Skip to main content

Application of Scintillation Detectors in Cosmic Experiments

  • Conference paper
  • First Online:
Book cover Engineering of Scintillation Materials and Radiation Technologies (ISMART 2018)

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 227))

Abstract

Scintillation detectors based on organic plastic or inorganic scintillators are widely used in modern space physics and cosmic experiments. We reviewed different detection techniques, optical and physical characteristics of scintillators, light collection at the coupling with different type of photo-sensors. Important cosmic experiments in the past, as well as current state of art for the development of astro-particle and gamma-ray experiments, aimed for search of the new astrophysics, new states of matter, neutrino oscillations, are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. W. Röntgen, Ueber eine neue Art von Strahlen. Vorläufige Mitteilung, in Aus den Sitzungsberichten der Würzburger Physik.-medic. Gesellschaft Würzburg (1895), pp. 137–147

    Google Scholar 

  2. W. Crookes, The emanation of radium. Proc. Roy. Soc. London 71, 405–408 (1903)

    Article  Google Scholar 

  3. S.C. Curran, W.R. Baker, A photoelectric alpha particle detector, in U.S. Atomic Energy Commission Rpt. MDDC 1296, 17 Nov 1944 (declassified 23 Sept 1947); J.W. Coltman, F.-H. Marshall, Photomultiplier radiation detector, Nucleonics 1, 58–64 (1947)

    Google Scholar 

  4. R. Hofstadter, Alkali halide scintillation counters. Phys. Rev. 74(1), 100–101 (1948)

    Article  ADS  Google Scholar 

  5. C.L. Melcher, Perspectives on the future development of new scintillators. NIM A 537, 6–14 (2005)

    Article  ADS  Google Scholar 

  6. (a) S. Derenzo, M. Boswell, M. Weber, K. Brennan, Scintillation properties (2016). http://scintillator.lbl.gov; (b) Scintillation products. http://www.detectors.saintgobain.com/uploadedFiles/Sgdetectors/Documents/Brochures/Organics-Brochure.pdf; (c) Scintillation products. http://www.eljentechnology.com/

  7. (a) T. Yanagida, Inorganic scintillating materials and scintillation detectors. Proc. Jpn. Acad. Ser. B 94, 75 (2018); (b) C. Dujardin, E. Auffray, E. Bourret-Courchesne, P. Dorenbos, P. Lecoq, M. Nikl, A.N. Vasil’ev, A. Yoshikawa, R.-Y. Zhu, Needs, trends, and advances in inorganic scintillators. IEEE Trans. Nucl. Sci. 65 (2018); (c) J. Glodo, Y. Wang, R. Shawgo, C. Brecher, R. H. Hawrami, J. Tower, K.S. Shah, New developments in scintillators for security applications. Phys. Proc. 90, 285–290 (2017); (d) N.J. Cherepy, Transparent ceramic scintillators for gamma spectroscopy and MeV imaging. Rep. LLNL-PROC-676780, Lawrence Livermore Natl. Lab. (2015); (e) W.W. Moses Current trends in scintillator detectors and materials. NIMPRA, 487, 123–128 (2002); (f) P. Lecoq, A. Gektin, M. Korzhik, Inorganic Scintillators for Detecting Systems (Springer, Berlin, 2017), p. 408

    Google Scholar 

  8. G.F. Knoll, Radiation Detection and Measurement, 4th edn. (Wiley, Hoboken, 2010), ISBN: 978-0470131480

    Google Scholar 

  9. J.B. Birks, Theory and Practice of Scintillation Counting (Pergamon Press, Oxford, 1964)

    Google Scholar 

  10. (a) H. Tokuno et al., Nucl. Instrum. Methods A 676, 54 (2012); J. Abraham et al., [Pierre Auger Collab.], Nucl. Instrum. Methods A 620, 227 (2010); (b) M. Aglietta et al., (LVD Collab.), Proc. 27th ICRC, Hamburg, 3, 1093 (2001)

    Google Scholar 

  11. M. Aguilar, J. Alcaraz, J. Allaby et al., The alpha magnetic spectrometer (AMS) on the international space station: part I—results from the test flight on the space shuttle. Phys. Rep. 366, 331–405 (2002)

    Article  ADS  Google Scholar 

  12. P. Picozza, A.M. Galper, G. Castellini et al., PAMELA—a payload for antimatter matter exploration and light-nuclei astrophysics. Astropart. Phys. 27, 296–315 (2007)

    Article  ADS  Google Scholar 

  13. W.B. Atwood, A.A. Abdo, M. Ackermann et al., Astrophys. J. 697, 1071–1102 (2009)

    Article  ADS  Google Scholar 

  14. C. Winkler, T.J.L. Courvoisier, G. Di Cocco et al., Astron. Astrophys. 411, L1–L6 (2003)

    Article  ADS  Google Scholar 

  15. M. Tavani, G. Barbiellini, A. Argan et al., Astron. Astrophys. 502, 995–1013 (2009)

    Article  ADS  Google Scholar 

  16. A. de Angelis, V. Tatischeff, I.A. Grenier, J. McEnery, M. Mallamaci, M. Tavani, U. Oberlack, L. Hanlon et al., Science with e-ASTROGAM: a space mission for MeV-GeV gamma-ray astrophysics. J. High Energy Astrophys. 19, 1–106 (2018)

    Article  ADS  Google Scholar 

  17. G. Stratta, R. Ciolfi, L. Amati et al., THESEUS: a key space mission concept for multi-messenger astrophysics. Adv. Sp. Res. 62, 662–682 (2018)

    Article  ADS  Google Scholar 

  18. H. Bethe, J. Ashkin, in Experimental Nuclear Physics, ed. by E. Segré (Wiley, New York, 1953), p. 253

    Google Scholar 

  19. V. Schönfelder, H.J.M. Aarts, K. Bennett, H. de Boer, J. Clear, W. Collmar, A. Connors, A.J.M. Deerenberg, R. Diehl, A. von Dordrecht, J.W. den Herder, W. Hermsen, R.M. Kippen, L.M. Kuiper, G.G. Lichti, J.A. Lockwood, J.R. Macri, M.L. McConnell, D. Morris, R. Much, J.M. Ryan, G. Simpson, M. Snelling, G. Stacy, H. Steinle, A.W. Strong, B.N. Swanenburg, B. Taylor, C. de Vries, C. Winkler, Instrument description and performance of the imaging gamma-ray telescope COMPTEL aboard the compton gamma-ray observatory. Astrophys. J. Suppl. Ser. 86, 657–692 (1993)

    Article  ADS  Google Scholar 

  20. E.C. Stone, C.M.S. Cohen, W.R. Cook, A.C. Cummings, B. Gauld, B. Kecman, R.A. Leske, R.A. Mewaldt, M.R. Thayer, B.L. Dougherty, R.L. Grumm, B.D. Milliken, R.G. Radocinski, M.E. Wiedenbeck, E.R. Christian, S. Shuman, H. Trexel, T.T. von Rosenvinge, W.R. Binns, D.J. Crary, P. Dowkontt, J. Epstein, P.L. Hink, J. Klarmann, M. Lijowski, M.A. Olevitch, The cosmic ray isotope spectrometer for the advanced composition explorer. Space Sci. Rev. 86, 285–356 (1998)

    Article  ADS  Google Scholar 

  21. N. Zaitseva, B.L. Rupert, I. PaweLczak, A. Glenn, H.P. Martinez, L. Carman, M. Faust, N. Cherepy, S. Payne, Plastic scintillators with efficient neutron/gamma pulse shape discrimination. NIM A 668, 88–93 (2012)

    Article  ADS  Google Scholar 

  22. N. Zaitseva, A. Glenn, L. Carman, H.P. Martinez, R. Hatarik, H. Klapper, S. Payne, Scintillation properties of solution-grown trans-stilbene single crystals. NIM A 789, 8–15 (2015)

    Article  ADS  Google Scholar 

  23. H. Tokuno, Y. Tameda, M. Takeda et al., New air fluorescence detectors employed in the telescope array experiment. NIM A 676, 54 (2012)

    Article  ADS  Google Scholar 

  24. J. Abraham, P. Abreu, M. Aglietta et al., The fluorescence detector of the Pierre Auger observatory. NIM A 620, 227 (2010)

    Article  ADS  Google Scholar 

  25. R. Mussa for the Pierre Auger Collaboration, G. Ciaccio, Observation of ELVES at the Pierre Auger observatory. Eur. Phys. J. Plus. 127, 94 (2012)

    Google Scholar 

  26. W.D. Arnett, J.N. Bahcall, R.P. Kirshner, S.E. Woosley, Supernova 1987A. Ann. Rev. Astron. Astrophys. 27, 629–700 (1989)

    Article  ADS  Google Scholar 

  27. K. Hirata, T. Kajita, M. Koshiba, M. Nakahata, Y. Oyama, N. Sato, A. Suzuki, M. Takita, Y. Totsuka, T. Kifune, T. Suda, K. Takahashi, T. Tanimori, K. Miyano, M. Yamada, E.W. Beier, L.R. Feldscher, S.B. Kim, A.K. Mann, F.M. Newcomer, R. Van, W. Zhang, B.G. Cortez, Observation of a neutrino burst from the Supernova SN1987A. Phys. Rev. Lett. 58, 1490–1493 (1987)

    Article  ADS  Google Scholar 

  28. R.M. Bionta, G. Blewitt, C.B. Bratton, et al., Observation of a neutrino burst in coincidence with supernova 1987A in the large magellanic cloud. Phys. Rev. Lett. 58, 1494–1496 (1987). ISSN: 0031-9007

    Google Scholar 

  29. E.N. Alekseev, L.N. Alekseeva, V.I. Volchenko, I.V. Krivosheina, Possible detection of neutrino signal on 23 February 1987 at the Baksan underground scintillation telescope of the institute of nuclear research. Sov. J. Exp. Theor. Phys. Lett. 45, 589–592 (1987)

    ADS  Google Scholar 

  30. V.L. Dadykin, G.T. Zatsepin, O.G. Ryazhskaya, From the current literature: events detected by underground detectors on February 23, 1987“. Sov. Phys. Uspekhi 32, 459–468 (1989). (in Russian)

    Article  ADS  Google Scholar 

  31. A. Owens, Scintillators on interplanetary space missions, in Talk given at 9th International Conference on Inorganic Scintillators and their Applications (SCINT 2007), Wake Forest University, Winston-Salem, NC, USA, 4–8 June 2007

    Google Scholar 

  32. X. Wu et al., PANGU: a high resolution gamma-ray space telescope. Proc. SPIE Int. Soc. Opt. Society, 9144 (2014)

    Google Scholar 

  33. R.S. Saunders, R.E. Arvidson, G.D. Badhwar, W.V. Boynton, P.R. Christensen, F.A. Cucinotta, W.C. Feldman, R.G. Gibbs, C. Kloss Jr., M.R. Landano, R.A. Mase, G.W. McSmith, M.A. Meyer, I.G. Mitrofanov, G.D. Pace, J.J. Plaut, W.P. Sidney, D.A. Spencer, T.W. Thompson, C.J. Zeitlin, 2001 Mars Odyssey mission summary. Space Sci. Rev. 110, 1–36 (2004)

    Article  ADS  Google Scholar 

  34. J.O. Goldsten, E.A. Rhodes, W.V. Boynton et al., The messenger gamma-ray and neutron spectrometer. Space Sci. Rev. 131, 339–391 (2007)

    Article  ADS  Google Scholar 

  35. K. Pinkau, Die Messung solarer und atmosphaerischer Neutronen. Zeitschrift Naturforschung A 21, 2100–2101 (1966)

    Google Scholar 

  36. A.F. Iyudin, V.V. Bogomolov, V.I. Galkin et al., Instruments to study fast neutrons fluxes in the upper atmosphere with the use of high-altitude balloons. Adv. Space Res. 56, 2073–2079 (2015)

    Article  ADS  Google Scholar 

  37. V.B. Brudanin, Element-loaded organic scintillators for neutron and neutrino physics. Phys. Part. Nuclei 6, 69 (2001)

    Google Scholar 

  38. V.D. Kuznetsov, L.M. Zelenyi, I.V. Zimovets et al., The Sun and heliosphere explorer—the interhelioprobe mission. Geomag. Aeron. 56, 781–841 (2016)

    Article  Google Scholar 

  39. C. Furetta, Handbook of Thermoluminescence (World Scientific Publishing Co., 2010)

    Google Scholar 

  40. R.J. Ginther, New cerium activated scintillating glasses. IRE Trans. Nucl. Sci. 7, 28–31 (1960)

    Article  Google Scholar 

  41. P. Lecoq, A. Gektin, M. Korzhik, Inorganic Scintillators for Detecting Systems (Springer, Berlin, 2017), p. 408

    Book  Google Scholar 

  42. J. Glodo, R. Hawrami, K.S. Shah, Development of Cs2LiYCl6 scintillator. J. Cryst. Growth 379, 73–78 (2013)

    Article  ADS  Google Scholar 

  43. E. van Loef, J. Glodo, W.M. Higgins, K.S. Shah, I.E.E.E. Trans, Nucl. Sci. 52, 1819 (2005)

    Article  Google Scholar 

  44. J. Glodo, R. Hawrami, E. van Loef, W. Higgins, U. Shirwadkar, K.S. Shah. Dual gamma neutron detection with Cs 2 LiLaCl 6, in Hard X-Ray, Gamma-Ray, and Neutron Detector Physics XI, ed. by R.B. James, L.A. Franks, A. Burger, Proc. of SPIE 7449, 74490E-1 (2009)

    Google Scholar 

  45. D.S. McGregor, Materials for gamma-ray spectrometers: inorganic scintillators. Ann. Rev. Mater. Res. 35 (2018)

    Google Scholar 

  46. L.E. Peterson, R.L. Howard, Gamma-ray astronomy in space in the 50 keV to 3 MeV region. IRE Trans. Nucl. Sci. NS-8(4), 21 (1961)

    Article  Google Scholar 

  47. W.L. Kraushaar, G.W. Clark, G.P. Garmire, R. Borken, P. Higbie, C. Leong, T. Thorsos, High-energy cosmic gamma-ray observations from the OSO-3 satellite. Astrophys. J. 177, 341–363 (1972)

    Article  ADS  Google Scholar 

  48. E.L. Chupp, D.J. Forrest, P.R. Higbie, A.N. Suri, C. Tsai, P.P. Dunphy, Solar gamma ray lines observed during the solar activity of August 2 to August 11, 1972. Nature 241, 333 (1973)

    Article  ADS  Google Scholar 

  49. A.J. Dean, L. Fan, K. Byard, A. Goldwurm, C.J. Hall, Radioactivity induced background noise in space-borne astronomical gamma-ray telescopes employing inorganic scintillation spectrometers. Exp. Astron. 1(1), 35–45 (1989)

    Article  ADS  Google Scholar 

  50. N. Gehrels, Instrumental background in gamma-ray spectrometers flown in low Earth orbit. Nucl. Instrum. Meth. Phys. Res. A 313, 513–528 (1992)

    Article  ADS  Google Scholar 

  51. E. Caroli, J.B. Stephen, G. Di Cocco, L. Natalucci, A. Spizzichino, Coded aperture imaging in X- and gamma-ray astronomy. Space Sci. Rev. 45, 349–403 (1987)

    Article  ADS  Google Scholar 

  52. P. Ubertini, F. Lebrun, G. Di Cocco et al., IBIS: the imager on-board integral. Astron. Astrophys. 411, L131–L139 (2003)

    Article  ADS  Google Scholar 

  53. N. Gehrels, C.E. Fichtel, G.J. Fishman, J.D. Kurfess, V. Schönfelder, The compton gamma ray observatory. Sci. Am. 269, 68–77 (1993)

    Article  Google Scholar 

  54. C.E. Fichtel, R.C. Hartman, D.A. Kniffen, D.J. Thompson, G.F. Bignami, H. Ögelman, M.E. Özel, T. Tuemer, High-energy gamma-ray results from the second small astronomy satellite. Astrophys. J. 198, 163–182 (1975)

    Article  ADS  Google Scholar 

  55. G.F. Bignami, G. Boella, J.J. Burger et al., The COS-B experiment for gamma-ray astronomy. Space Sci. Instrum. 1, 245–268 (1975)

    ADS  Google Scholar 

  56. D.J. Thompson, D.L. Bertsch, C.E. Fichtel et al., Calibration of the energetic gamma-ray experiment telescope (EGRET) for the compton gamma-ray observatory. Astrophys. J. Suppl. Ser. 86, 629–656 (1993)

    Article  ADS  Google Scholar 

  57. J. Angle, E. Aprile, F. Arneodo et al., Nucl. Phys. B, Proc. Suppl. 173, 117–120 (2007)

    Article  ADS  Google Scholar 

  58. E. Aprile, A. Curioni, K.L. Giboni, M. Kobayashi, U.G. Oberlack, S. Zhang, Nucl. Instrum. Methods Phys. Res., Sect. A 593, 414–425 (2008)

    Article  ADS  Google Scholar 

  59. S.E. Boggs, The advanced compton telescope mission. New Astron. Rev. 50, 604–607 (2006)

    Article  ADS  Google Scholar 

  60. J. Greiner, K. Mannheim, F. Aharonian et al., GRIPS—gamma-ray imaging, polarimetry and spectroscopy. Exp. Astron. 34, 551–582 (2012)

    Article  ADS  Google Scholar 

  61. P.F. Bloser, T. Sharma, J.S. Legere, C.M. Bancroft, M.L. McConnell, J.M. Ryan, A.M. Wright, The advanced scintillator compton telescope (ASCOT) balloon project. Proc. SPIE 9905, 7 (2016)

    Google Scholar 

  62. E.V.D. van Loef, P. Dorenbos, C.W.E. van Eijk, K. Krämer, H.U. Güdel, High-energy-resolution scintillator: Ce3+ activated LaBr 3. Appl. Phys. Let. 79, 1573–1575 (2001)

    Google Scholar 

  63. W.M. Higgins, A. Churilov, E. van Loef, J. Glodo, M. Squillante, K. Shah, Crystal growth of large diameter LaBr 3:Ce and CeBr 3. J. Cryst. Growth. 310, 2085–2089 (2008)

    Article  ADS  Google Scholar 

  64. H.D. Kim, G.S. Cho, H.J. Kim, Characteristics of a stilbene scintillation crystal in a neutron spectrometer. Radiat. Measur. 58, 133–137 (2013)

    Article  ADS  Google Scholar 

  65. C. Matei, F.J. Hambsch, S. Oberstedt, Proton light output function and neutron efficiency of a p-terphenyl detector using a 252Cf source. NIM A 676, 135–139 (2012)

    Article  ADS  Google Scholar 

  66. F. Lei, A.J. Dean, G.L. Hills, Compton polarimetry in gamma-ray astronomy. Space Sci. Rev. 82, 309 (1997)

    Google Scholar 

  67. T. Kamae, V. Andersson, M. Arimoto, M. Axelsson, C.M. Bettolo, C.-I. Björnsson, G. Bogaert, P. Carlson, W. Craig, T. Ekeberg, O. Engdegård, Y. Fukazawa, S. Gunji, L. Hjalmarsdotter, B. Iwan, Y. Kanai, J. Kataoka, N. Kawai, J. Kazejev, M. Kiss, W. Klamra, S. Larsson, G. Madejski, T. Mizuno, J. Ng, M. Pearce, F. Ryde, M. Suhonen, H. Tajima, H. Takahashi, T. Takahashi, T. Tanaka, T. Thurston, M. Ueno, G. Varner, K. Yamamoto, Y. Yamashita, T. Ylinen, H. Yoshida, PoGOLite—a high sensitivity balloon-borne soft gamma-ray polarimeter. Astropart. Phys. 30, 72–84 (2008)

    Article  ADS  Google Scholar 

  68. R.W. Klebesadel, I.B. Strong, R.A. Olson, Observations of gamma-ray bursts of cosmic origin. Astrophys. J. Lett. 85, L182 (1973)

    Google Scholar 

  69. E. Costa, M. Feroci, F. Frontera, et al., IAUC # 6572 (1997)

    Google Scholar 

  70. E. Costa, F. Frontera, J. Heise, M. Feroci, J. in’t Zand, F. Fiore, M.N. Cinti, D. Dal Fiume, L. Nicastro, M. Orlandini, et al., Discovery of an X-ray afterglow associated with the γ-ray burst of 28 February 1997. Nature 387, 783 (1997)

    Google Scholar 

  71. Towards a network of GRB detecting nanosatellites. https://asd.gsfc.nasa.gov/conferences/grb_nanosats/logistics.html

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. F. Iyudin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Iyudin, A.F., Svertilov, S.I. (2019). Application of Scintillation Detectors in Cosmic Experiments. In: Korzhik, M., Gektin, A. (eds) Engineering of Scintillation Materials and Radiation Technologies. ISMART 2018. Springer Proceedings in Physics, vol 227. Springer, Cham. https://doi.org/10.1007/978-3-030-21970-3_12

Download citation

Publish with us

Policies and ethics