Skip to main content

Running, Agility, and Sportsmetrics Training

  • Chapter
  • First Online:
Return to Sport after ACL Reconstruction and Other Knee Operations

Abstract

This chapter reviews the running, agility, basic plyometric, and advanced Sportsmetrics neuromuscular training programs for anterior cruciate ligament reconstruction postoperative rehabilitation. The exercises are detailed, with the criteria provided to advance the patient through training in a manner that is safe and responsive to the patient’s final activity-level goals. Our comprehensive objective assessment of muscle strength, neuromuscular function, balance, range of knee motion, and ligament stability required for release to unrestricted athletics is provided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Faltstrom A, Hagglund M, Magnusson H, Forssblad M, Kvist J. Predictors for additional anterior cruciate ligament reconstruction: data from the Swedish national ACL register. Knee Surg Sports Traumatol Arthrosc. 2016;24:885. https://doi.org/10.1007/s00167-014-3406-6.

    Article  PubMed  Google Scholar 

  2. Hettrich CM, Dunn WR, Reinke EK, MOON Group, Spindler KP. The rate of subsequent surgery and predictors after anterior cruciate ligament reconstruction: two- and 6-year follow-up results from a multicenter cohort. Am J Sports Med. 2013;41(7):1534–40. https://doi.org/10.1177/0363546513490277.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Hui C, Salmon LJ, Kok A, Maeno S, Linklater J, Pinczewski LA. Fifteen-year outcome of endoscopic anterior cruciate ligament reconstruction with patellar tendon autograft for “isolated” anterior cruciate ligament tear. Am J Sports Med. 2011;39(1):89–98. https://doi.org/10.1177/0363546510379975.

    Article  PubMed  Google Scholar 

  4. Kaeding CC, Pedroza AD, Reinke EK, Huston LJ, Consortium M, Spindler KP. Risk factors and predictors of subsequent ACL injury in either knee after ACL reconstruction: prospective analysis of 2488 primary ACL reconstructions from the MOON cohort. Am J Sports Med. 2015;43(7):1583–90. https://doi.org/10.1177/0363546515578836.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Kamien PM, Hydrick JM, Replogle WH, Go LT, Barrett GR. Age, graft size, and Tegner activity level as predictors of failure in anterior cruciate ligament reconstruction with hamstring autograft. Am J Sports Med. 2013;41(8):1808–12. https://doi.org/10.1177/0363546513493896.

    Article  PubMed  Google Scholar 

  6. Magnussen RA, Lawrence JT, West RL, Toth AP, Taylor DC, Garrett WE. Graft size and patient age are predictors of early revision after anterior cruciate ligament reconstruction with hamstring autograft. Arthroscopy. 2012;28(4):526–31. https://doi.org/10.1016/j.arthro.2011.11.024.

    Article  PubMed  Google Scholar 

  7. Maletis GB, Inacio MC, Funahashi TT. Risk factors associated with revision and contralateral anterior cruciate ligament reconstructions in the Kaiser Permanente ACLR registry. Am J Sports Med. 2015;43(3):641–7. https://doi.org/10.1177/0363546514561745.

    Article  PubMed  Google Scholar 

  8. Morgan MD, Salmon LJ, Waller A, Roe JP, Pinczewski LA. Fifteen-year survival of endoscopic anterior cruciate ligament reconstruction in patients aged 18 years and younger. Am J Sports Med. 2016;44(2):384–92. https://doi.org/10.1177/0363546515623032.

    Article  PubMed  Google Scholar 

  9. Park SY, Oh H, Park S, Lee JH, Lee SH, Yoon KH. Factors predicting hamstring tendon autograft diameters and resulting failure rates after anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc. 2013;21(5):1111–8. https://doi.org/10.1007/s00167-012-2085-4.

    Article  PubMed  Google Scholar 

  10. Paterno MV, Rauh MJ, Schmitt LC, Ford KR, Hewett TE. Incidence of second ACL injuries 2 years after primary ACL reconstruction and return to sport. Am J Sports Med. 2014;42(7):1567–73. https://doi.org/10.1177/0363546514530088.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Persson A, Fjeldsgaard K, Gjertsen JE, Kjellsen AB, Engebretsen L, Hole RM, Fevang JM. Increased risk of revision with hamstring tendon grafts compared with patellar tendon grafts after anterior cruciate ligament reconstruction: a study of 12,643 patients from the Norwegian Cruciate Ligament Registry, 2004-2012. Am J Sports Med. 2014;42(2):285–91. https://doi.org/10.1177/0363546513511419.

    Article  PubMed  Google Scholar 

  12. Ponce BA, Cain EL Jr, Pflugner R, Fleisig GS, Young BL, Boohaker HA, Swain TA, Andrews JR, Dugas JR. Risk factors for revision anterior cruciate ligament reconstruction. J Knee Surg. 2016;29(4):329–36. https://doi.org/10.1055/s-0035-1554925.

    Article  PubMed  Google Scholar 

  13. Salmon LJ, Russell VJ, Refshauge K, Kader D, Connolly C, Linklater J, Pinczewski LA. Long-term outcome of endoscopic anterior cruciate ligament reconstruction with patellar tendon autograft: minimum 13-year review. Am J Sports Med. 2006;34(5):721–32.

    Article  PubMed  Google Scholar 

  14. Schlumberger M, Schuster P, Schulz M, Immendorfer M, Mayer P, Bartholoma J, Richter J. Traumatic graft rupture after primary and revision anterior cruciate ligament reconstruction: retrospective analysis of incidence and risk factors in 2915 cases. Knee Surg Sports Traumatol Arthrosc. 2017;25:1535. https://doi.org/10.1007/s00167-015-3699-0.

    Article  PubMed  Google Scholar 

  15. Shelbourne KD, Gray T, Haro M. Incidence of subsequent injury to either knee within 5 years after anterior cruciate ligament reconstruction with patellar tendon autograft. Am J Sports Med. 2009;37(2):246–51.

    Article  PubMed  Google Scholar 

  16. Thompson S, Salmon L, Waller A, Linklater J, Roe J, Pinczewski L. Twenty-year outcomes of a longitudinal prospective evaluation of isolated endoscopic anterior cruciate ligament reconstruction with patellar tendon autografts. Am J Sports Med. 2015;43(9):2164–74. https://doi.org/10.1177/0363546515591263.

    Article  PubMed  Google Scholar 

  17. Webster KE, Feller JA. Exploring the high reinjury rate in younger patients undergoing anterior cruciate ligament reconstruction. Am J Sports Med. 2016;44(11):2827–32. https://doi.org/10.1177/0363546516651845.

    Article  PubMed  Google Scholar 

  18. Wiggins AJ, Grandhi RK, Schneider DK, Stanfield D, Webster KE, Myer GD. Risk of secondary injury in younger athletes after anterior cruciate ligament reconstruction: a systematic review and meta-analysis. Am J Sports Med. 2016;44(7):1861–76. https://doi.org/10.1177/0363546515621554.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Barber-Westin SD, Noyes FR. Factors used to determine return to unrestricted sports activities after anterior cruciate ligament reconstruction. Arthroscopy. 2011;27(12):1697–705. https://doi.org/10.1016/j.arthro.2011.09.009.

    Article  PubMed  Google Scholar 

  20. Barber-Westin SD, Noyes FR. 10 - Scientific basis of rehabilitation after anterior cruciate ligament autogenous reconstruction. In: Noyes’ knee disorders: surgery, rehabilitation, clinical outcomes. 2nd ed. Philadelphia: Elsevier; 2017. p. 268–92. https://doi.org/10.1016/B978-0-323-32903-3.00010-X.

    Chapter  Google Scholar 

  21. Heckmann TP, Noyes FR, Barber-Westin SD. 11 - Rehabilitation of primary and revision anterior cruciate ligament reconstruction. In: Noyes’ knee disorders: surgery, rehabilitation, clinical outcomes. 2nd ed. Philadelphia: Elsevier; 2017. p. 293–329. https://doi.org/10.1016/B978-0-323-32903-3.00011-1.

    Chapter  Google Scholar 

  22. Barber-Westin SD, Noyes FR, Heckmann TP, Shaffer BL. The effect of exercise and rehabilitation on anterior-posterior knee displacements after anterior cruciate ligament autograft reconstruction. Am J Sports Med. 1999;27(1):84–93.

    Article  CAS  PubMed  Google Scholar 

  23. Barber-Westin SD, Noyes FR. The effect of rehabilitation and return to activity on anterior-posterior knee displacements after anterior cruciate ligament reconstruction. Am J Sports Med. 1993;21(2):264–70.

    Article  CAS  PubMed  Google Scholar 

  24. Noyes FR, Mangine RE, Barber S. Early knee motion after open and arthroscopic anterior cruciate ligament reconstruction. Am J Sports Med. 1987;15(2):149–60.

    Article  CAS  PubMed  Google Scholar 

  25. Noyes FR, Berrios-Torres S, Barber-Westin SD, Heckmann TP. Prevention of permanent arthrofibrosis after anterior cruciate ligament reconstruction alone or combined with associated procedures: a prospective study in 443 knees. Knee Surg Sports Traumatol Arthrosc. 2000;8(4):196–206.

    Article  CAS  PubMed  Google Scholar 

  26. Hewett TE, Stroupe AL, Nance TA, Noyes FR. Plyometric training in female athletes. Decreased impact forces and increased hamstring torques. Am J Sports Med. 1996;24(6):765–73.

    Article  CAS  PubMed  Google Scholar 

  27. Barber-Westin SD, Hermeto AA, Noyes FR. A six-week neuromuscular training program for competitive junior tennis players. J Strength Cond Res. 2010;24(9):2372–82. https://doi.org/10.1519/JSC.0b013e3181e8a47f.

    Article  PubMed  Google Scholar 

  28. Noyes FR, Barber-Westin SD, Smith ST, Campbell T. A training program to improve neuromuscular indices in female high school volleyball players. J Strength Cond Res. 2011;25(8):2151–60. https://doi.org/10.1519/JSC.0b013e3181f906ef.

    Article  PubMed  Google Scholar 

  29. Noyes FR, Barber-Westin SD, Smith ST, Campbell T, Garrison TT. A training program to improve neuromuscular and performance indices in female high school basketball players. J Strength Cond Res. 2012;26(3):709–19. https://doi.org/10.1519/JSC.0b013e318228194c.

    Article  PubMed  Google Scholar 

  30. Noyes FR, Barber-Westin SD, Tutalo Smith ST, Campbell T. A training program to improve neuromuscular and performance indices in female high school soccer players. J Strength Cond Res. 2013;27(2):340–51. https://doi.org/10.1519/JSC.0b013e31825423d9.

    Article  PubMed  Google Scholar 

  31. Noyes FR, Barber-Westin SD. Neuromuscular retraining in female adolescent athletes: effect on athletic performance indices and noncontact anterior cruciate ligament injury rates. Sports. 2015;3:56–76. https://doi.org/10.3390/sports3020056.

    Article  Google Scholar 

  32. Noyes FR, Barber-Westin SD, Fleckenstein C, Walsh C, West J. The drop-jump screening test: difference in lower limb control by gender and effect of neuromuscular training in female athletes. Am J Sports Med. 2005;33(2):197–207.

    Article  PubMed  Google Scholar 

  33. Wilkerson GB, Colston MA, Short NI, Neal KL, Hoewischer PE, Pixley JJ. Neuromuscular changes in female collegiate athletes resulting from a plyometric jump-training program. J Athl Train. 2004;39(1):17–23.

    PubMed  PubMed Central  Google Scholar 

  34. Chelly MS, Hermassi S, Shephard RJ. Effects of in-season short-term plyometric training program on sprint and jump performance of young male track athletes. J Strength Cond Res. 2015;29(8):2128–36. https://doi.org/10.1519/JSC.0000000000000860.

    Article  PubMed  Google Scholar 

  35. Chelly MS, Hermassi S, Aouadi R, Shephard RJ. Effects of 8-week in-season plyometric training on upper and lower limb performance of elite adolescent handball players. J Strength Cond Res. 2014;28(5):1401–10. https://doi.org/10.1519/JSC.0000000000000279.

    Article  PubMed  Google Scholar 

  36. Ramirez-Campillo R, Meylan C, Alvarez C, Henriquez-Olguin C, Martinez C, Canas-Jamett R, Andrade DC, Izquierdo M. Effects of in-season low-volume high-intensity plyometric training on explosive actions and endurance of young soccer players. J Strength Cond Res. 2014;28(5):1335–42. https://doi.org/10.1519/JSC.0000000000000284.

    Article  PubMed  Google Scholar 

  37. Ramirez-Campillo R, Alvarez C, Henriquez-Olguin C, Baez EB, Martinez C, Andrade DC, Izquierdo M. Effects of plyometric training on endurance and explosive strength performance in competitive middle- and long-distance runners. J Strength Cond Res. 2014;28(1):97–104. https://doi.org/10.1519/JSC.0b013e3182a1f44c.

    Article  PubMed  Google Scholar 

  38. Vaczi M, Tollar J, Meszler B, Juhasz I, Karsai I. Short-term high intensity plyometric training program improves strength, power and agility in male soccer players. J Hum Kinet. 2013;36:17–26. https://doi.org/10.2478/hukin-2013-0002.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Barber-Westin SD, Noyes FR. Objective criteria for return to athletics after anterior cruciate ligament reconstruction and subsequent reinjury rates: a systematic review. Phys Sportsmed. 2011;39(3):100–10. https://doi.org/10.3810/psm.2011.09.1926.

    Article  PubMed  Google Scholar 

  40. Wroble RR, Van Ginkel LA, Grood ES, Noyes FR, Shaffer BL. Repeatability of the KT-1000 arthrometer in a normal population. Am J Sports Med. 1990;18(4):396–9.

    Article  CAS  PubMed  Google Scholar 

  41. Daniel DM, Malcom LL, Losse G, Stone ML, Sachs R, Burks R. Instrumented measurement of anterior laxity of the knee. J Bone Joint Surg Am. 1985;67(5):720–6.

    Article  CAS  PubMed  Google Scholar 

  42. Zaffagnini S, Bruni D, Marcheggiani Muccioli GM, Bonanzinga T, Lopomo N, Bignozzi S, Marcacci M. Single-bundle patellar tendon versus non-anatomical double-bundle hamstrings ACL reconstruction: a prospective randomized study at 8-year minimum follow-up. Knee Surg Sports Traumatol Arthrosc. 2011;19(3):390–7. https://doi.org/10.1007/s00167-010-1225-y.

    Article  PubMed  Google Scholar 

  43. Choi NH, Lee JH, Son KM, Victoroff BN. Tibial tunnel widening after anterior cruciate ligament reconstructions with hamstring tendons using Rigidfix femoral fixation and Intrafix tibial fixation. Knee Surg Sports Traumatol Arthrosc. 2010;18(1):92–7. https://doi.org/10.1007/s00167-009-0951-5.

    Article  PubMed  Google Scholar 

  44. Landes S, Nyland J, Elmlinger B, Tillett E, Caborn D. Knee flexor strength after ACL reconstruction: comparison between hamstring autograft, tibialis anterior allograft, and non-injured controls. Knee Surg Sports Traumatol Arthrosc. 2010;18(3):317–24. https://doi.org/10.1007/s00167-009-0931-9.

    Article  PubMed  Google Scholar 

  45. Hartigan EH, Axe MJ, Snyder-Mackler L. Time line for noncopers to pass return-to-sports criteria after anterior cruciate ligament reconstruction. J Orthop Sports Phys Ther. 2010;40(3):141–54. https://doi.org/10.2519/jospt.2010.3168.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Isberg J, Faxen E, Brandsson S, Eriksson BI, Karrholm J, Karlsson J. Early active extension after anterior cruciate ligament reconstruction does not result in increased laxity of the knee. Knee Surg Sports Traumatol Arthrosc. 2006;14(11):1108–15. https://doi.org/10.1007/s00167-006-0138-2.

    Article  PubMed  Google Scholar 

  47. Sajovic M, Vengust V, Komadina R, Tavcar R, Skaza K. A prospective, randomized comparison of semitendinosus and gracilis tendon versus patellar tendon autografts for anterior cruciate ligament reconstruction: five-year follow-up. Am J Sports Med. 2006;34(12):1933–40.

    Article  PubMed  Google Scholar 

  48. Poehling GG, Curl WW, Lee CA, Ginn TA, Rushing JT, Naughton MJ, Holden MB, Martin DF, Smith BP. Analysis of outcomes of anterior cruciate ligament repair with 5-year follow-up: allograft versus autograft. Arthroscopy. 2005;21(7):774–85.

    Article  PubMed  Google Scholar 

  49. Kvist J. Rehabilitation following anterior cruciate ligament injury: current recommendations for sports participation. Sports Med. 2004;34(4):269–80.

    Article  PubMed  Google Scholar 

  50. Beynnon BD, Johnson RJ, Fleming BC, Kannus P, Kaplan M, Samani J, Renstr m P. Anterior cruciate ligament replacement: comparison of bone-patellar tendon-bone grafts with two-strand hamstring grafts: a prospective, randomized study. J Bone Joint Surg Am. 2002;84-A(9):1503.

    Article  Google Scholar 

  51. Henriksson M, Rockborn P, Good L. Range of motion training in brace vs. plaster immobilization after anterior cruciate ligament reconstruction: a prospective randomized comparison with a 2-year follow-up. Scand J Med Sci Sports. 2002;12(2):73–80.

    Article  CAS  PubMed  Google Scholar 

  52. Moller E, Forssblad M, Hansson L, Wange P, Weidenhielm L. Bracing versus nonbracing in rehabilitation after anterior cruciate ligament reconstruction: a randomized prospective study with 2-year follow-up. Knee Surg Sports Traumatol Arthrosc. 2001;9(2):102–8.

    Article  CAS  PubMed  Google Scholar 

  53. Stark T, Walker B, Phillips JK, Fejer R, Beck R. Hand-held dynamometry correlation with the gold standard isokinetic dynamometry: a systematic review. PM R. 2011;3(5):472–9. https://doi.org/10.1016/j.pmrj.2010.10.025.

    Article  PubMed  Google Scholar 

  54. Toonstra J, Mattacola CG. Test-retest reliability and validity of isometric knee-flexion and -extension measurement using 3 methods of assessing muscle strength. J Sport Rehabil. 2013;22(1). https://doi.org/10.1123/jsr.2013.TR7.

  55. Whiteley R, Jacobsen P, Prior S, Skazalski C, Otten R, Johnson A. Correlation of isokinetic and novel hand-held dynamometry measures of knee flexion and extension strength testing. J Sci Med Sport. 2012;15(5):444–50. https://doi.org/10.1016/j.jsams.2012.01.003.

    Article  PubMed  Google Scholar 

  56. Kraemer WJ, Patton JF, Gordon SE, Harman EA, Deschenes MR, Reynolds K, Newton RU, Triplett NT, Dziados JE. Compatibility of high-intensity strength and endurance training on hormonal and skeletal muscle adaptations. J Appl Physiol. 1995;78(3):976–89.

    Article  CAS  PubMed  Google Scholar 

  57. Reiman MP, Manske RC. Functional testing in human performance. Champaign: Human Kinetics; 2009.

    Google Scholar 

  58. Barber SD, Noyes FR, Mangine RE, McCloskey JW, Hartman W. Quantitative assessment of functional limitations in normal and anterior cruciate ligament-deficient knees. Clin Orthop Relat Res. 1990;(255):204–214.

    Google Scholar 

  59. Noyes FR, Barber SD, Mangine RE. Abnormal lower limb symmetry determined by function hop tests after anterior cruciate ligament rupture. Am J Sports Med. 1991;19(5):513–8.

    Article  CAS  PubMed  Google Scholar 

  60. Barrett GR, Luber K, Replogle WH, Manley JL. Allograft anterior cruciate ligament reconstruction in the young, active patient: tegner activity level and failure rate. Arthroscopy. 2010;26(12):1593–601. https://doi.org/10.1016/j.arthro.2010.05.014.

    Article  PubMed  Google Scholar 

  61. Logerstedt D, Grindem H, Lynch A, Eitzen I, Engebretsen L, Risberg MA, Axe MJ, Snyder-Mackler L. Single-legged hop tests as predictors of self-reported knee function after anterior cruciate ligament reconstruction: the Delaware-Oslo ACL cohort study. Am J Sports Med. 2012;40(10):2348–56. https://doi.org/10.1177/0363546512457551.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Logerstedt D, Di Stasi S, Grindem H, Lynch A, Eitzen I, Engebretsen L, Risberg MA, Axe MJ, Snyder-Mackler L. Self-reported knee function can identify athletes who fail return-to-activity criteria up to 1 year after anterior cruciate ligament reconstruction: a Delaware-Oslo ACL cohort study. J Orthop Sports Phys Ther. 2014;44(12):914–23. https://doi.org/10.2519/jospt.2014.4852.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Sigward SM, Havens KL, Powers CM. Knee separation distance and lower extremity kinematics during a drop land: implications for clinical screening. J Athl Train. 2011;46(5):471–5.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Nilstad A, Andersen TE, Kristianslund E, Bahr R, Myklebust G, Steffen K, Krosshaug T. Physiotherapists can identify female football players with high knee valgus angles during vertical drop jumps using real-time observational screening. J Orthop Sports Phys Ther. 2014;44(5):358–65. https://doi.org/10.2519/jospt.2014.4969.

