Skip to main content

Simulation of the Influence of High-Voltage Pulsed Potential Supplied During the Deposition on the Structure and Properties of the Vacuum-Arc Nitride Coatings

  • Conference paper
  • First Online:
Advances in Design, Simulation and Manufacturing II (DSMIE 2019)

Abstract

TiN films have been deposited on stainless steel plates using plasma based the ion implantation & deposition (PBII&D) with a negative pulse voltage from 850 to 2000 V. According to the results of X-ray structural analysis, the formation of titanium nitride with a cubic crystal lattice of the NaCl structural type is seen to occur. Computer simulation allows determining the depth of the layer that is exposed to the radiation, taking into account all the cascade damage. The depth of the layer varies from 3 to 4.4 nm with an increase of negative impulse potential (Uip) from 850 to 2000 V, respectively. A transition of the texture from [111] to [110] is present in TiN coatings with an increase of Uip. In the case of a pulse duration of 10 and 16 μs in the entire range of Uip used, the following dependences are observed: with the increasing Uip, the deformation of the crystallite lattice decreases with the axis of the texture [111] and increases with the corresponding deformation in the crystallite with the axis of the texture [110].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ivashchenko, V.I., Dub, S.N., Scrynskii, P.L., Pogrebnjak, A.D., Sobol’, O.V., Tolmacheva, G.N., Rogoz, V.M., Sinel’chenko, A.K.: Nb-Al-N thin films: structural transition from nanocrystalline solid solution nc-(Nb,Al)N into nanocomposite nc-(Nb, Al)N/a-Al. J. Superhard Mater. 38(2), 103–113 (2016)

    Google Scholar 

  2. Bradley, R.M., Harper, J.M.E., Smith, D.A.: Theory of thin-film orientation by ion bombardment during deposition. J. Appl. Phys. 60, 4160 (1986)

    Article  Google Scholar 

  3. Heinrich, S., Schirmer, S., Hirsch, D., Gerlach, J.W., Manova, D., Assmann, W., Mändl, S.: Comparison of ZrN and TiN formed by plasma based ion implantation & deposition. Surf. Coat. Technol. 202(11), 2310–2313 (2008)

    Article  Google Scholar 

  4. Sobol’, O.V.: The influence of nonstoichiometry on elastic characteristics of metastable β-WC1-x phase in ion plasma condensates. Tech. Phys. Lett. 42(9), 909–911 (2016)

    Article  Google Scholar 

  5. Hirata, Y., Ishikawa, T., Choi, J., Sasaki, S.: Analysis of microstructure and surface morphology of a-C: H films deposited on a trench target. Diam. Relat. Mater. 83, 1–7 (2018)

    Article  Google Scholar 

  6. Bermeo, F., Quintana, J.P., Kleiman, A., Sequeda, F., Márquez, A.: 1020 steel coated with Ti/TiN by cathodic arc and ion implantation. J. Phys. Conf. Ser. 792(1), 012061 (2017)

    Article  Google Scholar 

  7. Mukherjee, S., Prokert, F., Richter, E., Möller, W.: Intrinsic stress and preferred orientation in TiN coatings deposited on Al using plasma immersion ion implantation assisted deposition. Thin Solid Films 445(1), 48–53 (2003)

    Article  Google Scholar 

  8. Pelletier, J., Anders, A.: Plasma-based ion implantation and deposition: a review of physics, technology, and applications. IEEE Trans. Plasma Sci. 33(6), 1944–1959 (2006)

    Article  Google Scholar 

  9. Sano, M., Yukimura, K., Maruyama, T., Kurooka, S., Suzuki, Y., Chayahara, A., Kinomura, A., Horino, Y.: Titanium nitride coating on implanted layer using titanium plasma based ion implantation. Nucl. Instrum. Methods Phys. Res. Sect. B 148(1–4), 37–41 (1999)

    Google Scholar 

  10. Mändl, S., Thorwarth, G., Stritzker, B., Rauschenbach, B.: Two-dimensional texture and sheath evolution in metal plasma immersion ion implantation. Surf. Coat. Technol. 200(1–4), 589–593 (2005)

    Article  Google Scholar 

  11. Ziegler, J.F., Ziegler, M.D., Biersack, J.P.: SRIM—the stopping and range of ions in matter. Nucl. Instrum. Methods Phys. Res. Sect. B 268, 1818–1823 (2010)

    Google Scholar 

  12. Sobol’, O.V., Shovkoplyas, O.A.: On advantages of X-ray schemes with orthogonal diffraction vectors for studying the structural state of ion-plasma coatings. Tech. Phys. Lett. 39(6), 536–539 (2013)

    Article  Google Scholar 

  13. Sobol’, O.V., Andreev, A.A., Gorban’, V.F., Krapivka, N.A., Stolbovoi, V.A., Serdyuk, I.V., Fil’chikov, V.E.: Reproducibility of the single-phase structural state of the multielement high-entropy Ti-V-Zr-Nb-Hf system and related superhard nitrides formed by the vacuum-arc method. Tech. Phys. Lett. 38(7), 616 (2012)

    Article  Google Scholar 

  14. Cisternas, M., Mellero, F., Favre, M., Bhuyan, H., Wyndham, E.: TiN coatings on titanium substrates using plasma assisted ion implantation. J. Phys. Conf. Ser. 591(1), 012043 (2015)

    Article  Google Scholar 

  15. Kuo, L.-Y., Shen, P.: On the condensation and preferred orientation of TiC nanocrystals—effects of electric field, substrate temperature and second phase. Mater. Sci. Eng. A 276(1–2), 99–107 (2000)

    Article  Google Scholar 

  16. Karabacak, T., Senkevich, J.J., Wang, G.C., Lu, T.: Stress reduction in sputter deposited films using nanostructured compliant layers by high working-gas pressures. J. Vac. Sci. Technol. A 23(4), 986–990 (2005)

    Article  Google Scholar 

  17. Wu, Y.G., Cao, E.H., Wang, Z.S., Wei, J.M., Tang, W.X., Chen, L.Y.: Stress anisotropy in circular planar magnetron sputter deposited molybdenum films and its annealing effect. Appl. Phys. A 76(2), 147–152 (2003)

    Article  Google Scholar 

  18. Lim, S.H.N., McCulloch, D.G., Bilek, M.M.M., McKenzie, D.R.: Minimisation of intrinsic stress in titanium nitride using a cathodic arc with plasma immersion ion implantation. Surf. Coat. Technol. 174–175, 76–80 (2003)

    Article  Google Scholar 

  19. Metel, A.S., Grigoriev, S.N., Melnik, YuA, Panin, V.V.: Filling the vacuum chamber of a technological system with homogeneous plasma using a stationary glow discharge. Plasma Phys. Rep. 35(12), 1058–1067 (2009)

    Article  Google Scholar 

  20. Grigoriev, S.N., Melnik, Yu.A., Metel, A.S., Panin, V.V., Prudnikov, V.V.: A compact vapor source of conductive target material sputtered by 3-kev ions at 0.05-pa pressure. Instrum. Exp. Tech. 5, 731–737 (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nataliya Pinchuk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pinchuk, N., Sobol, O. (2020). Simulation of the Influence of High-Voltage Pulsed Potential Supplied During the Deposition on the Structure and Properties of the Vacuum-Arc Nitride Coatings. In: Ivanov, V., et al. Advances in Design, Simulation and Manufacturing II. DSMIE 2019. Lecture Notes in Mechanical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-030-22365-6_45

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-22365-6_45

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-22364-9

  • Online ISBN: 978-3-030-22365-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics