Skip to main content

Assessment of Some Diurnal Streamwater Profiles in Western and Northern Romania in Relation to Meteorological Data

  • Chapter
  • First Online:
Water Resources Management in Romania

Abstract

Water and air measurements were conducted in river valleys of Romania to detect the shapes of diurnal profiles and their spatial variations. The studied river water parameters are pressure/level, temperature, and electrical conductivity. The air parameters, used for understanding the diurnal water profiles are pressure, temperature and relative humidity. Time intervals used in this study vary from few weeks to few months and sites are grouped depending on common time intervals for comparison purposes. The selected water monitoring sites have similar diurnal shapes of the studied parameters in areas with the natural flow (afternoon maximum water level and temperature and minimum electrical conductivity; the opposite events occur early in the morning) and disturbed evolutions in areas where dams and hydroelectric plants exist. The natural particular monitoring sites characteristics can also significantly impact the results of measurements. The mean diurnal water profiles, obtained from detrended time series, can be used for theoretical models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Benyahya L, Caissie D, El-Jabi N, Satish MG (2010) Comparison of microclimate vs. remote meteorological data and results applied to a water temperature model (Miramichi River, Canada. J Hydrol 380:247–259

    Article  Google Scholar 

  2. Bond BJ, Jones JA, Moore G, Phillips N, Post D, McDonnell JJ (2002) The zone of vegetation influence on baseflow revealed by diel patterns of streamflow and vegetation water use in a headwater basin. Hydrol Process 16:1671–1677

    Article  Google Scholar 

  3. Briciu A-E (2014) Wavelet analysis of lunar semidiurnal tidal influence on selected inland rivers across the globe. Sci Rep 4:4193. https://doi.org/10.1038/srep04193

    Article  CAS  Google Scholar 

  4. Briciu A-E (2017) Studiu de hidrologie urbană în arealul municipiului Suceava (Urban hydrology study in Suceava municipality area). Ștefan cel Mare University Publishing House, Suceava. ISBN 978-973-666-506-6

    Google Scholar 

  5. Briciu A-E (2018) Diurnal, semidiurnal, and fortnightly tidal components in orthotidal proglacial rivers. Environ Monit Assess 190(3):160. https://doi.org/10.1007/s10661-018-6513-x

    Article  Google Scholar 

  6. Briciu A-E, Mihăilă D, Oprea-Gancevici DI, Bistricean P-I (2016) Analysis of surface thermal waters in Baile Herculane area. In: SGEM2016 conference proceedings, vol 1, pp 63–70. ISSN 1314-2704

    Google Scholar 

  7. Briciu A-E, Mihăilă D, Oprea-Gancevici DI, Bistricean P-I (2017) Some aspects regarding the thermal water temperature of some sites in Băile Felix, Geoagiu-Băi and Hârșova areas, Romania. In: SGEM2017 conference proceedings, vol 17, no 31, pp 601–608. ISBN 978-619-7408-04-1/ISSN 1314-2704

    Google Scholar 

  8. Briciu A-E, Mihăilă D, Oprea DI, Bistricean P-I, Lazurca LG (2018) Orthotidal signal in the electrical conductivity of an inland river. Environ Monit Assess 190(5):282. https://doi.org/10.1007/s10661-018-6676-5

    Article  Google Scholar 

  9. Briciu A-E, Oprea-Gancevici DI (2015) Diurnal thermal profiles of selected rivers in Romania. In: SGEM2015 conference proceedings, vol 1, pp 221–228. ISSN 1314-2704

    Google Scholar 

  10. Briciu A-E, Oprea-Gancevici DI, Mihăilă D, Bistricean, P-I (2016) Analysis of surface thermal waters in Moneasa area. In: SGEM2016 conference proceedings, vol 1, pp 71–78. ISSN 1314-2704

    Google Scholar 

  11. Burger H (1945) Einfluss des Waldes auf den Stand der Sewasser. Tech. rep., IV Mittlg. Der Wasserhaushalt im Valle di Melera von 1934/35 bis 1943/44 – Mitt.d. Schweiz. Anstalt f. forstl. Versuchsw., 25 Bd. 1

    Google Scholar 

  12. Caissie D (2006) The thermal regime of rivers: a review. Freshw Biol 51:1389–1406

    Article  Google Scholar 

  13. Callède J (1977) Oscillations journalières du débit des rivières en l’absence de precipitations. Cahier ORSTOM, série Hydrologie 14:219–283

    Google Scholar 

  14. Constantz J, Thomas CL, Zellweger G (1994) Influence of diurnal variations in stream temperature on streamflow loss and groundwater recharge. Water Resour Res 30:3253–3264

    Article  Google Scholar 

  15. Gribovszki Z, Szilágyi J, Kalicz P (2010) Diurnal fluctuations in shallow groundwater levels and streamflow rates and their interpretation—a review. J Hydrol 385:371–383

    Article  Google Scholar 

  16. Jasonsmith JF, Macdonald BCT, White I (2017) Earth tide-induced fluctuations in the salinity of an inland river, New South Wales, Australia: a short-term study. Environ Monit Assess 189(4):188. https://doi.org/10.1007/s10661-017-5880-z

    Article  CAS  Google Scholar 

  17. Kinouchi T, Yagi H, Miyamoto M (2007) Increase in stream temperature related to anthropogenic heat input from urban wastewater. J Hydrol 335:78–88

    Article  Google Scholar 

  18. Lundquist JD, Cayan DR (2002) Seasonal and spatial patterns in diurnal cycles in streamflow in the western United States. J Hydrometeorol 3:591–1603

    Article  Google Scholar 

  19. Mihăilă D, Briciu A-E (2012) Actual climate evolution in the NE Romania. Manifestations and consequences. In: 12th international multidisciplinary scientific geoconference, SGEM2012 conference proceedings, vol 4, pp 241–252. ISSN 1314-2704

    Google Scholar 

  20. Morgenschweis G (1995) Kurzzeitige vorhersage der wasserentnahme aus einem flussgebiet. Vortragsmanusskript zur 8. Wiss. Tagung Hydrologie und wasserwirtschaft zum Thema Verfügbarkeit von Wasser vom 22/23. Marz 1995 in Bochum, 16 Seite

    Google Scholar 

  21. Nimick DA, Gammons CH, Parker SR (2011) Diel biogeochemical processes and their effect on the aqueous chemistry of streams: a review. Chem Geol 283(1–2):3–17

    Article  CAS  Google Scholar 

  22. Nimick DA, Cleasby TE, McCleskey RB (2005) Seasonality of diel cycles of dissolved trace-metal concentrations in a Rocky Mountain stream. Environ Geol 47:603–614

    Article  CAS  Google Scholar 

  23. Poole GC, Berman CH (2001) An ecological perspective on in-stream temperature: natural heat dynamics and mechanisms of human-caused thermal degradation. Environ Manag 27:787–802

    Article  CAS  Google Scholar 

  24. Prats J, Val R, Armengol J, Dolz J (2010) Temporal variability in the thermal regime of the lower Ebro River (Spain) and alteration due to anthropogenic factors. J Hydrol 387:105–118

    Article  Google Scholar 

  25. Rycroft HB (1955) The effect of riparian vegetation on water-loss from an irrigation furrow at Jonkershoek. J South Afr For Assoc 26:2–9

    Google Scholar 

  26. Smith K (1981) The prediction of river water temperatures/Prédiction des températures des eaux de rivière. Hydrol Sci J 26(1):19–32. https://doi.org/10.1080/02626668109490859

    Article  Google Scholar 

  27. Troxell HC (1936) The diurnal fluctuation in the ground-water and flow of the Santa Anna River and its meaning. Trans Am Geophys Union 17(4):496–504

    Article  Google Scholar 

  28. Tschinkel HM (1963) Short-term fluctuation in streamflow as related to evaporation. J Geophys Res 68(24):6459–6469. https://doi.org/10.1029/JZ068i024p06459

    Article  Google Scholar 

  29. Verma RD (1986) Environmental impacts of irrigation projects. J Irrig Drain Eng 112:322–330

    Article  Google Scholar 

  30. Webb BW, Hannah DM, Moore RD, Brown LE, Nobilis F (2008) Recent advances in stream and river temperature research. Hydrol Process 22:902–918

    Article  Google Scholar 

  31. Wicht CL (1941) Diurnal fluctuation in Jonkershoeck streams due to evaporation and transpiration. J South Afr For Assoc 7:34–49

    Google Scholar 

Download references

Acknowledgements

Some measurements of this study were conducted within the research project entitled “Field studies in orthotidal potamology”. This work was supported by a grant of the Romanian National Authority for Scientific Research and Innovation, CNCS – UEFISCDI, project number PN-II-RU-TE2014-4-2900.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrei-Emil Briciu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Briciu, AE., Oprea, D.I., Mihăilă, D., Lazurca (Andrei), L.G., Costan (Briciu), LA., Bistricean, PI. (2020). Assessment of Some Diurnal Streamwater Profiles in Western and Northern Romania in Relation to Meteorological Data. In: Negm, A., Romanescu, G., Zeleňáková, M. (eds) Water Resources Management in Romania. Springer Water. Springer, Cham. https://doi.org/10.1007/978-3-030-22320-5_14

Download citation

Publish with us

Policies and ethics