Skip to main content

Current Concepts of Plyometric Exercises for the Lower Extremity

  • Chapter
  • First Online:

Abstract

Many sport activities require explosive movements of the lower extremities. Athletes are returning back to competition following knee injuries and surgeries faster than anyone could have predicted 10 years ago. However, that has not always been in the best interest of the patient because of reinjury rates and not being able to return to the same premorbid level of activity. The ability of the clinician to return the athlete back quickly and safely is multifactorial and includes advances in surgical techniques and rehabilitation, such as the use of integrated open and closed kinetic chain exercises, proprioceptive training, neuromuscular reactive dynamic stability exercises, and plyometrics.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Adams K, O’Shea JP, O’Shea KL, Climstein M. The effect of six weeks of squat, plyometric and squat-plyometric training on power production. J Strength Cond Res. 1992;6(1):36–41.

    CAS  Google Scholar 

  2. Bedi JF, Cresswell AG, Engel TJ, Nicol SM. Increase in jumping height associated with maximal effort vertical depth jumps. Res Q Exerc Sport. 1987;58(1):11–5.

    Article  Google Scholar 

  3. Brown AC, Wells TJ, Schade ML, Smith DL, Fehling PC. Effects of plyometric training versus traditional weight training on strength, power, and aesthetic jumping ability in female collegiate dancers. J Dance Med Sci. 2007;11(2):38–44.

    Google Scholar 

  4. Chelly MS, Hermassi S, Aouadi R, Shephard RJ. Effects of 8-week in-season plyometric training on upper and lower limb performance of elite adolescent handball players. J Strength Cond Res. 2014;28(5):1401–10. https://doi.org/10.1519/jsc.0000000000000279.

    Article  PubMed  Google Scholar 

  5. Chimera NJ, Swanik KA, Swanik CB, Straub SJ. Effects of plyometric training on muscle-activation strategies and performance in female athletes. J Athl Train. 2004;39(1):24–31.

    PubMed  PubMed Central  Google Scholar 

  6. de Villarreal ES, Kellis E, Kraemer WJ, Izquierdo M. Determining variables of plyometric training for improving vertical jump height performance: a meta-analysis. J Strength Cond Res. 2009;23(2):495–506. https://doi.org/10.1519/JSC.0b013e318196b7c6.

    Article  PubMed  Google Scholar 

  7. Duda M. Plyometrics: a legitimate form of power training? Phys Sportsmed. 1988;16(3):212–8.

    Article  CAS  PubMed  Google Scholar 

  8. Kyröläinen H, Avela J, McBride JM, Koskinen S, Andersen J, Sipilä S, Takala T, Komi P. Effects of power training on muscle structure and neuromuscular performance. Scand J Med Sci Sports. 2005;15(1):58–64.

    Article  PubMed  Google Scholar 

  9. Ramachandran S, Pradhan B. Effects of short-term two weeks low intensity plyometrics combined with dynamic stretching training in improving vertical jump height and agility on trained basketball players. Indian J Physiol Pharmacol. 2014;58(2):133–6.

    PubMed  Google Scholar 

  10. Ramírez-Campillo R, Andrade DC, Izquierdo M. Effects of plyometric training volume and training surface on explosive strength. J Strength Cond Res. 2013;27(10):2714–22.

    Article  PubMed  Google Scholar 

  11. Wilkerson GB, Colston MA, Short NI, Neal KL, Hoewischer PE, Pixley JJ. Neuromuscular changes in female collegiate athletes resulting from a plyometric jump-training program. J Athl Train. 2004;39(1):17–23.

    PubMed  PubMed Central  Google Scholar 

  12. Chaouachi A, Hammami R, Kaabi S, Chamari K, Drinkwater EJ, Behm DG. Olympic weightlifting and plyometric training with children provides similar or greater performance improvements than traditional resistance training. J Strength Cond Res. 2014;28(6):1483–96. https://doi.org/10.1519/jsc.0000000000000305.

    Article  PubMed  Google Scholar 

  13. Franco-Márquez F, Rodríguez-Rosell D, Gonzalez-Suarez J, Pareja-Blanco F, Mora-Custodio R, Yanez-Garcia J, González-Badillo J. Effects of combined resistance training and plyometrics on physical performance in young soccer players. Int J Sports Med. 2015;94(11):906–14.

    Google Scholar 

  14. Vaczi M, Tollar J, Meszler B, Juhasz I, Karsai I. Short-term high intensity plyometric training program improves strength, power and agility in male soccer players. J Hum Kinet. 2013;36:17–26. https://doi.org/10.2478/hukin-2013-0002.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Vissing K, Brink M, Lønbro S, Sørensen H, Overgaard K, Danborg K, Mortensen J, Elstrøm O, Rosenhøj N, Ringgaard S. Muscle adaptations to plyometric vs. resistance training in untrained young men. J Strength Cond Res. 2008;22(6):1799–810.

    Article  PubMed  Google Scholar 

  16. Davies GJ, Riemann B, Ellenbecker T. Role of isokinetic testing and training after ACL injury and reconstruction. In: Noyes FR, Barber-Westin S, editors. ACL injuries in the female athlete: causes, impacts, and conditioning programs. Berlin: Springer; 2018. p. 567–88. https://doi.org/10.1007/978-3-662-56558-2_24.

    Chapter  Google Scholar 

  17. Fatouros IG, Jamurtas AZ, Leontsini D, Taxildaris K, Aggelousis N, Kostopoulos N, Buckenmeyer P. Evaluation of plyometric exercise training, weight training, and their combination on vertical jumping performance and leg strength. J Strength Cond Res. 2000;14(4):470–6.

    Google Scholar 

  18. Rimmer E, Sleivert G. Effects of a plyometrics intervention program on sprint performance. J Strength Cond Res. 2000;14(3):295–301.

    Google Scholar 

  19. Rodríguez-Rosell D, Franco-Márquez F, Pareja-Blanco F, Mora-Custodio R, Yáñez-García JM, González-Suárez JM, González-Badillo JJ. Effects of 6 weeks resistance training combined with plyometric and speed exercises on physical performance of pre-peak-height-velocity soccer players. Int J Sports Physiol Perform. 2016;11(2):240–6.

    Article  PubMed  Google Scholar 

  20. Saez de Villarreal E, Requena B, Cronin JB. The effects of plyometric training on sprint performance: a meta-analysis. J Strength Cond Res. 2012;26(2):575–84. https://doi.org/10.1519/JSC.0b013e318220fd03.

    Article  PubMed  Google Scholar 

  21. Buchwald JS. Exteroceptive reflexes and movement. Am J Phys Med Rehabil. 1967;46:121–8.

    CAS  Google Scholar 

  22. Ebben WP, VanderZanden T, Wurm BJ, Petushek EJ. Evaluating plyometric exercises using time to stabilization. J Strength Cond Res. 2010;24(2):300–6.

    Article  PubMed  Google Scholar 

  23. Hutton RS, Atwater SW. Acute and chronic adaptations of muscle proprioceptors in response to increased use. Sports Med. 1992;14(6):406–21.

    Article  CAS  PubMed  Google Scholar 

  24. Komi P. Neuromuscular performance: factors influencing force and speed production. Scand J Sports Sci. 1979;1:2–15.

    Google Scholar 

  25. Kyrölänen H, Komi P, Kim D. Effects of power training on neuromuscular performance and mechanical efficiency. Scand J Med Sci Sports. 1991;1(2):78–87.

    Article  Google Scholar 

  26. Markovic G, Mikulic P. Neuro-musculoskeletal and performance adaptations to lower-extremity plyometric training. Sports Med. 2010;40(10):859–95.

    Article  PubMed  Google Scholar 

  27. Makaruk H, Czaplicki A, Sacewicz T, Sadowski J. The effects of single versus repeated plyometrics on landing biomechanics and jumping performance in men. Biol Sport. 2014;31(1):9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Struminger AH, Lewek MD, Goto S, Hibberd E, Blackburn JT. Comparison of gluteal and hamstring activation during five commonly used plyometric exercises. Clin Biomech (Bristol, Avon). 2013;28(7):783–9.

    Article  Google Scholar 

  29. Allerheiligen B, Rogers R. Plyometrics program design. Strength Cond J. 1995;17(4):26–31.

    Article  Google Scholar 

  30. Chu DA, Plummer L. The language of plyometrics. Strength Cond J. 1984;6(5):30–1.

    Article  Google Scholar 

  31. Chu DA, Panariello RA. Jumping into plyometrics: sport specific plyometrics: baseball pitching. Nat Strength Cond Assn J. 1989;11:81–5.

    Article  Google Scholar 

  32. Chu DA. Jumping into plyometrics. Champaign, IL: Leisure Press; 1992.

    Google Scholar 

  33. Chu DA, Cordier DJ. Plyometrics in rehabilitation. In: Ellenbecker TS, editor. Knee ligament rehabilitation. New York: Churchill Livingstone; 2000.

    Google Scholar 

  34. Davies GJ, Matheson JW. Shoulder plyometrics. Sports Med Arthrosc Rev. 2001;9(1):1–18.

    Article  Google Scholar 

  35. Davies G, Riemann BL, Manske R. Current concepts of plyometric exercise. Int J Sports Phys Ther. 2015;10(6):760–86.

    PubMed  PubMed Central  Google Scholar 

  36. Gambetta V, Odgers S. The complete guide to medicine ball training. Sarasota, FL: Optimum Sports Training; 1991.

    Google Scholar 

  37. Heiderscheit B, Rucinski T. Biomechanical and physiologic basis of closed kinetic chain exercises in the upper extremities. Orthop Phys Ther Clin North Am. 2000;9(2):209–18.

    Google Scholar 

  38. Hill J, Leiszler M. Review and role of plyometrics and core rehabilitation in competitive sport. Curr Sports Med Rep. 2011;10(6):345–51.

    Article  PubMed  Google Scholar 

  39. Miyaguchi K, Demura S. Gender difference in ability using the stretch-shortening cycle in the upper extremities. J Strength Cond Res. 2009;23(1):231–6.

    Article  PubMed  Google Scholar 

  40. Lundin P. Plyometrics: a review of plyometric training. Strength Cond J. 1985;7(3):69–76.

    Article  Google Scholar 

  41. Lundin P, Berg W. Plyometrics: a review of plyometric training. Strength Cond J. 1991;13(6):22–34.

    Article  Google Scholar 

  42. Radcliffe JC, Farentinos RC. Plyometrics: explosive power training. Champaign, IL: Human Kinetics; 1985.

    Google Scholar 

  43. Tyler TF, Cuoco A. Plyometric training and drills. In: Andrews JR, Harrelson GL, Wilk KE, editors. Physical rehabilitation of the injured athlete. 3rd ed. Philadelphia: Saunders; 2004.

    Google Scholar 

  44. Voight M. Stretch-strengthening: an introduction to plyometrics. Orthop Phys Ther Clin North Am. 1992;1:243–52.

    Google Scholar 

  45. Chu DC. Plyometrics: the link between strength and speed. Strength Cond J. 1983;5(2):20–1.

    Article  Google Scholar 

  46. Chu DA. Plyometric exercises with the medicine ball. Livermore, CA: Bittersweet Publishing; 1989.

    Google Scholar 

  47. Chu DA. Explosive power and strength. Champaign, IL: Human Kinetics; 1996.

    Google Scholar 

  48. Verkhoshansky Y. Perspectives in the improvement of speed-strength preparation of jumpers. Yessis Rev Sov Phys Educ Sports. 1969;4:28–34.

    Google Scholar 

  49. Verkhoshansky Y. Depth jumping in the training of jumpers. Track Tech. 1973;51:1618–9.

    Google Scholar 

  50. Wathen D. Literature review: explosive/plyometric exercises. Strength Cond J. 1993;15(3):17–9.

    Article  Google Scholar 

  51. Wilt F. Plyometrics: what it is and how it works. Athl J. 1975;55(5):89–90.

    Google Scholar 

  52. Davies GJ. The need for critical thinking in rehabilitation. J Sport Rehabil. 1995;4(1):1–22.

    Article  Google Scholar 

  53. Bosco C, Komi PV. Potentiation of the mechanical behavior of the human skeletal muscle through prestretching. Acta Physiol Scand. 1979;106(4):467–72.

    Article  CAS  PubMed  Google Scholar 

  54. Bosco C, Komi PV, Ito A. Prestretch potentiation of human skeletal muscle during ballistic movement. Acta Physiol Scand. 1981;111(2):135–40.

    Article  CAS  PubMed  Google Scholar 

  55. Fiebert I, Hardy CJ, Werner KL. Electromyographic analysis of the quadriceps femoris during isokinetic eccentric activation. Isokinet Exerc Sci. 1992;2(1):18–23.

    Article  Google Scholar 

  56. Knuttgen HG, Klausen K. Oxygen debt in short-term exercise with concentric and eccentric muscle contractions. J Appl Physiol. 1971;30(5):632–5.

    Article  CAS  PubMed  Google Scholar 

  57. Wilson JM, Flanagan EP. The role of elastic energy in activities with high force and power requirements: a brief review. J Strength Cond Res. 2008;22(5):1705–15.

    Article  PubMed  Google Scholar 

  58. Wu YK, Lien YH, Lin KH, Shih TT, Wang TG, Wang HK. Relationships between three potentiation effects of plyometric training and performance. Scand J Med Sci Sports. 2010;20(1):e80–6. https://doi.org/10.1111/j.1600-0838.2009.00908.x.

    Article  PubMed  Google Scholar 

  59. Behrens M, Mau-Moeller A, Bruhn S. Effect of plyometric training on neural and mechanical properties of the knee extensor muscles. Int J Sports Med. 2014;35(02):101–19.

    CAS  PubMed  Google Scholar 

  60. Riemann BL, Lephart SM. The sensorimotor system, part I: the physiologic basis of functional joint stability. J Athl Train. 2002;37(1):71.

    PubMed  PubMed Central  Google Scholar 

  61. Riemann BL, Lephart SM. The sensorimotor system, part II: the role of proprioception in motor control and functional joint stability. J Athl Train. 2002;37(1):80.

    PubMed  PubMed Central  Google Scholar 

  62. Rowinski M. Afferent neurobiology of the joint. In: Gould JA, Davies GJ, editors. Orthopaedic and sports physical therapy. St. Louis: C.V. Mosby; 1985. p. 50–65.

    Google Scholar 

  63. Asmussen E, Bonde-Petersen F. Storage of elastic energy in skeletal muscles in man. Acta Physiol Scand. 1974;91(3):385–92.

    Article  CAS  PubMed  Google Scholar 

  64. Bosco C, Viitasalo J, Komi P, Luhtanen P. Combined effect of elastic energy and myoelectrical potentiation during stretch-shortening cycle exercise. Acta Physiol Scand. 1982;114(4):557–65.

    Article  CAS  PubMed  Google Scholar 

  65. Cavagna G, Saibene F, Margaria R. Effect of negative work on the amount of positive work performed by an isolated muscle. J Appl Physiol. 1965;20(1):157–8.

    Article  CAS  PubMed  Google Scholar 

  66. Cavagna GA, Dusman B, Margaria R. Positive work done by a previously stretched muscle. J Appl Physiol. 1968;24(1):21–32. https://doi.org/10.1152/jappl.1968.24.1.21.

    Article  CAS  PubMed  Google Scholar 

  67. Thys H, Faraggiana T, Margaria R. Utilization of muscle elasticity in exercise. J Appl Physiol. 1972;32(4):491–4.

    Article  CAS  PubMed  Google Scholar 

  68. Frost DM, Cronin J, Newton RU. A biomechanical evaluation of resistance. Sports Med. 2010;40(4):303–26.

    Article  PubMed  Google Scholar 

  69. van Ingen Schenau GJ, de Koning JJ, de Groot G. Optimisation of sprinting performance in running, cycling and speed skating. Sports Med. 1994;17(4):259–75.

    Article  PubMed  Google Scholar 

  70. Cavagna G, Mazzanti M, Heglund N, Citterio G. Storage and release of mechanical energy by active muscle: a non-elastic mechanism? J Exp Biol. 1985;115(1):79–87.

    CAS  PubMed  Google Scholar 

  71. Newton RU, Murphy AJ, Humphries BJ, Wilson GJ, Kraemer WJ, Häkkinen K. Influence of load and stretch shortening cycle on the kinematics, kinetics and muscle activation that occurs during explosive upper-body movements. Eur J Appl Physiol Occup Physiol. 1997;75(4):333–42.

    Article  CAS  PubMed  Google Scholar 

  72. Nicol C, Avela J, Komi PV. The stretch-shortening cycle : a model to study naturally occurring neuromuscular fatigue. Sports Med. 2006;36(11):977–99.

    Article  PubMed  Google Scholar 

  73. McBride JM, McCaulley GO, Cormie P. Influence of preactivity and eccentric muscle activity on concentric performance during vertical jumping. J Strength Cond Res. 2008;22(3):750–7.

    Article  PubMed  Google Scholar 

  74. Cavanagh PR, Komi PV. Electromechanical delay in human skeletal muscle under concentric and eccentric contractions. Eur J Appl Physiol Occup Physiol. 1979;42(3):159–63.

    Article  CAS  PubMed  Google Scholar 

  75. Cavagna GA. Elastic bounce of the body. J Appl Physiol. 1970;29(3):279–82. https://doi.org/10.1152/jappl.1970.29.3.279.

    Article  CAS  PubMed  Google Scholar 

  76. Grosset J-F, Piscione J, Lambertz D, Pérot C. Paired changes in electromechanical delay and musculo-tendinous stiffness after endurance or plyometric training. Eur J Appl Physiol. 2009;105(1):131.

    Article  PubMed  Google Scholar 

  77. Wilson GJ, Elliott BC, Wood G. The effect on performance of imposing a delay during a stretch-shorten. Med Sci Sports Exerc. 1991;23(3):364–70.

    Article  CAS  PubMed  Google Scholar 

  78. Chmielewski TL, Myer GD, Kauffman D, Tillman SM. Plyometric exercise in the rehabilitation of athletes: physiological responses and clinical application. J Orthop Sports Phys Ther. 2006;36(5):308–19. https://doi.org/10.2519/jospt.2006.2013.

    Article  PubMed  Google Scholar 

  79. Fukunaga T, Kawakarni Y, Muraoka T, Kanehisa H. Muscle and tendon relations in humans: power enhancement in counter-movement exercise. Adv Exp Med Biol. 2002;508:501–5.

    Article  PubMed  Google Scholar 

  80. Kawakami Y, Muraoka T, Ito S, Kanehisa H, Fukunaga T. In vivo muscle fibre behaviour during counter-movement exercise in humans reveals a significant role for tendon elasticity. J Physiol. 2002;540(2):635–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Clarkson PM, Byrnes WC, Gillisson E, Harper E. Adaptation to exercise-induced muscle damage. Clin Sci. 1987;73(4):383–6.

    Article  CAS  Google Scholar 

  82. Davies GJ, Ellenbecker TS. Eccentric isokinetics. Orthop Phys Ther Clin North Am. 1992;1(2):297–336.

    CAS  Google Scholar 

  83. Fridén J, Seger J, Sjöström M, Ekblom B. Adaptive response in human skeletal muscle subjected to prolonged eccentric training. Int J Sports Med. 1983;4(03):177–83.

    Article  PubMed  Google Scholar 

  84. Komi PV, Buskirk E. Effect of eccentric and concentric muscle conditioning on tension and electrical activity of human muscle. Ergonomics. 1972;15(4):417–34.

    Article  CAS  PubMed  Google Scholar 

  85. Komi PV, Rusko H. Quantitative evaluation of mechanical and electrical changes during fatigue loading of eccentric and concentric work. Scand J Rehabil Med Suppl. 1974;3:121–6.

    Article  CAS  PubMed  Google Scholar 

  86. Holcomb WR, Kleiner DM, Chu DA. Plyometrics: considerations for safe and effective training. Strength Cond J. 1998;20(3):36–41.

    Article  Google Scholar 

  87. Murtagh CF, Nulty C, Vanrenterghem J, O’Boyle A, Morgans R, Drust B, Erskine RM. The neuromuscular determinants of unilateral jump performance in soccer players are direction-specific. Int J Sports Physiol Perform. 2018;13(5):604–11.

    Article  PubMed  Google Scholar 

  88. Nyland J, Fisher B, Brand E, Krupp R, Caborn DN. Osseous deficits after anterior cruciate ligament injury and reconstruction: a systematic literature review with suggestions to improve osseous homeostasis. Arthroscopy. 2010;26(9):1248–57.

    Article  PubMed  Google Scholar 

  89. Reiman MP, Rogers ME, Manske RC. Interlimb differences in lower extremity bone mineral density following anterior cruciate ligament reconstruction. J Orthop Sports Phys Ther. 2006;36(11):837–44.

    Article  PubMed  Google Scholar 

  90. van Meer B, Waarsing J, van Eijsden W, Meuffels D, van Arkel E, Verhaar J, Bierma-Zeinstra S, Reijman M. Bone mineral density changes in the knee following anterior cruciate ligament rupture. Osteoarthr Cartil. 2014;22(1):154–61.

    Article  Google Scholar 

  91. Fouré A, Nordez A, Cornu C. Plyometric training effects on Achilles tendon stiffness and dissipative properties. J Appl Physiol. 2010;109(3):849–54.

    Article  PubMed  Google Scholar 

  92. Fouré A, Nordez A, McNair P, Cornu C. Effects of plyometric training on both active and passive parts of the plantarflexors series elastic component stiffness of muscle–tendon complex. J Appl Physiol. 2011;111(3):539–48.

    Article  Google Scholar 

  93. Hirayama K, Iwanuma S, Ikeda N, Yoshikawa A, Ema R, Kawakami Y. Plyometric training favors optimizing muscle–tendon behavior during depth jumping. Front Physiol. 2017;8:16.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Houghton LA, Dawson BT, Rubenson J. Effects of plyometric training on achilles tendon properties and shuttle running during a simulated cricket batting innings. J Strength Cond Res. 2013;27(4):1036–46.

    Article  PubMed  Google Scholar 

  95. Ishikawa M, Komi PV. Effects of different dropping intensities on fascicle and tendinous tissue behavior during stretch-shortening cycle exercise. J Appl Physiol. 2004;96(3):848–52.

    Article  PubMed  Google Scholar 

  96. Kubo K, Morimoto M, Komuro T, Yata H, Tsunoda N, Kanehisa H, Fukunaga T. Effects of plyometric and weight training on muscle-tendon complex and jump performance. Med Sci Sports Exerc. 2007;39(10):1801–10.

    Article  PubMed  Google Scholar 

  97. Kubo K, Ishigaki T, Ikebukuro T. Effects of plyometric and isometric training on muscle and tendon stiffness in vivo. Physiol Rep. 2017;5(15):e13374.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Fouré A, Nordez A, Guette M, Cornu C. Effects of plyometric training on passive stiffness of gastrocnemii and the musculo-articular complex of the ankle joint. Scand J Med Sci Sports. 2009;19(6):811–8.

    Article  PubMed  Google Scholar 

  99. Burgess KE, Connick MJ, Graham-Smith P, Pearson SJ. Plyometric vs. isometric training influences on tendon properties and muscle output. J Strength Cond Res. 2007;21(3):986.

    PubMed  Google Scholar 

  100. Elftman H. Biomechanics of muscle with particular application to studies of gait. J Bone Joint Surg Am. 1966;48(2):363–77.

    Article  CAS  PubMed  Google Scholar 

  101. Saez-Saez de Villarreal E, Requena B, Newton RU. Does plyometric training improve strength performance? A meta-analysis. J Sci Med Sport. 2010;13(5):513–22. https://doi.org/10.1016/j.jsams.2009.08.005.

    Article  PubMed  Google Scholar 

  102. Behrens M, Mau-Moeller A, Mueller K, Heise S, Gube M, Beuster N, Herlyn PK, Fischer D-C, Bruhn S. Plyometric training improves voluntary activation and strength during isometric, concentric and eccentric contractions. J Sci Med Sport. 2016;19(2):170–6.

    Article  PubMed  Google Scholar 

  103. Spurrs RW, Murphy AJ, Watsford ML. The effect of plyometric training on distance running performance. Eur J Appl Physiol. 2003;89(1):1–7.

    Article  PubMed  Google Scholar 

  104. Kannas TM, Kellis E, Amiridis IG. Incline plyometrics-induced improvement of jumping performance. Eur J Appl Physiol. 2012;112(6):2353–61.

    Article  PubMed  Google Scholar 

  105. Kyröläinen H, Avela J, McBride J, Koskinen S, Andersen J, Sipilä S, Takala T, Komi P. Effects of power training on mechanical efficiency in jumping. Eur J Appl Physiol. 2004;91(2-3):155–9.

    Article  PubMed  Google Scholar 

  106. Bigland B, Lippold OC. The relation between force, velocity and integrated electrical activity in human muscles. J Physiol. 1954;123(1):214–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Voigt M, Chelli F, Frigo C. Changes in the excitability of soleus muscle short latency stretch reflexes during human hopping after 4 weeks of hopping training. Eur J Appl Physiol Occup Physiol. 1998;78(6):522–32.

    Article  CAS  PubMed  Google Scholar 

  108. Costello F. Bounding to the top: the complete book on plyometric training. West Bowie, MD: Athletic Training Consultants; 1990.

    Google Scholar 

  109. Ebben WE, Blackard DQ, Jensen RL. Quantification of medicine ball vertical impact forces: estimating effective training loads. J Strength Cond Res. 1999;13(3):271–4.

    Google Scholar 

  110. Ernst G, Moore J, VanLunen B, Ball D. Pondering plyometrics. J Orthop Sports Phys Ther. 1997;25(5):350–2.

    CAS  PubMed  Google Scholar 

  111. Voight ML, Tippett SR. Plyometric exercise. In: Prentice W, Voight M, Hoogenboom B, editors. Musculoskeletal interventions: techniques for therapeutic exercise. New York: McGraw-Hill Publishing; 2006.

    Google Scholar 

  112. Davies GJ. A compendium of isokinetics in clinical usage. 1st ed. La Crosse, WI: S & S Publishers; 1984.

    Google Scholar 

  113. Davies GJ. A compendium of isokinetics in clinical usage. Onalaska, WI: S & S Publishers; 1992.

    Google Scholar 

  114. Albert M. Eccentric muscle training in sports and orthopaedics. New York: Churchill Livingstone; 1991.

    Google Scholar 

  115. DeNuccio DK, Davies GJ, Rowinski MJ. Comparison of quadriceps isokinetic eccentric and isokinetic concentric data using a standard fatigue protocol. Isokinet Exerc Sci. 1991;1(2):81–6.

    Article  Google Scholar 

  116. Ebben WP, Simenz C, Jensen RL. Evaluation of plyometric intensity using electromyography. J Strength Cond Res. 2008;22(3):861–8.

    Article  PubMed  Google Scholar 

  117. Ebben WP, Fauth ML, Kaufmann CE, Petushek EJ. Magnitude and rate of mechanical loading of a variety of exercise modes. J Strength Cond Res. 2010;24(1):213–7.

    Article  PubMed  Google Scholar 

  118. Eldred E. Functional implications of dynamic and static components of the spindle response to stretch. Am J Phys Med Rehabil. 1967;46(1):129–40.

    CAS  Google Scholar 

  119. Wilson GJ, Murphy AJ, Giorgi A. Weight and plyometric training: effects on eccentric and concentric force production. Can J Appl Physiol. 1996;21(4):301–15.

    Article  CAS  PubMed  Google Scholar 

  120. Moritani T. Neural factors versus hypertrophy in the time course of muscle strength gain. Am J Phys Med. 1979;58(3):115–30.

    CAS  PubMed  Google Scholar 

  121. Davies GJ. Open kinetic chain assessment and rehabilitation. Athl Train Sports Health Care Perspect. 1995;1(4):347–70.

    Google Scholar 

  122. Davies GJ, Heiderscheit BC, Konin J. Open and closed kinetic chain exercises: functional application in orthopedics. In: Wadsworth C, editor. Strength and conditioning applications in orthopedics (home study course 98A). Alexandria, VA: Orthopedic Section APTA; 1998. p. 1–19.

    Google Scholar 

  123. Davies GJ, Heiderscheit BC, Clark M. Open and closed kinetic chain rehabilitation. In: Ellenbecker TS, editor. Knee ligament rehabilitation. New York: Churchill Livingstone; 2000. p. 291–300.

    Google Scholar 

  124. Davies GJ. The scientific and clinical rationale for the integrated approach to open and closed kinetic chain rehabilitation. Ortho Phys Ther Clin North Am. 2000;9:247–67.

    Google Scholar 

  125. Davies GJ. Application of the concepts of periodization to rehabilitation. In: Bandy WD, editor. Current trends in therapeutic exercise for the rehabilitation of the athlete (home study course). La Crosse, WI: SPTS; 1997.

    Google Scholar 

  126. Voight ML, Hardin JA, Blackburn TA, Tippett S, Canner GC. The effects of muscle fatigue on and the relationship of arm dominance to shoulder proprioception. J Orthop Sports Phys Ther. 1996;23(6):348–52.

    Article  CAS  PubMed  Google Scholar 

  127. Jarvis MM, Graham-Smith P, Comfort P. A methodological approach to quantifying plyometric intensity. J Strength Cond Res. 2016;30(9):2522–32.

    Article  PubMed  Google Scholar 

  128. Jensen RL, Ebben WP. Quantifying plyometric intensity via rate of force development, knee joint, and ground reaction forces. J Strength Cond Res. 2007;21(3):763–7.

    PubMed  Google Scholar 

  129. Fleck SJ, Kraemer WJ. Periodization breakthrough: the ultimate training system. New York: Advanced Research Press; 1996.

    Google Scholar 

  130. American College of Sports Medicine. American College of Sports Medicine position stand. Progression models in resistance training for healthy adults. Med Sci Sports Exerc. 2009;41(3):687–708. https://doi.org/10.1249/MSS.0b013e3181915670.

    Article  Google Scholar 

  131. Baechle TR, Earle RW. Essentials of strength training and conditioning: national strength and conditioning association. 3rd ed. Champaign, IL: Human Kinetics; 2008.

    Google Scholar 

  132. Elias AR, Hammill CD, Mizner RL. The effect of body weight support on kinetics and kinematics of a repetitive plyometric task. J Appl Biomech. 2016;32(1):69–77. https://doi.org/10.1123/jab.2015-0077.

    Article  PubMed  Google Scholar 

  133. Davies GJ, Zillmer DA. Functional progression of a patient through a rehabilitation program. Orthop Phys Ther Clin North Am. 2000;9:103–18.

    Google Scholar 

  134. Davies GJ. Individualizing the return to sports after anterior cruciate ligament reconstruction. Oper Tech Orthop. 2017;27(1):70–8.

    Article  Google Scholar 

  135. Davies GJ, McCarty E, Provencher M, Manske RC. ACL return to sport guidelines and criteria. Curr Rev Musculoskelet Med. 2017;10:307–14. https://doi.org/10.1007/s12178-017-9420-9.

    Article  PubMed  PubMed Central  Google Scholar 

  136. Manske RC, DeCarlo M, Davies GJ, Paterno MV. Anterior cruciate ligament reconstruction: rehabilitation concepts. Orthop Knowledge Online J. 2017;15(3):1–8.

    Google Scholar 

  137. Crowther RG, Spinks WL, Leicht AS, Spinks CD. Kinematic responses to plyometric exercises conducted on compliant and noncompliant surfaces. J Strength Cond Res. 2007;21(2):460–5. https://doi.org/10.1519/r-19645.1.

    Article  PubMed  Google Scholar 

  138. Ellenbecker TS, Davies GJ. Closed kinetic chain exercises: a comprehensive guide to multiple joint exercise. Champaign, IL: Human Kinetics; 2001.

    Google Scholar 

  139. Tabor MA, Davies GJ, Kernozek TW, Negrete RJ, Hudson V. A multicenter study of the test–retest reliability of the lower extremity functional test. J Sport Rehabil. 2002;11(3):190–201.

    Article  Google Scholar 

  140. Binder D, Brown-Cross D, Shamus E, Davies G. Peak torque, total work and power values when comparing individuals with Q-angle differences. Isokinet Exerc Sci. 2001;9(1):27–30.

    Article  Google Scholar 

  141. Davies GJ, Wilk KE, Ellenbecker TS. Assessment of strength. In: Malone TR, McPoil TO, Nitz AJ, editors. Orthopedic and sports physical therapy. St. Louis: Mosby; 1997. p. 225–56.

    Google Scholar 

  142. Davies GJ, Ellenbecker TS. The scientific and clinical application of isokinetics in evaluation and treatment of the athlete. In: Andrews JR, Harrelson GL, Wilk KE, editors. Physical rehabilitation of the injured athlete. 2nd ed. Philadelphia, PA: W.B. Saunders; 1999. p. 219–59.

    Google Scholar 

  143. Davies GJ, Heiderscheit BC, Brinks K. Test interpretation. In: Brown LE, editor. Isokinetics in human performance. Champaign, IL: Human Kinetics; 2000. p. 1–24.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bryan L. Riemann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Davies, G.J., Riemann, B.L. (2019). Current Concepts of Plyometric Exercises for the Lower Extremity. In: Noyes, F., Barber-Westin, S. (eds) Return to Sport after ACL Reconstruction and Other Knee Operations. Springer, Cham. https://doi.org/10.1007/978-3-030-22361-8_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-22361-8_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-22360-1

  • Online ISBN: 978-3-030-22361-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics