Skip to main content

What Is Biotremology?

  • Chapter
  • First Online:
Biotremology: Studying Vibrational Behavior

Part of the book series: Animal Signals and Communication ((ANISIGCOM,volume 6))

Abstract

When a new discipline emerges in science with many unique characteristics, but others that are shared with sister disciplines, defining the boundaries is critical. What is and is not part of the core precepts of this discipline is probably easier to establish within the community than what exists along the edges. Due to our perceptional bias in favor of airborne mechanical signals, a distinction between bioacoustics and biotremology, the former studying communication by sound and the latter by surface-borne mechanical waves, may appear unnecessary. In this chapter, the authors make the first concerted effort to define biotremology with comprehensive arguments, in order to address the specifics of this modality, while still leaving space for exploration and growth of this still-emerging field. Biotremology studies are not limited to intraspecific vibrational communication, but also include other behaviors guided by substrate vibrations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bradbury JW, Vehrencamp SL (1998) Principles of animal communication. Sinauer, Sunderland, MA

    Google Scholar 

  • Brownell PH, van Hemmen JL (2001) Vibration sensitivity and a computational theory for prey-localizing behavior in sand scorpions. Am Zool 41:1229–1240

    Google Scholar 

  • Busnel RG, Pasquinelly F, Dumortier B (1955) La trémulation du corps et la transmission aux des vibrations en résultant comme moyen d’information à courte portée des Ephippigéres máles et femelles. Bull Soc Zool Fr 80:18–22

    Google Scholar 

  • Cocroft R, Gogala M, Hill PSM, Wessel A (2014) Fostering research progress in a rapidly growing field. In: Cocroft R, Gogala M, Hill PSM, Wessel A (eds) Studying vibrational communication. Springer, Berlin, pp 3–12

    Google Scholar 

  • Čokl A, Millar JC (2009) Manipulation of insect signaling for monitoring and control of pest insects. In: Ishaaya I, Horowitz AR (eds) Biorational control of arthropod pests. Springer, Heidelberg, pp 279–316

    Google Scholar 

  • Derlink M, Pavlovčič P, Stewart AJA, Virant-Doberlet M (2014) Mate recognition in duetting species: the role of male and female vibrational signals. Anim Behav 90:181–193

    Google Scholar 

  • Emerson AE, Simpson RC (1929) Apparatus for the detection of substratum communication among termites. Science 69:648–649

    CAS  PubMed  Google Scholar 

  • Endler JA (1993) Some general comments on the evolution and design of animal communication systems. Philos Trans R Soc B 340:215–225

    CAS  Google Scholar 

  • Endler JA (2014) The emerging field of tremology. In: Cocroft R, Gogala M, Hill PSM, Wessel A (eds) Studying vibrational communication. Springer, Berlin, pp vii–vix

    Google Scholar 

  • Eriksson A, Anfora G, Lucchi A, Lanzo F, Virant-Doberlet M, Mazzoni V (2012) Exploitation of insect vibrational signals reveals a new method of pest management. PLoS One 7:e32954

    CAS  PubMed  PubMed Central  Google Scholar 

  • Foxe JJ, Wylie GR, Martinez A, Schroeder CE, Javitt DC, Guilfoyle D, Ritter W, Murray MM (2002) Auditory-somatosensory multisensory processing in auditory association cortex: an fMRI study. J Neurophysiol 88:540–543

    PubMed  Google Scholar 

  • Ghosh R, Mishra RC, Choi B, Kwon YS, Bae DW et al (2016) Exposure to sound vibrations lead to transcriptomic, proteomic and hormonal changes in Arabidopsis. Sci Rep 6:33370

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gogala M, Čokl A, Drašlar K, Blaževič A (1974) Substrate-borne sound communication in Cydnidae (Heteroptera). J Comp Physiol 94:25–31

    Google Scholar 

  • Hill PSM, Wessel A (2016) Primer: biotremology. Curr Biol 26:R187–R191

    CAS  PubMed  Google Scholar 

  • Ichikawa T, Ishii S (1974) Mating signal of the brown planthopper Nilaparvata lugens Stål (Homoptera: Delphacidae): vibration of the substrate. Appl Entomol Zool 9:196–198

    Google Scholar 

  • Korinšek G, Derlink M, Virant-Doberlet M, Tuma T (2016) An autonomous system for detecting and attracting leafhopper males using species- and sex-specific substrate-borne vibrational signals. Comput Electron Agric 123:29–39

    Google Scholar 

  • Krebs HA (1975) The august Krogh principle: “for many problems there is an animal on which it can be most conveniently studied”. J Exp Zool 194:221–226

    CAS  PubMed  Google Scholar 

  • Krugner R, Gordon SD (2018) Mating disruption of Homalodisca vitripennis (Germar) (Hemiptera: Cicadellidae) by playback of vibrational signals in vineyard trellis. Pest Manag Sci 74:2013–2019

    CAS  Google Scholar 

  • Kuhelj A, Virant-Doberlet M (2017) Male-male interactions and male mating success in the leafhopper Aphrodes makarovi. Ethology 123:425–433

    Google Scholar 

  • Kuhelj A, de Groot M, Blejec A, Virant-Doberlet M (2015a) The effect of timing of female vibrational reply on male signaling and searching behaviour in the leafhopper Aphrodes makarovi. PLoS One 10:e0139020

    PubMed  PubMed Central  Google Scholar 

  • Kuhelj A, de Groot M, Pajk F, Simčič T, Virant-Doberlet M (2015b) Energetic cost of signaling in leafhopper vibrational signaling. Behav Ecol Sociobiol 69:815–828

    Google Scholar 

  • Kuhelj A, de Groot M, Blejec A, Virant-Doberlet M (2016) Sender-receiver dynamics in leafhopper duetting. Anim Behav 114:139–146

    Google Scholar 

  • Lakes-Harlan R, Strauß J (2014) Functional morphology and evolutionary diversity of vibration receptors in insects. In: Cocroft R, Gogala M, Hill PSM, Wessel A (eds) Studying vibrational communication. Springer, Berlin, pp 277–302

    Google Scholar 

  • Mankin RW (2012) Application of acoustics in insect pest management. CAB Rev 7:1–7

    Google Scholar 

  • Matsuhashi M, Pankrushina AN, Takeuchi S, Ohshima H, Miyoi H, Endoh K, Murayama K, Watanabe H, Endo S, Tobi M, Mano Y, Hyodo M, Kobayashi T, Kaneko T, Otani S, Yoshimura S, Harata A, Sawada T (1998) Production of sound waves by bacterial cells and the response of bacterial cells to sound. J Gen Appl Microbiol 44:49–55

    CAS  PubMed  Google Scholar 

  • Mazzoni V, Lucchi A, Čokl A, Prešern J, Virant-Doberlet M (2009) Disruption of the reproductive behaviour of Scaphoideus titanus by playback of vibrational signals. Entomol Exp Appl 133:174–185

    Google Scholar 

  • Mazzoni V, Polajnar J, Baldini M, Rossi Stacconi MV, Anfora G, Guidetti R, Maistrello L (2017) Use of substrate-borne vibrational signals to attract brown marmorated stink bug Halyomorpha halys. J Pest Sci 90:219–1229

    Google Scholar 

  • Morris GK (1980) Calling display and mating behavior of Copiphora rhinoceros Pictet (Orthoptera: Tettigoniidae). Anim Behav 28:42–51

    Google Scholar 

  • Morris GK, Mason AC, Wall P, Belwood JJ (1994) High ultrasonic and tremulation signals in Neotropical katydids (Orthoptera: Tettigoniidae). J Zool (Lond) 233:129–163

    Google Scholar 

  • Ossiannilsson F (1949) Insect drummers. A study on the morphology and function of the sound-producing organ of the Swedish Homoptera Auchenorrhyncha with notes on their sound production. Opusc Entomol Suppl 10:1–146

    Google Scholar 

  • Pearman JV (1928) On sound production in the Psocoptera and on a presumed stridulatory organ. Entomol Monog Mag 64(3rd ser, v.14):179–186

    Google Scholar 

  • Polajnar J, Eriksson A, Lucchi A, Anfora G, Virant-Doberlet M, Mazzoni V (2015) Manipulating behaviour with substrate-borne vibrations – potential for insect pest control. Pest Manag Sci 71:15–23

    CAS  PubMed  Google Scholar 

  • Polajnar J, Eriksson A, Lucchi A, Virant-Doberlet M, Mazzoni V (2016) Mating disruption of a grapevine pest using mechanical vibrations: from laboratory to the field. J Pest Sci 89:909–921

    Google Scholar 

  • Schroeder CE, Lindsley RW, Specht C, Marcovici A, Smiley JF, Javitt DC (2001) Somatosensory input to auditory association cortex in the macaque monkey. J Neurophysiol 85:1322–1327

    CAS  PubMed  Google Scholar 

  • Shaw SR (1994) Detection of airborne sound by a cockroach ‘vibration detector’: a possible missing link in insect auditory evolution. J Exp Biol 193:13–47

    CAS  PubMed  Google Scholar 

  • Snarr KA (2005) Seismic activity response as observed in mantled howlers (Alouatta palliata), Cuero y Salado Wildlife Refuge, Honduras. Primates 46:281–285

    PubMed  Google Scholar 

  • Strauß J, Stumpner A (2015) Selective forces on origin, adaptation and reduction of tympanal ears in insects. J Comp Physiol A 201:155–169

    Google Scholar 

  • Stritih N, Stumpner A (2009) Vibratory interneurons in the non-hearing cave cricket indicate evolutionary origin of sound processing elements in Ensifera. Zoology 112:48–68

    PubMed  Google Scholar 

  • Strübing H (1958) Lautäuβerung – der entscheidende Faktor für das Zusammenfinden der Geschlechter bei Kleinzikaden (Homoptera – Auchenorrhyncha) (Vorläufige Mitteilung). Zoologische Beiträge. Neue Folge (Berlin) 4(1):15–21

    Google Scholar 

  • Strübing H (2006) Vibratory communication and mating behavior in the European lantern fly, Dictyophara europea (Dictyopharidae, Hemiptera). In: Drosopoulos S, Claridge MF (eds) Insect sounds and communication: physiology, behavior, ecology and evolution. Taylor & Francis, Boca Raton, FL, pp 351–355

    Google Scholar 

  • Strübing H (2014) Sound production: the crucial factor for mate finding in planthoppers (Homoptera: Auchenorrhyncha) (preliminary communication). In: Cocroft R, Gogala M, Hill PSM, Wessel A (eds) Studying vibrational communication. Springer, Berlin, pp 53–61

    Google Scholar 

  • Tributsch H (1982) When the snakes awake: animals and earthquake prediction. MIT, Cambridge

    Google Scholar 

  • Virant-Doberlet M, Čokl A, Zorović M (2006) Use of substrate vibrations for orientation: from behaviour to physiology. In: Drosopoulos S, Claridge MF (eds) Insect sounds and communication: physiology, behavior, ecology and evolution. Taylor & Francis, Boca Raton, FL, pp 81–97

    Google Scholar 

  • Virant-Doberlet M, King RA, Polajnar J, Symondson WOC (2011) Molecular diagnostics reveal spiders that exploit prey vibrational signals used in sexual communication. Mol Ecol 20:2204–2216

    PubMed  Google Scholar 

  • Warkentin K (2005) How do embryos assess risk? Vibrational cues in predator-induced hatching of red-eyed treefrogs. Anim Behav 70:59–71

    Google Scholar 

  • Warkentin K, Caldwell MS, Mcdaniel JG (2006) Temporal pattern cues in vibrational risk assessment by embryos of the red-eyed treefrog, Agalychnis callidryas. J Exp Biol 209:1376–1384

    PubMed  Google Scholar 

  • Wessel A (2014) Hildegard Strübing: a pioneer in vibrational communication research. In: Cocroft R, Gogala M, Hill PSM, Wessel A (eds) Studying vibrational communication. Springer, Berlin, pp 47–51

    Google Scholar 

  • Wessel A, Hoch H, Asche M, von Rintelen T, Stelbrink B, Heck V, Stone FD, Howarth FG (2013) Rapid species radiation initiated by founder effects in Hawaiian cave planthoppers. Proc Natl Acad Sci USA 110:9391–9396

    CAS  PubMed  Google Scholar 

  • Wessel A, Mühlethaler R, Hartung V, Kuštor V, Gogala M (2014) The tymbal: evolution of a complex vibration-producing organ in the Tymbalia (Hemiptera excl. Sternorrhyncha). In: Cocroft R, Gogala M, Hill PSM, Wessel A (eds) Studying vibrational communication. Springer, Berlin, pp 395–444

    Google Scholar 

  • Yack JE (2004) The structure and function of auditory chordotonal organs in insects. Microsc Res Tech 63:315–337

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peggy S. M. Hill .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hill, P.S.M., Virant-Doberlet, M., Wessel, A. (2019). What Is Biotremology?. In: Hill, P., Lakes-Harlan, R., Mazzoni, V., Narins, P., Virant-Doberlet, M., Wessel, A. (eds) Biotremology: Studying Vibrational Behavior . Animal Signals and Communication, vol 6. Springer, Cham. https://doi.org/10.1007/978-3-030-22293-2_2

Download citation

Publish with us

Policies and ethics