Skip to main content

New Properties and Prospects of Hot Intraband Luminescence for Fast timing

  • Conference paper
  • First Online:
Engineering of Scintillation Materials and Radiation Technologies (ISMART 2018)

Abstract

Recent progress in various fields of scintillator applications has created a high demand for ultrafast timing. One of the perspective scintillation mechanisms for that is hot intraband luminescence (IBL). This is a universal intrinsic luminescence effect that occurs at the time scale of electron-phonon relaxation with characteristic time below 1 ps and is inherent to all condensed matter. It was first discovered by D.I. Vaisburd et al. in 1974, but not yet utilized for any application. Having broad structureless spectrum similar to that of Cherenkov radiation, it does not have excitation energy or excitation density threshold. It is temperature-independent and tolerant to impurities and doping. Although IBL yield is too low (maximum value currently detected is 33 ph/MeV in CsI) to operate as a scintillation itself, it can be combined with some other fast scintillation mechanism (like crossluminescence) to significantly improve time resolution by providing prompt photons for precise time-tagging of a scintillation event. The IBL yield can potentially be increased by engineering material band structure aimed at increasing the number of possible highly allowed radiative intraband transitions and their probability. The combined ultrafast scintillation mechanism can be applied for example to achieve the goal of 10-ps resolution in TOF-PET or to mitigate pileup rejection problem in calorimeters for high energy physics. For other potential applications like hard x-ray imaging at a GHz frame rate, IBL can be used as a single scintillation mechanism provided brighter IBL emitting materials will be found and high-efficiency detectors with high time resolution will be used. From the latter perspective, superconductive nanowire single-photon detectors are a very promising emerging technology, demonstrating <3 ps time resolution and quantum efficiency close to 100%. With those detectors, IBL can potentially provide picosecond time resolution for scintillation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. P. Lecoq, IEEE Trans. Radiat. Plasma. Med. Sci. 1, 473 (2017)

    Article  Google Scholar 

  2. S.R. Cherry, T. Jones, J.S. Karp, J. Qi, W.W. Moses, R.D. Badawi, J. Nucl. Med. 59(1), 3 (2017)

    Article  Google Scholar 

  3. J.W. Cates, C.S. Levin, Phys. Med. Biol. 63(11), 115011 (2018)

    Article  Google Scholar 

  4. S. Gundacker, F. Acerbi, E. Auffray, A. Ferri, A. Gola, M. Nemallapudi, G. Paternoster, C. Piemonte, P. Lecoq, J. Instrum. 11(08), P08008 (2016)

    Article  Google Scholar 

  5. P. Lecoq, M. Korzhik, A. Vasiliev, Nuclear Science. IEEE Trans. 61(1), 229 (2014)

    ADS  Google Scholar 

  6. S. Gundacker, E. Auffray, K. Pauwels, P. Lecoq, Phys. Med. Biol. 61(7), 2802 (2016)

    Article  Google Scholar 

  7. S.E. Brunner, D.R. Schaart, Phys. Med. Biol. 62(11), 4421 (2017)

    Article  Google Scholar 

  8. S.I. Omelkov, V. Nagirnyi, S. Gundacker, D.A. Spassky, E. Auffray, P. Lecoq, M. Kirm, J Lumin 198, 260 (2018)

    Article  Google Scholar 

  9. S. Korpar, R. Dolenec, P. Križan, R. Pestotnik, A. Stanovnik, Phys. Procedia 37, 1531 (2012)

    Article  ADS  Google Scholar 

  10. S.E. Brunner, L. Gruber, J. Marton, K. Suzuki, A. Hirtl, I.E.E.E. Trans, Nucl. Sci. 61(1), 443 (2014)

    Article  Google Scholar 

  11. B. Ujvari, in Budapest-Debrecen Meetings (2017). URL https://indico.cern.ch/event/683371/

  12. Z. Wang, C.L. Morris, J.S. Kapustinsky, K. Kwiatkowski, S.N. Luo, Rev. Sci. Instrum. 83(10), 10E510 (2012)

    Article  Google Scholar 

  13. D.I. Vaisburd, B.N. Semin, E. Tavanov, Izv. Nauk AS USSR. Phys. Ser. 38, 1281 (1974)

    Google Scholar 

  14. B. Kovalchuk, V. Kremnev, G. Mesyats, Doklady Academii nauk USSR 191, 76 (1970)

    Google Scholar 

  15. D. Vaisburd, S. Kharitonova, Russ. Phys. J. 40(11), 1037 (1997)

    Article  Google Scholar 

  16. D.I. Vaisburd, B.N. Semin, E.G. Tavanov, S.B. Matlis, I.N. Balychev, G.I. Gering, High-energy solid-state electronics (Novosibirsk, Izdatel’stvo Nauka, 1982). In Russian

    Google Scholar 

  17. D. Vaisburd, Properties of Ionic Crystals at High Ionization Levels. Dr. Sci. Hab. Thesis. (Tomsk, 1983). In Russian

    Google Scholar 

  18. A. Lushchik, C. Lushchik, M. Kirm, V. Nagirnyi, F. Savikhin, E. Vasil’chenko, Nucl. Inst. Methods Phys. Res., B 250, 330 (2006)

    Google Scholar 

  19. F. Savikhin, V. Vasilchenko, Phys. Solid State 39(4), 535 (1997)

    Article  ADS  Google Scholar 

  20. H. Huang, Q. Li, X. Lu, Y. Qian, Y. Wu, R.T. Williams, Physica status solidi (RRL) - Rapid Research Letters 10(10), 762 (2016)

    Google Scholar 

  21. R. Deich, M. Karklina, L. Nagli, Solid State Commun. 71(10), 859 (1989)

    Article  ADS  Google Scholar 

  22. R. Deich, M. Abdrakhmanov, Nucl. Inst. Methods Phys. Res., B 65, 525 (1992)

    Google Scholar 

  23. R. Deich, Radiation-stimulated processes in wide-gap crystals, facilitated by free charge carriers. Dr. Sci. Hab. Thesis. (Salaspils, 1990), pp. 179–203. In Russian

    Google Scholar 

  24. V.N. Makhov, Phys. Scr. 89(4), 044010 (2014)

    Article  ADS  Google Scholar 

  25. K.U. Ibragimov, F.A. Savikhin, Fizika Tverdogo Tela 35(6), 1474 (1993)

    Google Scholar 

  26. M. Kirm, A. Lushchik, C. Lushchik, A. Nepomnyashikh, F. Savikhin, Radiat. Meas. 33(5), 515 (2001)

    Article  Google Scholar 

  27. I. Tokbergenov, E. Feldbach, M. Kerikmäe, A. Lushchik, V. Nagirnyi, T. Nurakhmetov, F. Savikhin, E. Vasil’chenko, Radiat. Eff. Defects Solids 150(1–4), 103 (1999)

    Article  ADS  Google Scholar 

  28. A. Lushchik, F. Savikhin, I. Tokbergenov, J. Lumin. 102, 44 (2003)

    Article  Google Scholar 

  29. A. Lushchik, F. Savikhin, I. Tokbergenov, Radiat. Eff. & Defects Solids 158(1–6), 305 (2003)

    Article  ADS  Google Scholar 

  30. F. Savikhin, M. Kerikmäe, E. Feldbach, A. Lushchik, D. Onishchik, D. Rakhimov, I. Tokbergenov, Phys. Status Solidi (c) 2(1), 252 (2005)

    Google Scholar 

  31. M. Pidzyrailo, V. Vistovskyy, A. Voloshinovskii, G. Stryganyuk, O. Bovgyra, Y. Chornodolskyy, Radiat. Meas. 42(4–5), 869 (2007)

    Article  Google Scholar 

  32. V. Nagirnyi, E. Feldbach, L. Jönsson, M. Kirm, A. Lushchik, C. Lushchik, L.L. Nagornaya, V.D. Ryzhikov, F. Savikhin, G. Svensson, I.A. Tupitsina, Radiat. Meas. 29(3–4), 247 (1998)

    Article  Google Scholar 

  33. V. Nagirnyi, E. Feldbach, L. Jönsson, M. Kirm, A. Kotlov, A. Lushchik, L. Nagornaya, F. Savikhin, G. Svensson, Radiat. Meas. 33(5), 601 (2001)

    Article  Google Scholar 

  34. V. Baryshnikov, T. Kolesnikova, Phys. Solid State 47(10), 1847 (2005)

    Article  ADS  Google Scholar 

  35. V. Baryshnikov, T. Kolesnikova, Opt. Spectrosc. 95(4), 594 (2003)

    Article  ADS  Google Scholar 

  36. V. Baryshnikov, T. Kolesnikova, S. Dorokhov, Phys. Solid State 39(2), 250 (1997)

    Article  ADS  Google Scholar 

  37. S.I. Omelkov, V. Nagirnyi, A.N. Vasil’ev, M. Kirm, J. Lumin. 176, 309 (2016)

    Article  Google Scholar 

  38. D.I. Vaisburd, P.A. Palyanov, B.N. Semin, O.M. Shumskiy, Proc. USSR Acad. Sci. 336, 39 (1994)

    Google Scholar 

  39. A.N. Vasil’ev, R.V. Kirkin, Phys. Wave Phenom. 23(3), 186 (2015)

    Article  ADS  Google Scholar 

  40. F. Acerbi, G. Paternoster, A. Gola, N. Zorzi, C. Piemonte, Nucl. Instrum. Methods Phys. Res., Sect A (2017)

    Google Scholar 

  41. S.I. Omelkov, V. Nagirnyi, E. Feldbach, R.M. Turtos, E. Auffray, M. Kirm, P. Lecoq, J. Lumin. 191, 61 (2017)

    Article  Google Scholar 

  42. P. Dorenbos, R. Visser, C. van Eijk, J. Valbis, N. Khaidukov, in Conference Record of the 1991 IEEE Nuclear Science Symposium and Medical Imaging Conference (IEEE, 1991)

    Google Scholar 

  43. A. Jamil, T. Ziegler, P. Hufschmidt, G. Li, L. Lupin-Jimenez, T. Michel, I. Ostrovskiy, F. Retière, J. Schneider, M. Wagenpfeil, J.B. Albert, G. Anton, I.J. Arnquist, I. Badhrees, P. Barbeau, D. Beck, V. Belov, J.P. Brodsky, E. Brown, T. Brunner, A. Burenkov, G.F. Cao, L. Cao, W.R. Cen, C. Chambers, S.A. Charlebois, M. Chiu, B. Cleveland, M. Coon, A. Craycraft, W. Cree, M. Côté, J. Dalmasson, T. Daniels, S.J. Daugherty, J. Daughhetee, S. Delaquis, A.D. Mesrobian-Kabakian, R. DeVoe, T. Didberidze, J. Dilling, Y.Y. Ding, M.J. Dolinski, A. Dragone, J. Echevers, L. Fabris, D. Fairbank, W. Fairbank, J. Farine, S. Feyzbakhsh, R. Fontaine, D. Fudenberg, G. Gallina, G. Giacomini, R. Gornea, G. Gratta, E.V. Hansen, D. Harris, M. Hasan, M. Heffner, E.W. Hoppe, A. House, M. Hughes, J. Hößl, Y. Ito, A. Iverson, M. Jewell, X.S. Jiang, A. Karelin, L.J. Kaufman, T. Koffas, S. Kravitz, R. Krücken, A. Kuchenkov, K.S. Kumar, Y. Lan, D.S. Leonard, S. Li, Z. Li, C. Licciardi, Y.H. Lin, R. MacLellan, B. Mong, D. Moore, K. Murray, R.J. Newby, Z. Ning, O. Njoya, F. Nolet, K. Odgers, A. Odian, M. Oriunno, J.L. Orrell, C.T. Overman, G.S. Ortega, S. Parent, A. Piepke, A. Pocar, J.F. Pratte, D. Qiu, V. Radeka, E. Raguzin, T. Rao, S. Rescia, A. Robinson, T. Rossignol, P.C. Rowson, N. Roy, R. Saldanha, S. Sangiorgio, S. Schmidt, A. Schubert, D. Sinclair, K. Skarpaas, A.K. Soma, G. St-Hilaire, V. Stekhanov, T. Stiegler, X.L. Sun, M. Tarka, J. Todd, T. Tolba, R. Tsang, T. Tsang, F. Vachon, V. Veeraraghavan, G. Visser, J.L. Vuilleumier, Q. Wang, M. Weber, W. Wei, L.J. Wen, U. Wichoski, G. Wrede, S.X. Wu, W.H. Wu, Q. Xia, L. Yang, Y.R. Yen, O. Zeldovich, X. Zhang, J. Zhao, Y. Zhou, (2018). URL http://arxiv.org/abs/1806.02220v1

  44. M.G. Brik, A.M. Srivastava, J. Electrochem. Soc. 159(6), J212 (2012)

    Article  Google Scholar 

  45. N. Gerasimova, S. Dziarzhytski, T. Malyi, H. Redlin, in 4th International Conference on Ultrafast Structural Dynamics (2017), p. 50

    Google Scholar 

  46. B.A. Korzh, Q.Y. Zhao, S. Frasca, J.P. Allmaras, T.M. Autry, E.A. Bersin, M. Colangelo, G.M. Crouch, A.E. Dane, T. Gerrits, F. Marsili, G. Moody, E. Ramirez, J.D. Rezac, M.J. Stevens, E.E. Wollman, D. Zhu, P.D. Hale, K.L. Silverman, R.P. Mirin, S.W. Nam, M.D. Shaw, K.K. Berggren, (2018). URL http://arxiv.org/abs/1804.06839

Download references

Acknowledgements

This work was funded by Estonian Research Council (projects PUT1081, PRG111, IUT2-26). A partial financial support from the Estonian Centre of Excellence TK141 by the EU through the European Regional Development Fund (TK141, project No. 2014–2020.4.01.15-0011) is gratefully acknowledged. The work is inspired by Crystal Clear Collaboration and performed in the frame of COST Action TD1401 “FAST”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergey I. Omelkov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Omelkov, S.I., Nagirnyi, V., Kirm, M. (2019). New Properties and Prospects of Hot Intraband Luminescence for Fast timing. In: Korzhik, M., Gektin, A. (eds) Engineering of Scintillation Materials and Radiation Technologies. ISMART 2018. Springer Proceedings in Physics, vol 227. Springer, Cham. https://doi.org/10.1007/978-3-030-21970-3_4

Download citation

Publish with us

Policies and ethics