applications, 63, 249–266.

    Article  Google Scholar 

  13. Kranen, P., Assent, I., Baldauf, C., & Seidl, T. (2011). The ClusTree: Indexing micro-clusters for anytime stream mining. Knowledge and Information Systems, 29(2), 249–272.

    Article  Google Scholar 

  14. Laohakiat, S., Phimoltares, S., & Lursinsap, C. (2016). Hyper-cylindrical micro-clustering for streaming data with unscheduled data removals. Knowledge-Based Systems, 99, 183–200.

    Article  Google Scholar 

  15. Ozava, S., Pang, S., & Kasabov, N. (2008, June). Incremental learning of chunk data for online pattern classification systems. IEEE Transactions on Neural Networks, 19(6), 1061–1074.

    Article  Google Scholar 

  16. Pang, S., Ban, T., Kadobayashi, Y., & Kasabov, N. K. (2012). LDA merging and splitting with applications to multi-agent cooperative learning and system alteration. IEEE Transactions on Systems, Man, and Cybernetics. Part B, Cybernetics, 42(2), 552–564.

    Article  Google Scholar 

  17. Pang, S., Ozawa, S., & Kasabov, N. (2005). Incremental learning discriminant analysis classification of data streams. IEEE Transactions on Systems, Man, and Cybernetics-part B: Cybernetics, 35(5), 905–914.

    Article  Google Scholar 

  18. Shen, F., & Hasegawa, O. (2008). A fast nearest neighbor classifier on self-organizing incremental neural network. Neural Networks, 21, 1537–1547.

    Article  Google Scholar 

  19. Singla, P., Subbarao, K., & Junkins, J. L. (2007, January). Direction-dependent learning approach for radial basis function networks. IEEE Transaction on Neural Networks, 18(1), 203–222.

    Article  Google Scholar 

  20. Thakong, M., Phimoltares, S., Jaiyen, S., & Lursinsap, C. (2017). Fast learning and testing for imbalanced multi-class changes in streaming data by dynamic multi-stratum network. IEEE Access, 5, 10633–10648.

    Article  Google Scholar 

  21. Thakong, M., Phimoltares, S., Jaiyen, S., & Lursinsap, C. (2018). One-pass-throw-away learning for cybersecurity in streaming non-stationary environments by dynamic stratum networks. PLoS One, 13(9), e0202937.

    Article  Google Scholar 

  22. Tu, L., Chen, Y. (2009). Stream data clustering based on grid density and attraction. ACM Transactions on Knowledge Discovery from Data, 3(3), 12:1–12:27.

    Article  Google Scholar 

  23. Wattanakitrungroj, N., Maneeroj, S., & Lursinsap, C. (2017). Versatile hyper-elliptic clustering approach for streaming data based on one-pass-thrown-away learning. Journal of Classification, 34, 108–147.

    Article  MathSciNet  Google Scholar 

  24. Wattanakitrungroj, N., Maneeroj, S., & Lursinsap, C. (2018). BEstream batch capturing with elliptic function for one-pass data stream clustering. Data & Knowledge Engineering, 117, 53–70.

    Article  Google Scholar 

  25. Wu, X., Li, P., & Hu, X. (2012, September). Learning from concept drifting data streams with unlabeled data. Neurocomputing, 92, 145–155.

    Article  Google Scholar 

  26. Xu, Y., Shen, F., & Zhao, J. (2012). An incremental learning vector quantization algorithm for pattern classification. Neural Computing and Applications, 21(6), 1205–1215.

    Article  Google Scholar 

  27. Zheng, J., Shen, F., Fan, H., & Zhao, J. (2013, April). An online incremental learning support vector machine for large-scale data. Neural Computing and Applications, 22(5), 1023–1035.

    Article  Google Scholar 

  28. Žliobaitė, I., Bifet, A., Read, J., Pfahringer, B., & Holmes, G. (2015, March). Evaluation methods and decision theory for classification of streaming data with temporal dependence. Machine Learning, 98(3), 455–482.

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgement

This work is supported by Thailand Research Fund under grant number RTA6080013.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lursinsap, C. (2020). Overview of One-Pass and Discard-After-Learn Concepts for Classification and Clustering in Streaming Environment with Constraints. In: Berry, M., Mohamed, A., Yap, B. (eds) Supervised and Unsupervised Learning for Data Science . Unsupervised and Semi-Supervised Learning. Springer, Cham. https://doi.org/10.1007/978-3-030-22475-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-22475-2_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-22474-5

  • Online ISBN: 978-3-030-22475-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics