Skip to main content

Quantitative Models for Infrastructure Restoration After Extreme Events: Network Optimization Meets Scheduling

  • Chapter
  • First Online:
Mathematics of Planet Earth

Part of the book series: Mathematics of Planet Earth ((MPE,volume 5))

Abstract

This chapter focuses on the recovery of critical infrastructure systems from large-scale disruptive events and shows how optimization can help guide decision makers in the restoration process. The operation of an infrastructure system is modeled as a network flow problem, which can be used to assess the impact of the disruption on the services provided by the system. To restore the disrupted services, decision makers must schedule the repair operations by allocating scarce resources such as work crews and equipment over time. An overview of the relevant areas of network flows and scheduling is followed by a discussion of how techniques from network optimization and scheduling can be integrated to quantitatively model infrastructure restoration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abeliuk, A., Aziz, H., Berbeglia, G., et al.: Interdependent scheduling games. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence (IJCAI), New York, pp. 2–9. Elsevier, New York (2016)

    Google Scholar 

  2. Abeliuk, A., Berbeglia, G., Van Hentenryck, P.: One-way interdependent games. In: Proceedings of the 13th International Conference on Autonomous Agents and Multiagent Systems, Paris, France, pp. 1519–1520 (2014)

    Google Scholar 

  3. Ahuja, R.K., Magnanti, T.L., Orlin, J.B.: Network Flows: Theory, Algorithms, and Applications. Prentice-Hall, Englewood Cliffs (1993)

    MATH  Google Scholar 

  4. Averbakh, I.: Emergency path restoration problems. Discret. Optim. 9(1), 58–64 (2012)

    Article  MathSciNet  Google Scholar 

  5. Averbakh, I., Pereira, J.: The flowtime network construction problem. IIE Trans. 44(8), 681–694 (2012)

    Article  Google Scholar 

  6. Averbakh, I., Pereira, J.: Network construction problems with due dates. Eur. J. Oper. Res. 244(3), 715–729 (2015)

    Article  MathSciNet  Google Scholar 

  7. Baxter, M., Elgindy, T., Ernst, T.A., et al.: Incremental network design with shortest paths. Eur. J. Oper. Res. 238(3), 675–684 (2014)

    Article  MathSciNet  Google Scholar 

  8. Berktas, N., Kara, B.Y., Karasan, O.E.: Solution methodologies for debris removal in disaster response. EURO J. Comb. Optim. 4(3-4), 403–445 (2016)

    Article  MathSciNet  Google Scholar 

  9. Bienstock, D., Mattia, S.: Using mixed-integer programming to solve power grid blackout problems. Discret. Optim. 4(1), 115–141 (2007)

    Article  MathSciNet  Google Scholar 

  10. Borraz-Sanchez, C., Bent, R., Backhaus, S., et al.: Convex relaxations for gas expansion planning. INFORMS J. Comput. 28(4), 645–656 (2016)

    Article  MathSciNet  Google Scholar 

  11. Brown, G.O.: The history of the Darcy-Weisbach equation for pipe flow resistance. In: Proceedings of the 150th Anniversary Conference of ASCE, Washington, D.C., USA, pp. 34–43 (2002)

    Google Scholar 

  12. Bruneau, M., Chang, S., Eguchi, R., et al.: A framework to quantitatively assess and enhance the seismic resilience of communities. Earthq. Spectra 19(4), 733–752 (2003)

    Article  Google Scholar 

  13. Cavdaroglu, B., Hammel, E., Mitchell, J.E., et al.: Integrating restoration and scheduling decisions for disrupted interdependent infrastructure systems. Ann. Oper. Res. 203(1), 279–294 (2013)

    Article  MathSciNet  Google Scholar 

  14. Çelik, M.: Network restoration and recovery in humanitarian operations: framework, literature review, and research directions. Surv. Oper. Res. Manag. Sci. 21(2), 47–61 (2015)

    Google Scholar 

  15. Çelik, M., Ergun, O., Keskinocak, P.: The post-disaster debris clearance problem under incomplete information. Oper. Res. 63(1), 65–85 (2015)

    Article  MathSciNet  Google Scholar 

  16. Coffrin, C., Van Hentenryck, P.: A linear-programming approximation of AC power flows. INFORMS J. Comput. 26(4), 718–734 (2014)

    Article  Google Scholar 

  17. Coffrin, C., Hijazi, H., Van Hentenryck, P.: The QC relaxation: a theoretical and computational study on optimal power flow. IEEE Trans. Power Syst. 31(4), 3008–3018 (2016)

    Article  Google Scholar 

  18. Coffrin, C., Hijazi, H., Van Hentenryck, P.: Strengthening the SDP relaxation of AC power flows with convex envelopes, bound tightening, and valid inequalities. IEEE Trans. Power Syst. 32(5), 3549–3558 (2017)

    Article  Google Scholar 

  19. Edmonds, J., Karp, R.: Theoretical improvements in algorithmic efficiency for network flow problems. J. ACM 19(2), 248–264 (1972)

    Article  Google Scholar 

  20. Engel, K., Kalinowski, T., Savelsbergh, M.W.P.: Incremental network design with minimum spanning trees. J. Graph Algorithms Appl. 21(4), 417–432 (2017)

    Article  MathSciNet  Google Scholar 

  21. Ford, L., Fulkerson, D.: Maximal flow through a network. Can. J. Math. 8, 399–404 (1956)

    Article  MathSciNet  Google Scholar 

  22. Garey, M., Johnson, D.: Computers and Intractability. W.H. Freeman and Company, New York (1979)

    MATH  Google Scholar 

  23. Goemans, M.X., Unda, F.: Approximating incremental combinatorial optimization problems. In: Proceedings of APPROX/RANDOM 2017, pp. 1–6. Dagstuhl, Wadern (2017)

    Google Scholar 

  24. Graham, R.L., Lawler, E.L., Lenstra, J.K., et al.: Optimization and approximation in deterministic sequencing and scheduling: a survey. Ann. Discrete Math. 5, 287–326 (1979)

    Article  MathSciNet  Google Scholar 

  25. Hijazi, H., Coffrin, C., Van Hentenryck, P.: Convex quadratic relaxations for mixed-integer nonlinear programs in power systems. Math. Program. Comput. 9(3), 321–367 (2017)

    Article  MathSciNet  Google Scholar 

  26. Kalinowski, T., Matsypura, D., Savelsbergh, M.W.P.: Incremental network design with maximum flows. Eur. J. Oper. Res. 242(1), 51–62 (2015)

    Article  MathSciNet  Google Scholar 

  27. Lavaei, J., Low, S.: Zero duality gap in optimal power flow problem. IEEE Trans. Power Syst. 27(1), 92–107 (2012)

    Article  Google Scholar 

  28. Lee, E.E., Mitchell, J.E., Wallace, W.A.: Restoration of services in interdependent infrastructure systems: a network flows approach. IEEE Trans. Syst. Man Cybern. Part C Appl. Rev. 37(6), 1303–1317 (2007)

    Article  Google Scholar 

  29. Nurre, S.G., Sharkey, T.C.: Integrated network design and scheduling problems with parallel identical machines: complexity results and dispatching rules. Networks 63, 306–326 (2014)

    Article  MathSciNet  Google Scholar 

  30. Nurre, S.G., Cavdaroglu, B., Mitchell, J.E., et al.: Restoring infrastructure systems: an integrated network design and scheduling problem. Eur. J. Oper. Res. 223(3), 794–806 (2012)

    Article  MathSciNet  Google Scholar 

  31. Pinedo, M.L.: Scheduling: Theory, Algorithms, and Systems, 4th edn. Springer, New York (2012)

    Book  Google Scholar 

  32. Romo, F., Tomasgard, A., Hellemo, L., et al.: Optimizing the Norwegian natural gas production and transport. Interfaces 39(1), 46–56 (2009)

    Article  Google Scholar 

  33. Roughgarden, T.: Selfish Routing and the Price of Anarchy. MIT Press, Boston (2005)

    MATH  Google Scholar 

  34. Sharkey, T.C., Cavdaroglu, B., Nguyen, H., et al.: Interdependent network restoration: on the value of information-sharing. Eur. J. Oper. Res. 244(1), 309–321 (2015)

    Article  Google Scholar 

  35. Sharkey, T.C., Nurre, S.G., Nguyen, H., et al.: Identification and classification of restoration interdependencies in the wake of Hurricane Sandy. J. Infrastruct. Syst. 22(1), 04015, 007 (2016)

    Google Scholar 

  36. Smith, W.: Various optimizers for single-stage production. Naval Res. Log. Q. 3(1-2), 59–66 (1956)

    Article  MathSciNet  Google Scholar 

  37. Smith, A.M., Gonzalez, A.D., Due\(\tilde {\mbox{n}}\)as-Osorio, L., et al.: Interdependent network recovery games. Risk Anal. (2017). https://doi.org/10.1111/risa.12923

  38. U.S. Department of Energy: Hurricane Matthew situation reports. Tech. rep., US DOE Office of Electricity Delivery and Energy Reliability, Washington, DC (2016)

    Google Scholar 

  39. U.S. Department of Housing and Urban Development: Hurricane Sandy rebuilding strategy. Tech. rep., US HUD Hurricane Sandy Rebuilding Task Force, Washington DC (2013)

    Google Scholar 

  40. White House, Office of the Press Secretary: Presidential Policy Directive: critical infrastructure security and resilience. Tech. rep., The White House, Office of the Press Secretary (2013)

    Google Scholar 

  41. Williams, G.S., Hazen, A.: Hydraulic Tables. Wiley, New York (1914)

    Google Scholar 

  42. Zhang, W., Chung, G., Pierre-Louis, P., et al.: Reclaimed water distribution network design under temporal and spatial growth and demand uncertainties. Environ. Model. Softw. 49, 103–117 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas C. Sharkey .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sharkey, T.C., Pinkley, S.G.N. (2019). Quantitative Models for Infrastructure Restoration After Extreme Events: Network Optimization Meets Scheduling. In: Kaper, H., Roberts, F. (eds) Mathematics of Planet Earth. Mathematics of Planet Earth, vol 5. Springer, Cham. https://doi.org/10.1007/978-3-030-22044-0_12

Download citation

Publish with us

Policies and ethics