Skip to main content

Role of Horizontal Gene Transfer in Cancer Progression

  • Chapter
  • First Online:
Horizontal Gene Transfer

Abstract

Different forms of programmed cell death are known to happen at different stages in the course of normal development as well as during the life of healthy adult organisms to maintain physiologic homeostasis. Cell death causes the release into the surrounding environment of nucleic acids, proteins, and other macromolecules that can be discharged as free entities or incorporated into vesicles derived from intracellular membranes, including nuclear fragments, or from the cell membrane. Nucleic acids (DNA, RNA, non-coding RNAs) can be taken up by neighboring or distant cells and may promote in them significant changes in fundamental biological processes such as stress-response, gene expression, proliferation, differentiation, secretory patterns, substrate attachment, and many other functions. In the context of cancer progression, once tumors reach a certain size, prior to the establishment of a tumor-associated vasculature system, cancer cells in the inner portion of the tumor mass are subjected to stress conditions (e.g., hypoxia, acidic pH, limited nutrient availability), which in many cases result in cell death, with the consequent release of cellular malignancy-promoting materials (e.g., oncogenes, oncogenic miRNAs, and others) that, when taken up by normal cells, can promote their malignant transformation. In addition to such form of cell death-associated horizontal gene transfer, cancer cells have been shown to be particularly proficient at releasing cell membrane-derived vesicles, most frequently of the exosome type, carrying a variety of cancer-promoting cellular constituents. Exosomes are used by the tumor cells to shuttle reciprocal signals to stromal cells proximal to the tumors to favor the creation of a more favorable environment for cancer growth or to transport oncogenic molecules to remote destinations where they contribute to create a pro-metastatic niche in healthy tissues. In addition, exosome-mediated horizontal gene transfer has been shown to contribute to provide and spread resistance in response to diverse anticancer therapies. This review will summarize our current knowledge on the contribution of horizontal gene transfer from circulating cell-free nucleic acids (CNAs) or from exosome-encapsulated materials to the various stages of human tumor progression.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abels ER, Breakefield XO (2016) Introduction to extracellular vesicles: biogenesis, RNA cargo selection, content, release, and uptake. Cell Mol Neurobiol 36:301–312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Adams BD et al (2017) Targeting noncoding RNAs in disease. J Clin Invest 127:761–771

    Article  PubMed  PubMed Central  Google Scholar 

  • Al-Nedawi K et al (2008) Intercellular transfer of the oncogenic receptor EGFRvIII by microvesicles derived from tumour cells. Nat Cell Biol 10:619–624

    Article  CAS  PubMed  Google Scholar 

  • Atkin-Smith GK et al (2015) A novel mechanism of generating extracellular vesicles during apoptosis via a beads-on-a-string membrane structure. Nat Commun 6:7439

    Article  PubMed  Google Scholar 

  • Balaj L et al (2011) Tumour microvesicles contain retrotransposon elements and amplified oncogene sequences. Nat Commun 2:180

    Article  PubMed  CAS  Google Scholar 

  • Batagov AO, Kurochkin IV (2013) Exosomes secreted by human cells transport largely mRNA fragments that are enriched in the 3′-untranslated regions. Biol Direct 8:12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baylin SB, Ohm JE (2006) Epigenetic gene silencing in cancer: a mechanism for early oncogenic pathway addiction? Nat Rev Cancer 6:107–116

    Article  CAS  PubMed  Google Scholar 

  • Bergsmedh A et al (2001) Horizontal transfer of oncogenes by uptake of apoptotic bodies. Proc Natl Acad Sci USA 98:6407–6411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berridge MV et al (2018) Mitochondrial genome transfer to tumor cells breaks the rules and establishes a new precedent in cancer biology. Mol Cell Oncol 5:e1023929

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Besse B et al (2016) Dendritic cell-derived exosomes as maintenance immunotherapy after first line chemotherapy in NSCLC. Oncoimmunology 5:e1071008

    Article  PubMed  CAS  Google Scholar 

  • Bettegowda C et al (2014) Detection of circulating tumor DNA in early- and late-stage human malignancies. Sci Transl Med 6:224

    Article  CAS  Google Scholar 

  • Bissig C, Gruenberg J (2014) ALIX and the multivesicular endosome: ALIX in Wonderland. Trends Cell Biol 24:19–25

    Article  CAS  PubMed  Google Scholar 

  • Blood PK (2016) Blood-based analysis of circulating cell-free DNA and tumor cells for early cancer detection. PLoS Med 13:e1002205

    Article  CAS  Google Scholar 

  • Bolukbasi MF et al (2012) miR 1289 and “zipcode”-like sequence enrich mRNAs in microvesicles. Mol Ther Nucleic Acids 1:e10

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Boyiadzis M, Whiteside TL (2017) The emerging roles of tumor-derived exosomes in hematological malignancies. Leukemia 31:1259–1268

    Article  CAS  PubMed  Google Scholar 

  • Bray F et al (2018) Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 68:394–424

    Article  PubMed  Google Scholar 

  • Bronkhorst AJ et al (2016) Characterization of cell-free DNA released by cultured cancer cells. Biochim Biophys Acta 1863:157–165

    Article  CAS  PubMed  Google Scholar 

  • Budnik LT et al (2013) Circulating mitochondrial DNA as biomarker linking environmental chemical exposure to early preclinical lesions elevation of mtDNA in human serum after exposure to carcinogenic halo-alkane-based pesticides. PLoS One 8:e64413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Califano A, Alvarez MJ (2017) The recurrent architecture of tumour initiation, progression and drug sensitivity. Nat Rev Cancer 17:116–130

    Article  CAS  PubMed  Google Scholar 

  • Calin GA, Croce CM (2006) MicroRNA signatures in human cancers. Nat Rev Cancer 6:857–866

    Article  CAS  PubMed  Google Scholar 

  • Cancer Facts and Figures 2018 American Cancer Society. Atlanta

    Google Scholar 

  • Catalanotto C et al (2016) MicroRNA in control of gene expression: an overview of nuclear functions. Int J Mol Sci 17:E1712

    Article  PubMed  CAS  Google Scholar 

  • Chaffer CL, Weinberg RA (2015) How does multistep tumorigenesis really proceed? Cancer Discov 5:22–24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Challagundla P et al (2015) Exosome mediated transfer of microRNAs within the tumor microenvironment and neuroblastoma resistance to chemotherapy. J Natl Cancer Inst 107:djv135

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chen W et al (2014a) Exosomes from docetaxel resistant breast cancer cells alter chemosensitivity by delivering microRNAs. Tumour Biol 35:9649–9659

    Article  CAS  PubMed  Google Scholar 

  • Chen W et al (2014b) Exosomes from drug-resistant breast cancer cells transmit chemoresistance by a horizontal transfer of microRNAs. PLoS One 9:e95240

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chen W et al (2016) Nanoscale characterization of carrier dynamic and surface passivation in InGaN/GaN multiple quantum wells on GaN nanorods. ACS Appl Mater Interfaces 8:31887–31893

    Article  CAS  PubMed  Google Scholar 

  • Chennakrishnaiah S et al (2018) Leukocytes as reservoirs of circulating oncogenic DNA and regulatory targets of tumor-derived extracellular vesicles. J Thromb Haemost 16:1800–1813

    Article  CAS  PubMed  Google Scholar 

  • Chin AR, Wang SE (2016) Cancer tills the premetastatic field: mechanistic basis and clinical implications. Clin Cancer Res 22:3725–3733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chiu RW et al (2003) Quantitative analysis of circulating mitochondrial DNA in plasma. Clin Chem 49:719–726

    Article  CAS  PubMed  Google Scholar 

  • Choi D et al (2017) Extracellular vesicle communication pathways as regulatory targets of oncogenic transformation. Semin Cell Dev Biol 67:11–22

    Article  CAS  PubMed  Google Scholar 

  • Colombo M et al (2013) Analysis of ESCRT functions in exosome biogenesis, composition and secretion highlights the heterogeneity of extracellular vesicles. J Cell Sci 126:5553–5565

    Article  CAS  PubMed  Google Scholar 

  • Colombo M et al (2014) Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Annu Rev Cell Dev Biol 30:255–289

    Article  CAS  PubMed  Google Scholar 

  • Costa Verdera H et al (2017) Cellular uptake of extracellular vesicles is mediated by clathrin-independent endocytosis and macropinocytosis. J Control Release 266:100–108

    Article  CAS  PubMed  Google Scholar 

  • Diaz LA et al (2012) The molecular evolution of acquired resistance to targeted EGFR blockade in colorectal cancers. Nature 486:537–540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Diehl F et al (2005) Detection and quantification of mutations in the plasma of patients with colorectal tumors. Proc Natl Acad Sci U S A 102:16368–16373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dielmann-Gessner J et al (2014) Enzymatic turnover of macromolecules generates long-lasting protein-water-coupled motions beyond reaction steady state. Proc Natl Acad Sci USA 111:17857–17862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ding W-X, Yin X-M (2012) Mitophagy: mechanisms, pathophysiological roles, and analysis. Biol Chem 393:547–564

    CAS  PubMed  PubMed Central  Google Scholar 

  • El Andaloussi S et al (2013) Exosomes for targeted siRNA delivery across biological barriers. Adv Drug Deliv Rev 65:391–397

    Article  PubMed  CAS  Google Scholar 

  • Esquilin Y et al (2012) mtDNA migration and the role of exosomes in horizontal gene transfer. Microsc Microanal 18(2):286–287

    Article  Google Scholar 

  • Ewing J (1928) Neoplastic diseases, 3rd edn. WB Saunders, Philadelphia

    Google Scholar 

  • Fais S et al (2016) Evidence-based clinical use of nanoscale extracellular vesicles in nanomedicine. ACS Nano 10:3886–3899

    Article  CAS  PubMed  Google Scholar 

  • Falcone G et al (2015) Signaling by exosomal microRNAs in cancer. J Exp Clin Cancer Res 34:32

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fan GC (2014) Hypoxic exosomes promote angiogenesis. Blood 124:3669–3670

    Article  CAS  PubMed  Google Scholar 

  • Fischer S et al (2016) Indication of horizontal DNA gene transfer by extracellular vesicles. PLoS One 11(9):e0163665

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • French KC et al (2017) Extracellular vesicle docking at the cellular port: extracellular vesicle binding and uptake. Semin Cell Dev Biol 67:48–55

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gahan P (2013) Circulating nucleic acids: possible inherited effects. Biol J Linn Soc 110:931–928

    Article  Google Scholar 

  • Garcia-Arranz M et al (2017) A preliminary study of the action of virtosomes from non-dividing cells on tumour cell replication in vitro and in vivo. Anti Cancer Agents Med Chem 17:1401–1410

    Article  CAS  Google Scholar 

  • García-Olmo DC (2010) Cell-free nucleic acids circulating in the plasma of colorectal cancer patients induce the oncogenic transformation of susceptible cultured cells. Cancer Res 70:560–567

    Article  PubMed  CAS  Google Scholar 

  • Gebert LFR, MacRae IJ (2019) Regulation of microRNA function in animals. Nat Rev Mol Cell Biol 20:21–37

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Giallombardo M et al (2016) Exosome-mediated drug resistance in cancer: the near future is here. Ther Adv Med Oncol 8:320–322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gilligan KE, Dwyer RM (2017) Engineering exosomes for cancer therapy. Int J Mol Sci 18:1122

    Article  PubMed Central  CAS  Google Scholar 

  • Glebova K et al (2015) Oxidized extracellular DNA as a stress signal that may modify responses to anticancer therapy. Cancer Lett 356:22–33

    Article  CAS  PubMed  Google Scholar 

  • Goetz JG (2018) Metastases go with the flow. Science 362:999–1000

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez-Masia JA et al (2013) Circulating nucleic acids in plasma and serum (CNAPS): applications in oncology. Onco Targets Ther 6:819–832

    CAS  PubMed  PubMed Central  Google Scholar 

  • Grange C et al (2011) Microvesicles released from human renal cancer stem cells stimulate angiogenesis and formation of lung premetastatic niche. Cancer Res 71:5346–5356

