Skip to main content

Characterizing Outbreak Trajectories and the Effective Reproduction Number

  • Chapter
  • First Online:
Quantitative Methods for Investigating Infectious Disease Outbreaks

Part of the book series: Texts in Applied Mathematics ((TAM,volume 70))

  • 4739 Accesses

Abstract

Emerging and re-emerging infectious diseases pose major challenges to public health worldwide. Fortunately mathematical and statistical inference and simulation approaches are part of the toolkit for guiding prevention and response plans. As the recent 2013–2016 Ebola epidemic exemplified, an unfolding infectious disease outbreak often forces public health officials to put in place control policies in the context of limited data about the outbreak and in a changing environment where multiple factors positively or negatively impact local disease transmission. Hence, the development of public health policies could benefit from mathematically rigorous and computationally efficient approaches that comprehensively assimilate data and model uncertainty in real time in order to (1) estimate transmission rates, (2) assess the impact of control interventions (vaccination campaigns, behavior changes), (3) test hypotheses relating to transmission mechanisms, (4) evaluate how behavior changes affect transmission dynamics, (5) optimize the impact of control strategies, and (6) generate forecasts to guide interventions in the short and long terms.

Electronic Supplementary Material The online version of this chapter (https://doi.org/10.1007/978-3-030-21923-9_8) contains supplementary material, which is available to authorized users.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 79.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anderson, R. M., & May, R. M. (1982). Directly transmitted infectious diseases: Control by vaccination. Science, 215, 1053–1060.

    Article  MathSciNet  Google Scholar 

  • Anderson, R. M., & May, R. M. (1991) Infectious diseases of humans, dynamics and control. Oxford: Oxford University Press.

    Google Scholar 

  • Arriola, L., & Hyman, J. M. (2009). Sensitivity analysis for uncertainty quantification in mathematical models. In G. Chowell, J. M. Hyman, L. M. Bettencourt, & C. Castillo-Chavez (Eds.), Mathematical and statistical estimation approaches in epidemiology. Dordrecht: Springer.

    MATH  Google Scholar 

  • Bailey, N. T. J. (1975). The mathematical theory of infectious diseases and its applications (2nd ed.). London: The Griffin & Company Ltd.

    MATH  Google Scholar 

  • Banks, H. T., Davidian, M., Samuels, J. R., & Sutton, K. L. (2009). An inverse problem statistical methodology summary. In G. Chowell, J. M. Hyman, L. M. Bettencourt, & C. Castillo-Chavez (Eds.), Mathematical and statistical estimation approaches in epidemiology. Dordrecht: Springer.

    Google Scholar 

  • Banks, H. T., Hu, S., & Thompson, W. C. (2014). Modeling and inverse problems in the presence of uncertainty. Boca Raton, FL: CRC Press.

    Book  Google Scholar 

  • Banks, R. B. (1994). Growth and diffusion phenomena: Mathematical frameworks and applications. Berlin: Springer.

    Book  Google Scholar 

  • Brauer, F. (2006). Some simple epidemic models. Mathematical Biosciences and Engineering, 3, 1–15.

    Article  MathSciNet  Google Scholar 

  • Brookmeyer, R., & Gail, M. H. (1994). AIDS epidemiology: A quantitative approach. New York, NY: Oxford University Press.

    Google Scholar 

  • Causton, D. R., & Venus, J. C. (1981). The biometry of plant growth. London: Edward Arnold.

    Google Scholar 

  • Chowell, G. (2017). Fitting dynamic models to epidemic outbreaks with quantified uncertainty: A primer for parameter uncertainty, identifiability, and forecasts. Infectious Disease Modelling, 2, 379–398.

    Article  Google Scholar 

  • Chowell, G., Hincapie-Palacio, D., Ospina, J., Pell, B., Tariq, A., Dahal, S., et al. (2016). Using phenomenological models to characterize transmissibility and forecast patterns and final burden of Zika epidemics. PLOS Currents Outbreaks, 8. https://doi.org/10.1371/currents.outbreaks.f14b2217c902f453d9320a43a35b9583

  • Chowell, G., Nishiura, H., & Bettencourt, L. M. (2007). Comparative estimation of the reproduction number for pandemic influenza from daily case notification data. Journal of the Royal Society Interface, 4(12), 155–166.

    Article  Google Scholar 

  • Chowell, G., Sattenspiel, L., Bansal, S., & Viboud, C. (2016). Mathematical models to characterize early epidemic growth: A review. Physics of Life Reviews, 18, 66–97.

    Article  Google Scholar 

  • Chowell, G., & Viboud, C. (2016). Is it growing exponentially fast? – Impact of assuming exponential growth for characterizing and forecasting epidemics with initial near-exponential growth dynamics. Infectious Disease Modelling, 1, 71–78.

    Article  Google Scholar 

  • Chowell, G., Viboud, C., Simonsen, L., Merler, S., & Vespignani, A. (2017). Perspectives on model forecasts of the 2014–2015 Ebola epidemic in West Africa: Lessons and the way forward. BMC Medicine, 15, 42.

    Article  Google Scholar 

  • Chowell, G., Viboud, C., Simonsen, L., & Moghadas, S. (2016). Characterizing the reproduction number of epidemics with early sub-exponential growth dynamics. Journal of the Royal Society Interface, 13(123). https://doi.org/10.1098/rsif.2016.0659

    Article  Google Scholar 

  • Diekmann, O., & Heesterbeek, J. A. P. (2000). Mathematical epidemiology of infectious diseases: Model building, analysis and interpretation. Mathematical and computational biology (Vol. 5). Chichester: Wiley.

    MATH  Google Scholar 

  • Diekmann, O., Heesterbeek, J. A. P., & Roberts, M. G. (2010). The construction of next-generation matrices for compartmental epidemic models. Journal of the Royal Society Interface, 7, 873–885.

    Article  Google Scholar 

  • Dinh, L., Chowell, G., Mizumoto, K., & Nishiura, H. (2016). Estimating the subcritical transmissibility of the Zika outbreak in the State of Florida, USA, 2016. Theoretical Biology and Medical Modelling, 13, 20.

    Article  Google Scholar 

  • Faria, N. R., da Silva Azevedo, R. D. S., Kraemer, M. U., Souza, R., Cunha, M. S., Hill, S. C., Thézé, J., Bonsall, M. B., Bowden, T. A., Rissanen, I., & Rocco, I. M. (2016). Zika virus in the Americas: Early epidemiological and genetic findings. Science, 352(6283), 345–349.

    Article  Google Scholar 

  • Fauci, A. S., & Morens, D. M. (2016). Zika virus in the Americas–Yet another arbovirus threat. New England Journal of Medicine, 374, 601–604.

    Article  Google Scholar 

  • Focks, D. A., Daniels, E., Haile, D. G., & Keesling, J. E. (1995). A simulation model of the epidemiology of urban dengue fever: Literature analysis, model development, preliminary validation, and samples of simulation results. The American Journal of Tropical Medicine and Hygiene, 53(5), 489–506.

    Article  Google Scholar 

  • Fraser, C. (2007). Estimating individual and household reproduction numbers in an emerging epidemic. PLoS One, 2(8), e758.

    Article  Google Scholar 

  • Gao, D., Lou, Y., He, D., Porco, T. C., Kuang, Y., Chowell, G., et al. (2016). Prevention and control of Zika as a mosquito-borne and sexually transmitted disease: A mathematical modeling analysis. Scientific Reports, 6, 28070.

    Article  Google Scholar 

  • Hsieh, Y. H., & Cheng, Y. S. (2006). Real-time forecast of multiphase outbreak. Emerging Infectious Diseases, 12, 122–127.

    Article  Google Scholar 

  • Huber, J. H., Childs, M. L., Caldwell, J. M. & Mordecai, E. A. (2018). Seasonal temperature variation influences climate suitability for dengue, chikungunya, and Zika transmission. PLoS Neglected Tropical Diseases, 12, e0006451. https://doi.org/10.1371/journal.pntd.0006451

    Article  Google Scholar 

  • Lee, J., Chowell, G., & Jung, E. (2016). A dynamic compartmental model for the Middle East respiratory syndrome outbreak in the Republic of Korea: A retrospective analysis on control interventions and superspreading events. Journal of Theoretical Biology, 408, 118–126.

    Article  Google Scholar 

  • Ma, J., Dushoff, J., Bolker, B. M., & Earn, D. J. (2014). Estimating initial epidemic growth rates. Bulletin of Mathematical Biology, 76, 245–260.

    Article  MathSciNet  Google Scholar 

  • Nishiura, H., & Chowell, G. (2009). The effective reproduction number as a prelude to statistical estimation of time-dependent epidemic trends. In G. Chowell, J. M. Hyman, L. M. A. Bettencourt, & C. Castillo-Chavez (Eds.), Mathematical and statistical estimation approaches in epidemiology. Dordrecht: Springer.

    MATH  Google Scholar 

  • Pearl, R. (1925). The biology of population growth. New York, NY: Knopf.

    Google Scholar 

  • Pearl, R., & Reed, L. J. (1920). On the rate of growth of the population of the United States since 1790 and its mathematical representation. Proceedings of the National Academy of Sciences of the United States of America, 6, 275–288.

    Google Scholar 

  • Pell, B., Kuang, Y. Viboud, C., & Chowell, G. (2018a). Using phenomenological models for forecasting the 2015 Ebola challenge. Epidemics, 22, 62–70.

    Article  Google Scholar 

  • Richards, F. (1959). A flexible growth function for empirical use. Journal of Experimental Botany, 10, 290–301.

    Article  Google Scholar 

  • Ross, R. (1911). The prevention of malaria. London: John Murray.

    Google Scholar 

  • Schanzer, D. L., Langley, J. M., Dummer, T., Viboud, C., & Tam, T. W. (2010). A composite epidemic curve for seasonal influenza in Canada with an international comparison. Influenza and Other Respiratory Viruses, 4(5), 295–306.

    Article  Google Scholar 

  • Shanafelt, D. W., Jones, G., Lima, M., Perrings, C., & Chowell, G. (2017). Forecasting the 2001 foot-and-mouth disease epidemic in the UK. Ecohealth, 15(2), 338–347.

    Article  Google Scholar 

  • Tan, W. Y. (2000). Stochastic modeling of AIDS epidemiology and HIV pathogenesis. River Edge, NJ: World Scientific.

    MATH  Google Scholar 

  • The World Health Organization. (2016). Situation report for 29 July 2016. The 2016 Yellow fever epidemic in Angola. Available from: https://www.who.int/emergencies/yellow-fever/situation-reports/29-july-2016/en/

  • The World Health Organization Emergency Response Team. (2014). Ebola virus disease in West Africa - The first 9 months of the epidemic and forward projections. New England Journal of Medicine, 371(16), 1481–1495.

    Article  Google Scholar 

  • Towers, S., Brauer, F., Castillo-Chavez, C., Falconar, A. K., Mubayi, A., & Romero-Vivas, C. M. (2016). Estimate of the reproduction number of the 2015 Zika virus outbreak in Barranquilla, Colombia, and estimation of the relative role of sexual transmission. Epidemics, 17, 50–55.

    Article  Google Scholar 

  • Turner, M. E. Jr., Bradley, E. L. Jr., Kirk, K., & Pruitt, K. M. (1976). A theory of growth. Mathematical Biosciences, 29, 367–373.

    Article  Google Scholar 

  • van den Driessche, P. (2017). Reproduction numbers of infectious disease models. Infectious Disease Modelling, 2(3), 288–303.

    Article  Google Scholar 

  • van den Driessche, P., & Watmough, J. (2002). Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Mathematical Biosciences, 180, 29–48.

    Article  MathSciNet  Google Scholar 

  • Verhulst, P. J. (1838). Notice sur la loi que la population suit dan sons accroissement. Correspondance mathématique et physique, 10, 113–121.

    Google Scholar 

  • Viboud, C., Simonsen, L., Chowell, G. (2016). A generalized-growth model to characterize the early ascending phase of infectious disease outbreaks. Epidemics 15, 27–37.

    Article  Google Scholar 

  • Wallinga, J., & Lipsitch, M. (2007). How generation intervals shape the relationship between growth rates and reproductive numbers. Proceedings of Royal Society B, 274, 599–604.

    Google Scholar 

  • Wang, X. S., Wu, J., & Yang, Y. (2012). Richards model revisited: Validation by and application to infection dynamics. Journal of Theoretical Biology, 313, 12–19.

    Article  MathSciNet  Google Scholar 

  • Yule, G. U. (1925). The growth of population and the factor which controls it. Journal of the Royal Statistical Society: Series A, 88, 1–58.

    Article  Google Scholar 

  • Zhang, Q., Sun, K., Chinazzi, M., y Piontti, A. P., Dean, N. E., Rojas, D. P., et al. (2017). Spread of Zika virus in the Americas. Proceedings of the National Academy of Sciences, 114(22), E4334–E4343.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Crown

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yan, P., Chowell, G. (2019). Characterizing Outbreak Trajectories and the Effective Reproduction Number. In: Quantitative Methods for Investigating Infectious Disease Outbreaks. Texts in Applied Mathematics, vol 70. Springer, Cham. https://doi.org/10.1007/978-3-030-21923-9_8

Download citation

Publish with us

Policies and ethics