    Article  PubMed  Google Scholar 

  65. Pollard CD, Sigward SM, Powers CM. Limited hip and knee flexion during landing is associated with increased frontal plane knee motion and moments. Clin Biomech (Bristol, Avon). 2010;25(2):142–6. https://doi.org/10.1016/j.clinbiomech.2009.10.005.

    Article  Google Scholar 

  66. Ireland ML, Durbin T, Bolgla LA. Gender differences in core strength and lower extremity function during the single-leg squat test. In: Noyes FR, Barber-Westin SD, editors. ACL injuries in the female athlete: causes, impacts, and conditioning programs. Berlin: Springer-Verlag; 2012. p. 203–19.

    Chapter  Google Scholar 

  67. Ageberg E, Bennell KL, Hunt MA, Simic M, Roos EM, Creaby MW. Validity and inter-rater reliability of medio-lateral knee motion observed during a single-limb mini squat. BMC Musculoskelet Disord. 2010;11:265. https://doi.org/10.1186/1471-2474-11-265.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Claiborne TL, Armstrong CW, Gandhi V, Pincivero DM. Relationship between hip and knee strength and knee valgus during a single leg squat. J Appl Biomech. 2006;22(1):41–50.

    Article  PubMed  Google Scholar 

  69. Ireland ML. The female ACL: why is it more prone to injury? Orthop Clin North Am. 2002;33(4):637–51.

    Article  PubMed  Google Scholar 

  70. Cortes N, Onate J, Van Lunen B. Pivot task increases knee frontal plane loading compared with sidestep and drop-jump. J Sports Sci. 2011;29(1):83–92. https://doi.org/10.1080/02640414.2010.523087.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Jones PA, Herrington LC, Munro AG, Graham-Smith P. Is there a relationship between landing, cutting, and pivoting tasks in terms of the characteristics of dynamic valgus? Am J Sports Med. 2014;42(9):2095–102. https://doi.org/10.1177/0363546514539446.

    Article  PubMed  Google Scholar 

  72. Nagano Y, Ida H, Akai M, Fukubayashi T. Biomechanical characteristics of the knee joint in female athletes during tasks associated with anterior cruciate ligament injury. Knee. 2009;16(2):153–8. https://doi.org/10.1016/j.knee.2008.10.012.

    Article  PubMed  Google Scholar 

  73. Pollard CD, Sigward SM, Powers CM. Gender differences in hip joint kinematics and kinetics during side-step cutting maneuver. Clin J Sport Med. 2007;17(1):38–42. https://doi.org/10.1097/JSM.0b013e3180305de8.

    Article  PubMed  Google Scholar 

  74. Ramsbottom R, Brewer J, Williams C. A progressive shuttle run test to estimate maximal oxygen uptake. Br J Sports Med. 1988;22(4):141–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Okada T, Huxel KC, Nesser TW. Relationship between core stability, functional movement, and performance. J Strength Cond Res. 2011;25(1):252–61. https://doi.org/10.1519/JSC.0b013e3181b22b3e.

    Article  PubMed  Google Scholar 

  76. Noyes FR, Barber-Westin SD. Sportsmetrics ACL intervention training program: components and results. In: Noyes FR, Barber-Westin SD, editors. ACL injuries in the female athlete: causes, impacts, and conditioning programs. 2nd ed. Berlin: Springer-Verlag; 2018. p. 337–76. https://doi.org/10.1007/978-3-662-56558-2_17.

    Chapter  Google Scholar 

  77. Ireland ML, Bolgla LA, Noehren B. Gender differences in core strength and lower extremity function during static and dynamic single-leg squat tests. In: Noyes FR, Barber-Westin SD, editors. ACL injuries in the female athlete. causes, impacts, and conditioning programs. 2nd ed. Berlin: Springer-Verlag; 2018.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sue Barber-Westin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Barber-Westin, S., Noyes, F.R. (2019). Running, Agility, and Sportsmetrics Training. In: Noyes, F., Barber-Westin, S. (eds) Return to Sport after ACL Reconstruction and Other Knee Operations. Springer, Cham. https://doi.org/10.1007/978-3-030-22361-8_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-22361-8_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-22360-1

  • Online ISBN: 978-3-030-22361-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics