Skip to main content

Thermomechanical Fatigue Analysis of Diesel Engine Piston: Finite Element Simulation and Lifetime Prediction Technique

  • Conference paper
  • First Online:
Proceedings of the 5th International Conference on Industrial Engineering (ICIE 2019) (ICIE 2019)

Part of the book series: Lecture Notes in Mechanical Engineering ((LNME))

Included in the following conference series:

Abstract

Nowadays, piston aluminum–silicon alloys are widely used for high-powered engines due to their low specific gravity, high thermal conductivity, and good castability. However, under the conditions of increase of thermomechanical loads caused by the rise in the specific power output of diesel engines, and the operating temperatures of pistons go up to 0.8–0.9 of the melting temperature resulting in a significant reduction of the Al–Si alloy high-temperature strength. In this regard, to provide a required lifetime of pistons, it is necessary to more precisely simulate their thermal and stress-strain state, taking into account two-frequency loading and inelastic deformation. In this paper, a review of existing methods for the piston life estimation is carried out; a calculation method of the piston transient temperature and strain fields for engine start-stop cycles and one operating cycle at a nominal power mode is developed. The material constants in plasticity and creep models for the Al–12Si–Cu–Ni–Mg alloy are determined. On the basis of the obtained stabilized elastoplastic hysteresis loop, the piston low-cycle fatigue is estimated using the energy criterion. According to experimental data, the piston life is corrected taking into account high-frequency load.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Liu J, Zhang Q, Zuo Z et al (2013) Microstructure evolution of Al–12Si–CuNiMg alloy under high temperature low cycle fatigue. Mater Sci Eng, A 574:186–190. https://doi.org/10.1016/j.msea.2013.03.027

    Article  Google Scholar 

  2. Zhang Q, Zuo Z, Liu J (2013) High-temperature low-cycle fatigue behavior of a cast Al–12Si–CuNiMg alloy. Fatigue Fract Eng Mater Struct 36(7):623–630. https://doi.org/10.1111/ffe.12029

    Article  Google Scholar 

  3. Morgenstern R, Kenningley S (2013) Transient microstructural thermomechanical fatigue and deformation characteristics under superimposed mechanical and thermal loading, in AlSi based automotive diesel pistons. In: Sadler BA (ed) Light metals. The Minerals, Metals & Materials Series, Springer, Cham, pp 397–403

    Google Scholar 

  4. KS Mono-Block Steel Pistons for Commercial Truck Applications (2018) Kolbenschmidt Pierburg Group. http://www.kspg.com/fileadmin/media/kspg/Broschueren/Poduktbroschueren/KS_Kolbenschmidt/Kolben_Nkw/ko_pistonsteel_truck_e.pdf. Accessed 20 Sept 2018

  5. Kenningley S, Morgenstern R (2012) Thermal and mechanical loading in the combustion bowl region of light vehicle diesel AlSiCuNiMg pistons; reviewed with emphasis on advanced finite element analysis and instrumented engine testing techniques. SAE Technical Paper 2012-01-1330. https://doi.org/10.4271/2012-01-1330

  6. Belov VP (1986) Raschetno-eksperimental’naya otsenka termostoykosti porshney forsirovannykh avtomobil’nykh i traktornykh dvigateley (Computational and experimental estimation of thermal stability of high-powered automobile and tractor engines pistons). Dissertation, BMSTU

    Google Scholar 

  7. Ivanchenko AB (1995) Metodika otsenki termoustalostnoy prochnosti porshney forsirovannykh dizeley (Estimation method of thermal fatigue strength of high-powered diesel engines pistons). Dissertation, BMSTU

    Google Scholar 

  8. Saltykov MA, Chainov ND, Vasin ES (1991) Otsenka prochnosti golovok porshney vysokoforsirovannykh teplovoznykh dizeley pri dvukhchastotnom nagruzhenii (Strength estimation of piston crowns of high-powered diesel engines under two-frequency loading). Vestnik MGTU. Ser, Mashinostroenie, Moskva

    Google Scholar 

  9. Beck T, Henne I, Löhe D (2008) Lifetime of cast AlSi6Cu4 under superimposed thermal–mechanical fatigue and high-cycle fatigue loading. Mater Sci Eng, A 483–484:382–386. https://doi.org/10.1016/j.msea.2006.09.139

    Article  Google Scholar 

  10. Beck T, Löhe D, Luft J et al (2007) Damage mechanisms of cast Al-Si-Mg alloys under superimposed thermal-mechanical fatigue and high-cycle fatigue loading. Mater Sci Eng, A 468–470:184–192. https://doi.org/10.1016/j.msea.2006.05.177

    Article  Google Scholar 

  11. Trampert S, Pischinger T (2008) Thermomechanical fatigue life prediction of cylinder heads in combustion engines. J Eng Gas Turbines Power 130:1–10. https://doi.org/10.1115/1.2771251

    Article  Google Scholar 

  12. Mao J, Engler-Pinto C, Su X et al (2014) Cyclic behavior of an Al–Si–Cu alloy under thermo-mechanical loading. SAE Int J Mater Manf 7(3):1–8. https://doi.org/10.4271/2014-01-1012

    Article  Google Scholar 

  13. Chaboche JL (1989) Constitutive equations for cyclic plasticity and cyclic viscoplasticity. Int J Plast 5:247–302. https://doi.org/10.1016/0749-6419(89)90015-6

    Article  MATH  Google Scholar 

  14. Manson SS, Halford GR (2009) Fatigue and durability of metals at high temperatures. ASM Int, Materials Park

    Google Scholar 

  15. Zuo L, Ye B, Feng J et al (2018) Microstructure, tensile properties and creep behavior of Al-12Si-3.5Cu-2Ni-0.8Mg alloy produced by different casting technologies. J Mater Sci Technol 34:1222–1228. https://doi.org/10.1016/j.jmst.2017.06.011

    Article  Google Scholar 

  16. Stankevich IV (1984) Opredeleniye teplonapryazhennosti kryshek tsilindrov dizeley s uchetom nelineynosti zadachi teploprovodnosti (Determination of thermal stresses of diesel engines cylinder heads taking into account nonlinearity of heat conduction problem). Dissertation, BMSTU

    Google Scholar 

  17. Chainov ND, Ivaschenko NA, Krasnokutsky AN, Myagkov LL (2008) Konstruirovaniye dvigateley vnutrennego sgoraniya (Design of internal combustion engines). Mashinostroenie, Moskva

    Google Scholar 

  18. Gocmez T, Awarke A, Pischinger S (2010) A new low cycle fatigue criterion for isothermal and out-of-phase thermomechanical loading. Int J Fatigue 32:769–779. https://doi.org/10.1016/j.ijfatigue.2009.11.003

    Article  Google Scholar 

  19. Amiable S, Chapuliot S, Constantinescu A et al (2006) A computational lifetime prediction of a thermal shock experiment. Part II: discussion on difference fatigue criteria. Fatigue Fract Eng Mater Struct 29:219–227. https://doi.org/10.1111/j.1460-2695.2006.0983.x

    Article  Google Scholar 

  20. Skelton RP (1991) Energy criteria for high temperature low cycle fatigue. Mater Sci Technol 7:427–440. https://doi.org/10.1179/mst.1991.7.5.427

    Article  Google Scholar 

  21. Wang M, Pang JC, Zhang MX et al (2018) Thermo-mechanical fatigue behavior and life prediction of the Al-Si piston alloy. Mater Sci Eng, A 715:62–72. https://doi.org/10.1016/j.msea.2017.12.099

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. M. Sivachev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sivachev, S.M., Myagkov, L.L. (2020). Thermomechanical Fatigue Analysis of Diesel Engine Piston: Finite Element Simulation and Lifetime Prediction Technique. In: Radionov, A., Kravchenko, O., Guzeev, V., Rozhdestvenskiy, Y. (eds) Proceedings of the 5th International Conference on Industrial Engineering (ICIE 2019). ICIE 2019. Lecture Notes in Mechanical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-030-22041-9_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-22041-9_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-22040-2

  • Online ISBN: 978-3-030-22041-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics