Skip to main content

Hypothetical Solution-Culture System Sub-Models

  • Chapter
  • First Online:
Book cover Plant-Plant Allelopathic Interactions III

Abstract

This chapter describes the source (input)-sink relationships, processes, mechanisms and causes and effects of phenolic acids such as ferulic acid, p-coumaric acid, p-hydroxybenzoic acid and/or vanillic acid by means of a conceptual and hypothetical sub-models for a cucumber seedling-solution culture system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alberts B, Bray D, Lewis J, Raff M, Roberts K, Watson JD (1989) Molecular biology of the cell, 2nd edn. Garland Publishing, New York

    Google Scholar 

  • Bergmark CL, Jackson WA, Volk RJ, Blum U (1992) Differential inhibition by ferulic acid of nitrate and ammonium uptake in Zea mays L. Plant Physiol 98:639–645

    Article  CAS  Google Scholar 

  • Blum U (2011) Plant–plant allelopathic interactions: phenolic acids, cover crops, and weed emergence. Springer, Dordrecht

    Book  Google Scholar 

  • Blum U (2014) Plant–plant allelopathic interactions II: laboratory bioassays for water-soluble compounds with an emphasis on phenolic acids. Springer, Cham

    Book  Google Scholar 

  • Blum U, Dalton BR (1985) Effects of ferulic acid, an allelopathic compound, on leaf expansion of cucumber seedlings grown in nutrient culture. J Chem Ecol 11:279–301

    Article  CAS  Google Scholar 

  • Blum U, Gerig TM (2005) Relationships between phenolic acid concentrations, transpiration, water utilization, leaf area expansion, and uptake of phenolic acids: nutrient bioassay studies. J Chem Ecol 31:1907–1932

    Article  CAS  Google Scholar 

  • Blum U, Rebbeck J (1989) Inhibition and recovery of cucumber roots given multiple treatments of ferulic acid in nutrient culture. J Chem Ecol 15:917–928

    Article  CAS  Google Scholar 

  • Blum U, Dalton BR, Shann JR (1985a) Effects of various mixtures of ferulic acid and some of its microbial metabolic products on cucumber leaf expansion and dry matter in nutrient culture. J Chem Ecol 11:619–641

    Article  CAS  Google Scholar 

  • Blum U, Dalton BR, Shann JR (1985b) Effects of ferulic and p-coumaric acids in nutrient culture of cucumber leaf expansion as influenced by pH. J Chem Ecol 11:1567–1582

    Article  CAS  Google Scholar 

  • Booker FL, Blum U, Fiscue EL (1992) Short-term effects of ferulic acid on ion uptake and water relations in cucumber seedlings. J Exp Bot 43:649–655

    Article  CAS  Google Scholar 

  • Burström H (1959) Growth and formation of intercellulares in root meristems. Physiol Plant 12:371–385

    Article  Google Scholar 

  • Burström H (1965) The physiology of plant roots. In: Baker KF, Snyder WC (eds) Ecology of soil-borne plant pathogens. University California Press, Berkeley, pp 154–159

    Google Scholar 

  • Felle H (1988) Short-term pH regulation in plants. Physiol Plant 74:583–591

    Article  CAS  Google Scholar 

  • Felle HH (2001) pH: signal and messenger in plant cells. Plant Biol 3:577–591

    Article  CAS  Google Scholar 

  • Fry CF (1988) The growing plant cell wall: chemical and metabolic analysis. Longman Scientific and Technical, Harlow

    Google Scholar 

  • Glass ADM (1974) Influence of phenolic acids upon ion uptake III: inhibition of potassium absorption. J Exp Bot 26:1104–1113

    Article  Google Scholar 

  • Glass ADM (1975) Inhibition of phosphate uptake in barley roots by hydroxyl-benzoic acids. Phytochemistry 14:2127–2130

    Article  CAS  Google Scholar 

  • Glass ADM, Dunlop J (1974) Influence of phenolic acids on ion uptake IV: depolarization of membrane potentials. Plant Physiol 54:855–858

    Article  CAS  Google Scholar 

  • Grotewold E (2004) The challenges of moving chemicals within and out of cells: insights into the transport of plant natural products. Planta 219:906–909

    Article  CAS  Google Scholar 

  • Harborne JB (1982) Introduction to ecological biochemistry. Academic, London

    Google Scholar 

  • Harper JR, Balke NE (1981) Characterization of the inhibition of K+ absorption in oat roots by salicylic acid. Plant Physiol 68:1439–1353

    Article  Google Scholar 

  • Hartel PG (1998) The soil habitat. In: Sylvia DM, Fuhrmann JJ, Hartel PG, Zuberer DA (eds) Principles and applications of soil microbiology. Prentice Hall, Upper Saddle River, pp 21–43

    Google Scholar 

  • Hoagland DR, Arnon DJ (1950) The water–culture method of growing plants without soil. Calif Agric Exp Sta Circ 347

    Google Scholar 

  • Holappa LD, Blum U (1991) Effects of exogenously applied ferulic acid, a potential allelopathic compounds, on leaf growth, water utilization, and endogenous abscisic acid levels of tomato, cucumber, and bean. J Chem Ecol 17:865–886

    Article  CAS  Google Scholar 

  • Hughes GR, Averre CW, Sorensen KA (1983) Growing pickling cucumbers in North Carolina, AG 315. North Carolina Cooperative Extension Service, Raleigh NC

    Google Scholar 

  • Kurkdjian A, Guern J (1989) Intercellular pH: measurement and importance of cell activity. Ann Rev Plant Mol Biol 40:271–303

    Article  CAS  Google Scholar 

  • Lehman ME, Blum U (1999a) Influence of pretreatment stresses on inhibitory effects of ferulic acid, an allelopathic phenolic acid. J Chem Ecol 25:1517–1529

    Article  CAS  Google Scholar 

  • Lehman ME, Blum U (1999b) Evaluation of ferulic acid uptake as measurement of allelochemical dose: effective concentration. J Chem Ecol 25:2585–2600

    Article  CAS  Google Scholar 

  • Lehman ME, Blum U, Gerig MG (1994) Simultaneous effects of ferulic and p-coumaric acids on cucumber leaf expansion in split-root experiments. J Chem Ecol 20:1773–1782

    Article  CAS  Google Scholar 

  • Lyu S-W, Blum U (1990) Effects of ferulic acid, an allelopathic compound, on net P, K, and water uptake by cucumber seedlings in a split-root system. J Chem Ecol 16:2429–2439

    Article  CAS  Google Scholar 

  • Lyu S-W, Blum U, Gerig TM, O’Brien TE (1990) Effects of mixtures of phenolic acids on phosphorus uptake by cucumber seedlings. J Chem Ecol 16:2559–2567

    Article  CAS  Google Scholar 

  • McPherson DC (1939) Cortical air spaces in the roots of Zea mays L. New Phytol 38:190–202

    Article  CAS  Google Scholar 

  • Politycka B, Kozlowska M, Mielcarz B (2004) Cell wall peroxidases in cucumber roots induced by phenolic allelochemicals. Allelopathy J 13:29–35

    Google Scholar 

  • Razika B, Abbes B, Messaoud C, Soufi K (2010) Phenol and benzoic acid degradation by Pseudomonas aeruginosa. J Water Resour Protect 2:788–791

    Article  CAS  Google Scholar 

  • Rendal C, Kusk KO, Trap S (2011) Optimal choice of pH for toxicity and bioaccumulation studies of ionized organic chemicals. Environ Toxicol Chem 30:2395–2406

    Article  CAS  Google Scholar 

  • Savage DC, Fletcher M (1985) Bacterial adhesion: mechanisms and physiological significance. Plenum Press, New York

    Book  Google Scholar 

  • Shann JR, Blum U (1987a) The uptake of ferulic and p-hydroxybenzoic acids by Cucumis sativus. Phytochemistry 26:2959–2964

    Article  CAS  Google Scholar 

  • Shann JR, Blum U (1987b) The utilization of exogenously supplied ferulic acid in lignin biosynthesis. Phytochemistry 26:2977–2982

    Article  CAS  Google Scholar 

  • Shimizu M, Kobayashi Y, Tanaka H, Wariishi H (2005) Transportation mechanism for vanillin uptake through fungal plasma membrane. Appl Microbiol Biotechnol 68:673–679

    Article  CAS  Google Scholar 

  • Trapp S (2004) Plant uptake and transport models for neutral and ionic chemicals. Environ Sci Pollut Res 11:33–39

    Article  CAS  Google Scholar 

  • Ulrih NP (2015) Effects of caffeic, ferulic, and p-coumaric acids on lipid membranes. In: Preedy VR (ed) Coffee in health and disease prevention. Academic, Amsterdam, pp 813–821

    Chapter  Google Scholar 

  • Weston LA, Ryan PR, Watt M (2012) Mechanisms for cellular transport and release of allelochemicals from plant roots into the rhizosphere. J Exp Bot 63:3445–3454

    Article  CAS  Google Scholar 

  • Woolley JT (1983) Maintenance of air in intercellular spaces of plants. Plant Physiol 72:989–991

    Article  CAS  Google Scholar 

  • Zanardo DIL, Lima RB, Ferrarese MLL, Bubna GA, Ferrarese-Filho O (2009) Soybean root growth inhibition and lignification induced by p-coumaric acid. Environ Exp Bot 66:25–30

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Blum, U. (2019). Hypothetical Solution-Culture System Sub-Models. In: Plant-Plant Allelopathic Interactions III. Springer, Cham. https://doi.org/10.1007/978-3-030-22098-3_8

Download citation

Publish with us

Policies and ethics