Skip to main content

Wide-Band-Gap Semiconductor Scintillators

  • Chapter
  • First Online:
Physics of Fast Processes in Scintillators

Abstract

Conductive semiconductor radiation detectors are successfully used in many applications. This chapter is focused on exploitation of semiconductors, especially wide-band-gap semiconductors, as scintillators. The semiconductor scintillators are prospective for fast radiation detectors. Attempts to use bulk and nanostructured semiconductor scintillators are reviewed. The prospective of using diamonds for fast timing applications is especially addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. G. Lutz, Semiconductor Radiation Detectors: Device Physics (Springer, Berlin, 2007)

    Book  MATH  Google Scholar 

  2. T. Schlesinger et al., Cadmium zinc telluride and its use as a nuclear radiation detector material. Mater. Sci. Eng. R. Rep. 32(4–5), 103–189 (2001)

    Article  Google Scholar 

  3. T. Takahashi, S. Watanabe, Recent progress in CdTe and CdZnTe detectors. IEEE Trans. Nucl. Sci. 48(4), 950–959 (2001)

    Article  ADS  Google Scholar 

  4. S. Del Sordo, L. Abbene, E. Caroli, A.M. Mancini, A. Zappettini, P. Ubertini, Progress in the development of CdTe and CdZnTe semiconductor radiation detectors for astrophysical and medical applications. Sensors 9(5), 3491–3526 (2009)

    Article  Google Scholar 

  5. W.C. Barber, J.C. Wessel, E. Nygard, J.S. Iwanczyk, Energy dispersive CdTe and CdZnTe detectors for spectral clinical CT and NDT applications. Nucl. Instrum. Methods Phys. Res. Sect. 784, 531–537 (2015)

    Article  ADS  Google Scholar 

  6. J. Grant et al., Wide bandgap semiconductor detectors for harsh radiation environments. Nucl. Instrum. Methods Phys. Res. Sect. A 546(1–2), 213–217 (2005)

    Article  ADS  Google Scholar 

  7. P.J. Sellin, J. Vaitkus, New materials for radiation hard semiconductor dectectors. Nucl. Instrum. Methods Phys. Res. Sect. 557(2), 479–489 (2006)

    Article  ADS  Google Scholar 

  8. J. Grant et al., GaN as a radiation hard particle detector. Nucl. Instrum. Methods Phys. Res. Sect. A 576(1), 60–65 (2007)

    Article  ADS  Google Scholar 

  9. J. Wang, P. Mulligan, L. Brillson, L.R. Cao, Review of using gallium nitride for ionizing radiation detection. Appl. Phys. Rev. 2(3), 031102 (2015)

    Article  ADS  Google Scholar 

  10. E. Gaubas et al., In situ characterization of radiation sensors based on GaN LED structure by pulsed capacitance technique and luminescence spectroscopy. Sensors Actuators A Phys. 267, 194–199 (2017)

    Article  Google Scholar 

  11. E. Gaubas et al., Pulsed photo-ionization spectroscopy of traps in as-grown and neutron irradiated ammonothermally synthesized GaN. Sci. Rep. 9(1), 1473 (2019)

    Article  ADS  Google Scholar 

  12. Ceponis et al., Evolution of scintillation and electrical characteristics of AlGaN double-response sensors during proton irradiation. Sensors 19(15), 3388 (2019)

    Article  Google Scholar 

  13. F. Nava, G. Bertuccio, A. Cavallini, E. Vittone, Silicon carbide and its use as a radiation detector material. Meas. Sci. Technol. 19(10), 102001 (2008)

    Article  ADS  Google Scholar 

  14. O. Adriani et al., CLASSiC: Cherenkov light detection with silicon carbide. Nucl. Instrum. Methods Phys. Res. Sect. 845, 439–442 (2017)

    Article  ADS  Google Scholar 

  15. V. Ryzhikov, N. Starzhinskiy, L. Gal’chinetskii, P. Gashin, D. Kozin, E. Danshin, New semiconductor scintillators ZnSe(Te,O) and integrated radiation detectors based thereon. IEEE Trans. Nucl. Sci. 48(3), 356–359 (2001)

    Article  ADS  Google Scholar 

  16. W.G. Lee et al., Particularities of ZnSe-based scintillators for a spectrometry of charged particles and gamma quanta. J. Korean Phys. Soc. 48(1), 47–50 (2006)

    Article  Google Scholar 

  17. S. Jagtap, P. Chopade, S. Tadepalli, A. Bhalerao, S. Gosavi, A review on the progress of ZnSe as inorganic scintillator. Opto-Electron. Rev. 27(1), 90–103 (2019)

    Article  ADS  Google Scholar 

  18. V. Ryzhikov, G. Tamulaitis, N. Starzhinskiy, L. Gal’chinetskii, A. Novickovas, K. Kazlauskas, Luminescence dynamics in ZnSeTe scintillators. J. Lumin. 101(1–2), 45–53 (2003)

    Article  Google Scholar 

  19. S.E. Derenzo, M.J. Weber, M.K. Klintenberg, Temperature dependence of the fast, near-band-edge scintillation from CuI, HgI2, PbI2, ZnO:Ga and CdS:In. Nucl. Instrum. Methods Phys. Res. Sect. 486(1–2), 214–219 (2002)

    Article  ADS  Google Scholar 

  20. J.S. Neal, L.A. Boatner, N.C. Giles, L.E. Halliburton, S.E. Derenzo, E.D. Bourret-Courchesne, Comparative investigation of the performance of ZnO-based scintillators for use as α-particle detectors. Nucl. Instrum. Methods Phys. Res. Sect. A 568(2), 803–809 (2006)

    Article  ADS  Google Scholar 

  21. E.D. Bourret-Courchesne, S.E. Derenzo, M.J. Weber, Development of ZnO:Ga as an ultra-fast scintillator. Nucl. Instrum. Methods Phys. Res. Sect. A 601(3), 358–363 (2009)

    Article  ADS  Google Scholar 

  22. S.E. Derenzo, E. Bourret-Courshesne, G. Bizarri, A. Canning, Bright and ultra-fast scintillation from a semiconductor? Nucl. Instrum. Methods Phys. Res. Sect. A 805, 36–40 (2016)

    Article  ADS  Google Scholar 

  23. Z.I. Kolar, W. den Hollander, 2003: A centennial of spinthariscope and scintillation counting. Appl. Radiat. Isot. 61(2–3), 261–266 (2004)

    Article  Google Scholar 

  24. A.I. Ekimov, A.A. Onushchenko, Quantum size effect in three-dimensional microscopic semiconductor crystals. JETP Lett. 34(6), 345–349 (1981)

    ADS  Google Scholar 

  25. A.I. Ekimov, A.I. Efros, A.L. Onushchenko, Quantum size effect in semiconductor microcrystals. Solid State Commun. 56(11), 921–924 (1985)

    Article  ADS  Google Scholar 

  26. A.P. Alivisatos, A.L. Harris, N.J. Levinos, M.L. Steigerwald, L.E. Brus, Electronic states of semiconductor clusters: Homogeneous and inhomogeneous broadening of the optical spectrum. J. Chem. Phys. 89(7), 4001–4011 (1988)

    Article  ADS  Google Scholar 

  27. M.G. Bawendi, M.L. Steigerwald, L.E. Brus, The quantum mechanics of larger semiconductor clusters (‘quantum dots’). Annu. Rev. Phys. Chem. 41(1), 477–496 (1990)

    Article  ADS  Google Scholar 

  28. J.Y. Kim, O. Voznyy, D. Zhitomirsky, E.H. Sargent, 25th anniversary article: Colloidal quantum dot materials and devices: A quarter-century of advances. Adv. Mater. 25(36), 4986–5010 (2013)

    Article  Google Scholar 

  29. Z. Yu, J. Li, D.B. O’Connor, L.-W. Wang, P.F. Barbara, Large resonant stokes shift in CdS nanocrystals. J. Phys. Chem. B 107(24), 5670–5674 (2003)

    Article  Google Scholar 

  30. F. Meinardi et al., Large-area luminescent solar concentrators based on ‘stokes-shift-engineered’ nanocrystals in a mass-polymerized PMMA matrix. Nat. Photonics 8(5), 392–399 (2014)

    Article  ADS  Google Scholar 

  31. T. Vossmeyer et al., CdS nanoclusters: Synthesis, characterization, size dependent oscillator strength, temperature shift of the excitonic transition energy, and reversible absorbance shift. J. Phys. Chem. 98(31), 7665–7673 (1994)

    Article  Google Scholar 

  32. C. de Mello Donegá, R. Koole, Size dependence of the spontaneous emission rate and absorption cross section of CdSe and CdTe quantum dots. J. Phys. Chem. C 113(16), 6511–6520 (2009)

    Article  Google Scholar 

  33. S.F. Wuister, C. de Mello Donegá, A. Meijerink, Local-field effects on the spontaneous emission rate of CdTe and CdSe quantum dots in dielectric media. J. Chem. Phys. 121(9), 4310–4315 (2004)

    Article  ADS  Google Scholar 

  34. C. Dujardin, D. Amans, A. Belsky, F. Chaput, G. Ledoux, A. Pillonnet, Luminescence and scintillation properties at the nanoscale. IEEE Trans. Nucl. Sci. 57(3), 1348–1354 (2010)

    Article  ADS  Google Scholar 

  35. W. Nan et al., Crystal structure control of zinc-blende CdSe/CdS core/shell nanocrystals: Synthesis and structure-dependent optical properties. J. Am. Chem. Soc. 134(48), 19685–19693 (2012)

    Article  Google Scholar 

  36. L.-Y. Chena, H.-L. Chou, C.-H. Chenc, C.-H. Tseng, Surface modification of CdSe and CdS quantum dots-experimental and density function theory investigation, in Nanocrystals – Synthesis, Characterization and Applications, (InTech, Rijeka, 2012)

    Google Scholar 

  37. Y. Chen et al., ‘Giant’ multishell CdSe nanocrystal quantum dots with suppressed blinking. J. Am. Chem. Soc. 130(15), 5026–5027 (2008)

    Article  Google Scholar 

  38. R.M. Turtos et al., Ultrafast emission from colloidal nanocrystals under pulsed X-ray excitation. J. Instrum. 11(10), P10015–P10015 (2016)

    Article  Google Scholar 

  39. S. Ithurria, M.D. Tessier, B. Mahler, R.P.S.M. Lobo, B. Dubertret, A.L. Efros, Colloidal nanoplatelets with two-dimensional electronic structure. Nat. Mater. 10(12), 936–941 (2011)

    Article  ADS  Google Scholar 

  40. A. Hospodková et al., InGaN/GaN multiple quantum well for fast scintillation application: Radioluminescence and photoluminescence study. Nanotechnology 25(45), 455501 (2014)

    Article  Google Scholar 

  41. T. Hubáček et al., Advancement toward ultra-thick and bright InGaN/GaN structures with a high number of QWs. CrystEngComm 21(2), 356–362 (2019)

    Article  Google Scholar 

  42. G. Toci et al., InGaN/GaN multiple quantum well for superfast scintillation application: Photoluminescence measurements of the picosecond rise time and excitation density effect. J. Lumin. 208, 119–124 (2019)

    Article  Google Scholar 

  43. J. Wilkinson, K.B. Ucer, R.T. Williams, Picosecond excitonic luminescence in ZnO and other wide-gap semiconductors. Radiat. Meas. 38(4–6), 501–505 (2004)

    Article  Google Scholar 

  44. G. Xiong, J. Wilkinson, K.B. Ucer, R.T. Williams, Giant oscillator strength of excitons in bulk and nanostructured systems. J. Lumin. 112, 1–4), 1–6 (2005)

    Article  Google Scholar 

  45. A.N. Vasil’ev, Y. Fang, V.V. Mikhailin, Impact production of secondary electronic excitations in insulators: Multiple-parabolic-branch band model. Phys. Rev. B 60(8), 5340–5347 (1999)

    Article  ADS  Google Scholar 

  46. G. Bizarri, W.W. Moses, J. Singh, A.N. Vasil’ev, R.T. Williams, An analytical model of nonproportional scintillator light yield in terms of recombination rates. J. Appl. Phys. 105(4), 044507 (2009)

    Article  ADS  Google Scholar 

  47. A.-L. Bulin, A. Vasil’ev, A. Belsky, D. Amans, G. Ledoux, C. Dujardin, Modelling energy deposition in nanoscintillators to predict the efficiency of the x-ray-induced photodynamic effect. Nanoscale 7(13), 5744–5751 (2015)

    Article  ADS  Google Scholar 

  48. V.I. Klimov, A.A. Mikhailovsky, D.W. McBranch, C.A. Leatherdale, M.G. Bawendi, Quantization of multiparticle auger rates in semiconductor quantum dots. Science (80-. ) 28, 1011–1013 (2000)

    Article  ADS  Google Scholar 

  49. S.E. Létant, T.-F. Wang, Study of porous glass doped with quantum dots or laser dyes under alpha irradiation. Appl. Phys. Lett. 88(10), 103110 (2006)

    Article  ADS  Google Scholar 

  50. S.E. Létant, T.-F. Wang, Semiconductor quantum dot scintillation under γ-ray irradiation. Nano Lett. 6(12), 2877–2880 (2006)

    Article  ADS  Google Scholar 

  51. H. Burešová et al., Preparation and luminescence properties of ZnO:Ga – Polystyrene composite scintillator. Opt. Express 24(14), 15298 (2016)

    Article  ADS  Google Scholar 

  52. R.M. Turtos et al., Timing performance of ZnO:Ga nanopowder composite scintillators. Phys. Status Solidi Rapid Res. Lett. 10(11), 843–847 (2016)

    Article  ADS  Google Scholar 

  53. C.C. Stoumpos et al., Crystal growth of the perovskite semiconductor CsPbBr 3: A new material for high-energy radiation detection. Cryst. Growth Des. 13(7), 2722–2727 (2013)

    Article  Google Scholar 

  54. K. Tomanová et al., On the structure, synthesis, and characterization of ultrafast blue-emitting CsPbBr 3 nanoplatelets. APL Mater. 7(1), 011104 (2019)

    Article  ADS  Google Scholar 

  55. R.M. Turtos et al., On the use of CdSe scintillating nanoplatelets as time taggers for high-energy gamma detection. npj 2D Mater. Appl. 3, 1–10 (2019)

    Article  Google Scholar 

  56. C. Dujardin et al., Needs, trends, and advances in inorganic scintillators. IEEE Trans. Nucl. Sci. 65(8), 1977–1997 (2018)

    Article  ADS  Google Scholar 

  57. F. Maddalena et al., Inorganic, organic, and perovskite halides with nanotechnology for high–light yield X- and γ-ray scintillators. Crystals 9(2), 88 (2019)

    Article  Google Scholar 

  58. H. Kagan, Diamond radiation detectors may be forever! Nucl. Instrum. Methods Phys. Res. Sect. A 546(1–2), 222–227 (2005)

    Article  ADS  Google Scholar 

  59. M. Pomorski et al., Development of single-crystal CVD-diamond detectors for spectroscopy and timing. Phys. Status Solidi 203(12), 3152–3160 (2006)

    Article  ADS  Google Scholar 

  60. M. Ciobanu et al., In-beam diamond start detectors. IEEE Trans. Nucl. Sci. 58(4), 2073–2083 (2011)

    Article  ADS  Google Scholar 

  61. H. Frais-Kolbl, E. Griesmayer, H. Kagan, H. Pernegger, A fast low-noise charged-particle CVD diamond detector. IEEE Trans. Nucl. Sci. 51(6), 3833–3837 (2004)

    Article  ADS  Google Scholar 

  62. H. Pernegger et al., Charge-carrier properties in synthetic single-crystal diamond measured with the transient-current technique. J. Appl. Phys. 97(7), 073704 (2005)

    Article  ADS  Google Scholar 

  63. D. Husson et al., Neutron irradiation of CVD diamond samples for tracking detectors. Nucl. Instrum. Methods Phys. Res. Sect. 388(3), 421–426 (1997)

    Article  ADS  Google Scholar 

  64. D. Meier et al., Proton irradiation of CVD diamond detectors for high-luminosity experiments at the LHC. Nucl. Instrum. Methods Phys. Res. Sect. A 426(1), 173–180 (1999)

    Article  ADS  Google Scholar 

  65. P. Kavrigin, P. Finocchiaro, E. Griesmayer, E. Jericha, A. Pappalardo, C. Weiss, Pulse-shape analysis for gamma background rejection in thermal neutron radiation using CVD diamond detectors. Nucl. Instrum. Methods Phys. Res. Sect. A 795, 88–91 (2015)

    Article  ADS  Google Scholar 

  66. M. Pillon, M. Angelone, A. Krása, A.J.M. Plompen, P. Schillebeeckx, M.L. Sergi, Experimental response functions of a single-crystal diamond detector for 5–20.5MeV neutrons. Nucl. Instrum. Methods Phys. Res. Sect. A 640(1), 185–191 (2011)

    Article  ADS  Google Scholar 

  67. C. Weiss et al., A new CVD Diamond Mosaic-Detector for (n,α) Cross-Section Measurements at the n_TOF Experiment at CERN. Nucl. Instrum. Methods Phys. Res. Sect. A 732, 190–194 (2013)

    Article  ADS  Google Scholar 

  68. C. Weiss, H. Frais-Kölbl, E. Griesmayer, P. Kavrigin, Ionization signals from diamond detectors in fast-neutron fields. Eur. Phys. J. A 52(9), 269 (2016)

    Article  ADS  Google Scholar 

  69. M. Makita et al., High-resolution single-shot spectral monitoring of hard x-ray free-electron laser radiation. Optica 2(10), 912 (2015)

    Article  ADS  Google Scholar 

  70. J. Lindblom, Luminescence study of defects in synthetic as-grown and HPHT diamonds compared to natural diamonds. Am. Mineral. 90(2–3), 428–440 (2005)

    Article  ADS  Google Scholar 

  71. A.T. Collins, The characterisation of point defects in diamond by luminescence spectroscopy. Diam. Relat. Mater. 1(5–6), 457–469 (1992)

    Article  ADS  Google Scholar 

  72. P. Lecoq, A. Gektin, M. Korzhik, Inorganic Scintillators for Detector Systems (Springer, Berlin, 2017)

    Book  Google Scholar 

  73. V.S. Sedov et al., Diamond-EuF 3 nanocomposites with bright orange photoluminescence. Diam. Relat. Mater. 72, 47–52 (2017)

    Article  ADS  Google Scholar 

  74. M.V. Korjik et al., Non-linear optical phenomena in detecting materials as a possibility for fast timing in detectors of ionizing radiation. IEEE Trans. Nucl. Sci. 63(6), 2979–2984 (2016)

    Article  ADS  Google Scholar 

  75. T. Roth, R. Laenen, Absorption of free carriers in diamond determined from the visible to the mid-infrared by femtosecond two-photon absorption spectroscopy. Opt. Commun. 189(4–6), 289–296 (2001)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Korzhik, M., Tamulaitis, G., Vasil’ev, A.N. (2020). Wide-Band-Gap Semiconductor Scintillators. In: Physics of Fast Processes in Scintillators. Particle Acceleration and Detection. Springer, Cham. https://doi.org/10.1007/978-3-030-21966-6_7

Download citation

Publish with us

Policies and ethics