Skip to main content

State of the Art of Scintillation Crystal Growth Methods

  • Conference paper
  • First Online:
Book cover Engineering of Scintillation Materials and Radiation Technologies (ISMART 2018)

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 227))

Abstract

This paper presents the overview of modern technical and technological solutions aimed at increasing the efficiency of scintillation crystal growth methods, as one of the main component influenced on the cost of scintillator. On the examples of obtaining classic and new scintillators, the current trends in the development of classical and new technologies, allowing to grow both large and small crystals, are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. P.W. Bridgman, Certain physical properties of single crystals of tungsten, antimony, bismuth, tellurium, cadmium, zinc and tin. Proc. Am. Acad. 60, 305–383 (1925)

    Article  Google Scholar 

  2. D.C. Stockbarger, The production of large size single crystals of lithium fluoride. Rev. Sci. Instrum. 7(3), 133–137 (1936)

    Article  ADS  Google Scholar 

  3. G. Muller, P. Rudolph, Crystal growth from the melt, encyclopedia of materials: science and technology (2001), pp. 1866–1873

    Chapter  Google Scholar 

  4. R. Triboulet, Crystal growth by traveling heater method, in Handbook of Crystal Growth (2015), pp. 459–504

    Chapter  Google Scholar 

  5. A.G. Petrosyan, K.L. Ovanesyan, R.V. Sargsyan, G.O. Shirinyan, D. Abler, E. Auffray, P. Lecoq, C. Dujardin, C. Pedrini, Bridgman growth and site occupation in LuAG: Ce scintillator crystals. J. Cryst. Growth 312, 3136–3142 (2010)

    Article  ADS  Google Scholar 

  6. W.M. Higgins, A. Churilov, E. van Loef, J. Glodo, M. Squillante, K. Shah, Crystal growth of large diameter LaBr 3:Ce and CeBr3. J. Cryst. Growth 310, 2085–2089 (2008)

    Article  ADS  Google Scholar 

  7. L.A. Boatner, J.O. Ramey, J.A. Kolopus, R. Hawrami, W.M. Higgins, E. van Loef, J. Glodo, K.S. Shah, E. Rowe, P. Bhattacharya, E. Tupitsyn, M. Groza, A. Burger, N.J. Cherepy, S.A. Payne, Bridgman growth of large SrI2: Eu single crystals: a high-performance scintillator for radiation detection applications. J. Cryst. Growth 379, 63–68 (2013)

    Article  ADS  Google Scholar 

  8. V. Taranyuk, A. Gektin, E. Galenin, O. Sidletskiy, N. Nazarenko, A. Kolesnikov, S. Vasyukov, Investigation of the growth parameters for SrI2:Eu2+ crystal growth by VGF method, in Proceedings of 18th International Conference on Crystal Growth and Epitaxy, Nagoya, Japan, 7–12 Aug 2016

    Google Scholar 

  9. Y. Yokota, S. Kurosawa, K. Nishimoto, K. Kamada, A. Yoshikawa, Growth of Eu:SrI2 bulk crystals and their scintillation properties. J. Cryst. Growth 401, 343–346 (2014)

    Article  ADS  Google Scholar 

  10. W.C. Holton, R.K. Watts, R.D. Stinedurf, Synthesis and melt growth of doped ZnSe crystals. J. Cryst. Growth 6, 97–100 (1969)

    Article  ADS  Google Scholar 

  11. H. Hermon, M. Schieber et al., Analysis of CZT crystals and detectors grown in Russia and Ukraine by the high-pressure Bridgman method. J. Electron. Mater. 28, 688 (1999)

    Article  ADS  Google Scholar 

  12. E.D. Bourret-Courchesne, G.A. Bizarri, R. Borade, G. Gundiah, E.C. Samulon, Z. Yan, S.E. Derenzo, Crystal growth and characterization of alkali-earth halide scintillators. J. Cryst. Growth 352, 78–83 (2012)

    Article  ADS  Google Scholar 

  13. U. Debska, W. Giriat, H.R. Harrison, D.R. Yoder-Short, RF-heated Bridgman growth of (ZnSe) 1 − x (MnSe) x in self-sealing graphite crucibles. J. Cryst. Growth 70, 399–402 (1984)

    Article  ADS  Google Scholar 

  14. U.N. Roy, A. Burger, R.B. James, Growth of CdZnTe crystals by the traveling heater method. J. Cryst. Growth n379, 57–62 (2013)

    Article  ADS  Google Scholar 

  15. A.C. Lindsey, Y. Wu, M. Zhuravleva, M. Loyd, M. Koschan, C.L. Melcher, Multi-ampoule Bridgman growth of halide scintillator crystals using the self-seeding method. J. Cryst. Growth 470, 20–26 (2017)

    Article  ADS  Google Scholar 

  16. V. Taranyuk, A. Gektin, O. Sidletskiy, N. Nazarenko, A. Kolesnikov, SrI2(Eu) scintillation crystal growth by multi-ampoule single-zone VGF technique, in Proceedings of 6th European Conference on Crystal Growth, Varna, Bulgaria 16–20 Sept 2018

    Google Scholar 

  17. M.E. Wells, M.B. Groff, Design and development of a transparent Bridgman furnace. Cryst. Growth Space Relat. Opt. Diagn. 1557, 71–77 (1991)

    Article  ADS  Google Scholar 

  18. A.S. Tremsin, D. Perrodin, A.S. Losko, S.C. Vogel, M.A.M. Bourke, G.A. Bizarri, E.D. Bourret, Real-time crystal growth visualization and quantification by energy-resolved neutron imaging. Sci. Rep. 7(46275), 1–10 (2017)

    Google Scholar 

  19. A.S. Tremsin, M.G. Makowska, D. Perrodin, T. Shalapska, I.V. Khodyuk et al., In situ diagnostics of the crystal-growth process through neutron imaging: application to scintillators. J. Appl. Crystallogr. 49, 743–755 (2016)

    Article  Google Scholar 

  20. A.S. Tremsin et al., In-situ observation of phase separation during growth of Cs2LiLaBr 6:Ce crystals using energy-resolved neutron imaging. Cryst. Growth Des. 17(12), 6372–6381 (2017)

    Article  Google Scholar 

  21. J. Czochralski, Zs. Phys. Chem. 2, 219 (1917)

    Google Scholar 

  22. S. Kyropoulos, Ein Verfahren zur Herstellung grosser Kristalle. Anorg. Z. Chem. 154, 308–311 (1926). [in German]

    Article  Google Scholar 

  23. A. Gektin, V. Goriletskiy, B. Zaslavskiy, Continuous growth of large halide scintillation crystals, in Crystal Growth Technology, ed. by H.J. Scheel, P. Capper (Wiley-VCH, Hoboken, 2008), pp. 353–378

    Google Scholar 

  24. Z. Yan, T. Shalapska, E.D. Bourret, Czochralski growth of the mixed halides BaBrCl and BaBrCl:Eu. J. Cryst. Growth 435, 42–45 (2016)

    Article  ADS  Google Scholar 

  25. E. Galenin, O. Sidletskiy, C. Dujardin, A. Getkin, Growth and characterization of SrI2: Eu crystals fabricated by the Czochralski method. IEEE Trans. Nucl. Sci. 65(8), 2174–2177 (2018)

    Article  ADS  Google Scholar 

  26. YuA Borovlev, N.V. Ivannikova, V.N. Shlegel, YaV Vasiliev, V.A. Gusev, Progress in growth of large sized BGO crystals by the low-thermal-gradient Czochralski technique. J. Cryst. Growth 229, 305–311 (2001)

    Article  ADS  Google Scholar 

  27. K. Kamada, Y. Shoji, V.V. Kochurikhin et al., Growth and scintillation properties of 3 inch diameter Ce doped Gd3Ga3Al2O12 scintillation single crystal. J. Cryst. Growth 452, 81–84 (2016)

    Article  ADS  Google Scholar 

  28. S. Tkachenko, P. Arhipov, I. Gerasymov et al., Control of optical properties of YAG crystals by thermal annealing. J. Cryst. Growth 483, 195–199 (2018)

    Article  ADS  Google Scholar 

  29. J. Houvika, K. Barto, Method for the preparation of doped garnet structure single crystals with diameters of up to 500 mm. U.S. Patent No. 9,499,923

    Google Scholar 

  30. E.E. Lomonova, V.V. Osiko, Growth of zirconia crystals by skull melting technique, in Crystal Growth Technology, ed. by H.J. Scheel, T. Fukuda (Wiley, England, 2003), p. 461

    Google Scholar 

  31. X.W. Jiayue, Industrial growth of yttria-stabilized cubic zirconia crystals by skull melting process. J. Rare Earths 27, 971–974 (2009)

    Article  Google Scholar 

  32. O.Y. Danko, G.T. Kanishev et al., A furnace for preparing of raw material for single crystal growth. Patent UA No 460 (in Ukrainian)

    Google Scholar 

  33. V. Taranyuk, Skull method—an alternative scintillation crystals growth technique for laboratory and industrial production, in Engineering of Scintillation Materials and Radiation Technologies, ed. by M. Korzhik, A. Gektin (2016), pp. 150–159

    Google Scholar 

  34. V. Taranyuk, A. Gektin, A. Kolesnikov, V. Shlyakhturov, Bulk halide single crystal growth by skull technique, in Proceedings of 7th International Workshop on Crystal Growth Technology, Potsdam, Germany, 2–6 July 2017

    Google Scholar 

  35. V.I. Aleksandrov, I.A. Gerasimova, A.V. Kolesnikov, E.E. Lomonova, V.V. Osiko, V.A. Panov, P.A. Makarov, A.V. Archakov, N.G. Gorashchenko, A.A. Mayer, Growth of sillenite (BGO) single crystals from cold container. Russ. J. Inorg. Chem. 35, 878–883 (1990)

    Google Scholar 

  36. T. Fukuda, V.I. Chani, Shaped Crystals Growth by Micro-Pulling-Down Technique (Springer, Berlin, 2007)

    Book  Google Scholar 

  37. H.E. La Belle Jr., Growth of controlled profile crystals from the melt. Part II. Edge defined, film-fed growth (EFG). Mater. Res. Bull. 6, 581–590 (1971)

    Article  Google Scholar 

  38. V. Kononets, Growth from melt by micro-pulling down (_-PD) and Czochralski (Cz) techniques and characterization of LGSO and garnet scintillator crystals. Theoretical and/or physical chemistry. Université Claude Bernard—Lyon I (2014)

    Google Scholar 

  39. S. Faraj, Growth and characterization of Ce doped LuAG single crystal fibers by the micropulling down technique. Materials. Université de Lyon (2017) (English)

    Google Scholar 

  40. V. Kononets et al., in Development of YAG:Ce, Mg, YAGG:Ce Scintillation Fibers Engineering of Scintillation Materials and Radiation Technologies, ed. by M. Korzhik, A. Gektin (2016), pp. 114–128

    Google Scholar 

  41. Y. Yokota, K. Nishimoto, S. Kurosawa et al., Crystal growth of Eu:SrI2 single crystals by micro-pulling-down method and the scintillation properties. J. Cryst. Growth 375, 49–52 (2013)

    Article  ADS  Google Scholar 

  42. J. Frank, D. Haven, V. Ouspenski, Advances, results and perspectives in industrial scale high temperature oxide crystal growth, in Proceedings of 7th International Workshop on Crystal Growth Technology, Potsdam, Germany, 2–6 July 2017

    Google Scholar 

  43. G. Calvert, C. Guguschev, A. Burger, M. Groza, J.J. Derby, R.S. Feigelson, High speed growth of SrI2 scintillator crystals by the EFG process. J. Cryst. Growth 455, 143–151 (2016)

    Article  ADS  Google Scholar 

  44. E. Galenin, V. Baumer, I. Gerasymov, S. Tkachenko, O. Sidletskiy, Characterization of bismuth germanate crystals grown by EFG method. Cryst. Res. Technol. 50(2), 150–154 (2015)

    Article  Google Scholar 

  45. K. Kamada et. al., Shaped crystal growth of novel oxide scintillators by the edge defined film fed growth method, in Proceedings of SCINT-2017, Chamonix France, 18–22 Sept 2017

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Taranyuk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Taranyuk, V. (2019). State of the Art of Scintillation Crystal Growth Methods. In: Korzhik, M., Gektin, A. (eds) Engineering of Scintillation Materials and Radiation Technologies. ISMART 2018. Springer Proceedings in Physics, vol 227. Springer, Cham. https://doi.org/10.1007/978-3-030-21970-3_11

Download citation

Publish with us

Policies and ethics