    Article  CAS  PubMed  Google Scholar 

  • Gravina S et al (2016) The dark side of circulating nucleic acids. Aging Cell 15:398–399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gupta D (2017) Circulating nucleic acids (CNAs) in a new perspective. J Cell Dev Biol 1:6

    Article  Google Scholar 

  • Haney MJ et al (2015) Exosomes as drug delivery vehicles for Parkinson’s disease therapy. J Control Release 207:18–30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harding C et al (1983) Receptor-mediated endocytosis of transferrin and recycling of the transferrin receptor in rat reticulocytes. J Cell Biol 97:329–339

    Article  CAS  PubMed  Google Scholar 

  • Heath N et al (2018) Rapid isolation and enrichment of extracellular vesicle preparations using anion exchange chromatography. Sci Rep 8:5730

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Heitzer E et al (2015) Circulating tumor DNA as a liquid biopsy for cancer. Clin Chem 61:112–123

    Article  CAS  PubMed  Google Scholar 

  • Hiratsuka S et al (2002) MMP9 induction by vascular endothelial growth factor receptor-1 is involved in lung-specific metastasis. Cancer Cell 2:289–300

    Article  CAS  PubMed  Google Scholar 

  • Hiratsuka S et al (2008) The S100A8-serum amyloid A3-TLR4 paracrine cascade establishes a pre-metastatic phase. Nat Cell Biol 10:1349–1355

    Article  CAS  PubMed  Google Scholar 

  • Holdenrieder S et al (2008) Clinical relevance of circulating nucleosomes in cancer. Ann N Y Acad Sci 1137:180–189

    Article  CAS  PubMed  Google Scholar 

  • Horibe S et al (2018) Mechanism of recipient cell-dependent differences in exosome uptake. BMC Cancer 18:47

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hosseini-Beheshti E et al (2012) Exosomes as biomarker enriched microvesicles: characterization of exosomal proteins derived from a panel of prostate cell lines with distinct AR phenotypes. Mol Cell Proteomics 11:863–885

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang C-Y et al (2014) Circulating free mitochondrial DNA concentration and its association with erlotinib treatment in patients with adenocarcinoma of the lung. Oncol Lett 7:2180–2184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huber V et al (2005) Human colorectal cancer cells induce T-cell death through release of proapoptotic microvesicles: role in immune escape. Gastroenterology 128:1796–1804

    Article  CAS  PubMed  Google Scholar 

  • Jiang P, Lo YMD (2016) The long and short of circulating cell-free DNA and the ins and outs of molecular diagnostics. Trends Genet 32:6

    Article  CAS  Google Scholar 

  • Joyce JA, Pollard JW (2009) Microenvironmental regulation of metastasis. Nat Rev Cancer 9:239–252

    Article  CAS  PubMed  Google Scholar 

  • Kahlert C et al (2014) Identification of double-stranded genomic DNA spanning all chromosomes with mutated KRAS and p53 DNA in the serum exosomes of patients with pancreatic cancer. J Biol Chem 289:3869–3875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kalra H et al (2016) Focus on extracellular vesicles: introducing the next small big thing. Int J Mol Sci 17:170

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kanada M et al (2015) Differential fates of biomolecules delivered to target cells via extracellular vesicles. Proc Natl Acad Sci USA 112:E1433–E1442

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kaplan RN et al (2005) VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature 438:820–827

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khier S, Lohan L (2018) Kinetics of circulating cell-free DNA for biomedical applications: critical appraisal of the literature. Future Sci OA 4:FSO295

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kohler C et al (2009) Levels of plasma circulating cell free nuclear and mitochondrial DNA as potential biomarkers for breast tumors. Mol Cancer 8:105

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Konoshenko MY et al (2018) Isolation of extracellular vesicles: general methodologies and latest trends. Biomed Res Int 2018:8545347

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kosaka N et al (2013) Neutral sphingomyelinase 2 (nSMase2)-dependent exosomal transfer of angiogenic microRNAs regulate cancer cell metastasis. J Biol Chem 288:10849–10859

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kostyuk SV et al (2012) Role of extracellular oxidative modification in radiation induced bystander effects in human endotheliocytes. Mutat Res Fundam Mol Mech Mutagen 729:52–60

    Article  CAS  Google Scholar 

  • Kuo YB et al (2014) Comparison of KRAS mutation analysis of primary tumors and matched circulating cell-free DNA in plasmas of patients with colorectal cancer. Clin Chim Acta 433:284–289

    Article  CAS  PubMed  Google Scholar 

  • Lai X et al (2017) A microRNA signature in circulating exosomes is superior to exosomal glypican-1 levels for diagnosing pancreatic cancer. Cancer Lett 393:86–93

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laktionov P et al (2004) Cell-surface-bound nucleic acids: free and cell-surface-bound nucleic acids in blood of healthy donors and breast cancer patients. Ann N Y Acad Sci 1022:221–227

    Article  CAS  PubMed  Google Scholar 

  • Langley RR, Fidler IJ (2011) The seed and soil hypothesis revisited: the role of tumor-stroma interactions in metastasis to different organs. Int J Cancer 128:2527–2535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lasser C et al (2011) Human saliva, plasma and breast milk exosomes contain RNA: uptake by macrophages. J Transl Med 9:9

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lawrie CH et al (2008) Detection of elevated levels of tumour-associated microRNAs in serum of patients with diffuse large B-cell lymphoma. Br J Haematol 141:672–675

    Article  PubMed  Google Scholar 

  • Lázaro-Ibáñez E et al (2014) Different gDNA content in the subpopulations of prostate cancer extracellular vesicles: apoptotic bodies, microvesicles, and exosomes. Prostate 74:1379–1390

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Le QT et al (2004) Hypoxic gene expression and metastasis. Cancer Metastasis Rev 23:293–310

    Article  CAS  PubMed  Google Scholar 

  • Le MT et al (2014) miR-200-containing extracellular vesicles promote breast cancer cell metastasis. J Clin Invest 124:5109–5128

    Article  PubMed  PubMed Central  Google Scholar 

  • Lecomte T et al (2002) Detection of free-circulating tumor associated DNA in plasma of colorectal cancer patients and its association with prognosis. Int J Cancer 100:542–548

    Article  CAS  PubMed  Google Scholar 

  • Lee TH et al (2016) Barriers to horizontal cell transformation by extracellular vesicles containing oncogenic H-ras. Oncotarget 7:51991–52002

    PubMed  PubMed Central  Google Scholar 

  • Lo Cicero A et al (2015) Exosomes released by keratinocytes modulate melanocyte pigmentation. Nat Commun 6:7506

    Article  CAS  PubMed  Google Scholar 

  • Luga V et al (2012) Exosomes mediate stromal mobilization of autocrine Wnt-PCP signaling in breast cancer cell migration. Cell 151:1542–1556

    Article  CAS  PubMed  Google Scholar 

  • Ma X et al (2014) Essential role for TrpC5-containing extracellular vesicles in breast cancer with chemotherapeutic resistance. Proc Natl Acad Sci USA 111:6389–6394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Madhavan D et al (2014) Plasma DNA integrity as a biomarker for primary and metastatic breast cancer and potential marker for early diagnosis. Breast Cancer Res Treat 146:163–174

    Article  CAS  PubMed  Google Scholar 

  • Mandel P, Metais P (1948) Les acides nucléiques du plasma sanguin chez l’homme. C R Seances Soc Biol Fil 142:241–243

    CAS  PubMed  Google Scholar 

  • Mao L et al (2018) Serum exosomes contain ECRG4 mRNA that suppresses tumor growth via inhibition of genes involved in inflammation, cell proliferation, and angiogenesis. Cancer Gene Ther 25:248–259

    Article  CAS  PubMed  Google Scholar 

  • Mathieu M et al (2019) Specificities of secretion and uptake of exosomes and other extracellular vesicles for cell-to-cell communication. Nat Cell Biol 21:9–17

    Article  CAS  PubMed  Google Scholar 

  • Mathivanan S et al (2012) ExoCarta 2012: database of exosomal proteins, RNA and lipids. Nucleic Acids Res 40:D1241–D1244

    Article  CAS  PubMed  Google Scholar 

  • Melo SA et al (2014) Cancer exosomes perform cell-independent microRNA biogenesis and promote tumorigenesis. Cancer Cell 26:707–721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Melo SA et al (2015) Glypican-1 identifies cancer exosomes and detects early pancreatic cancer. Nature 523:177–182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Menck K et al (2017) Neutral sphingomyelinases control extracellular vesicles budding from the plasma membrane. J Extracell Vesicles 6:1378056

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Milane L et al (2015) Exosome mediated communication within the tumor microenvironment. J Control Release 219:278–294

    Article  CAS  PubMed  Google Scholar 

  • Minciacchi VR et al (2015) Extracellular vesicles in cancer: exosomes, microvesicles and the emerging role of large oncosomes. Semin Cell Dev Biol 40:41–51

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mittra I et al (2015) Circulating nucleic acids damage DNA of healthy cells by integrating into their genomes. J Biosci 40:91–111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mizrak A et al (2013) Genetically engineered microvesicles carrying suicide mRNA/protein inhibit schwannoma tumor growth. Mol Ther 21:101–108

    Article  CAS  PubMed  Google Scholar 

  • Momen-Heravi F (2017) Isolation of extracellular vesicles by ultracentrifugation. Methods Mol Biol 1660:25–32

    Article  CAS  PubMed  Google Scholar 

  • Mouliere F et al (2011) High fragmentation characterizes tumour-derived circulating DNA. PLoS One 6:e23418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mouliere F et al (2014) Multi-marker analysis of circulating cell-free DNA toward personalized medicine for colorectal cancer. Mol Oncol 8:927–941

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mulcahy LA et al (2014) Routes and mechanisms of extracellular vesicle uptake. J Extracell Vesicles 3:24641

    Article  CAS  Google Scholar 

  • Newman AM et al (2014) An ultrasensitive method for quantitating circulating tumor DNA with broad patient coverage. Nat Med 20:548–554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nilsson J et al (2009) Prostate cancer-derived urine exosomes: a novel approach to biomarkers for prostate cancer. Br J Cancer 100:1603–1607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nilsson RJ et al (2016) Rearranged EML4-ALK fusion transcripts sequester in circulating blood platelets and enable blood-based crizotinib response monitoring in non-small-cell lung cancer. Oncotarget 7:1066–1075

    Article  PubMed  Google Scholar 

  • O’Leary B, Turner NC (2016) Science in focus: circulating tumor DNA as a liquid biopsy. Clin Oncol 28:735–738

    Article  Google Scholar 

  • Ohno S et al (2013) Systemically injected exosomes targeted to EGFR deliver antitumor microRNA to breast cancer cells. Mol Ther 21:185–191

    Article  CAS  PubMed  Google Scholar 

  • Ohshima K et al (2010) Let-7 microRNA family is selectively secreted into the extracellular environment via exosomes in a metastatic gastric cancer cell line. PLoS One 5:e13247

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ordonez-Moran P, Huelsken J (2014) Complex metastatic niches: already a target for therapy? Curr Opin Cell Biol 31:29–38

    Article  CAS  PubMed  Google Scholar 

  • Ostenfeld MS et al (2014) Cellular disposal of miR23b by RAB27-dependent exosome release is linked to acquisition of metastatic properties. Cancer Res 74:5758–5771

    Article  CAS  PubMed  Google Scholar 

  • Paget S (1989) The distribution of secondary growths in cancer of the breast. Cancer Metastasis Rev 8:98–101

    CAS  PubMed  Google Scholar 

  • Pan BT et al (1985) Electron microscopic evidence for externalization of the transferrin receptor in vesicular form in sheep reticulocytes. J Cell Biol 101:942–948

    Article  CAS  PubMed  Google Scholar 

  • Pan S et al (2014) Microvesicle-shuttled miR-130b reduces fat deposition n recipient primary cultured porcine adipocytes by inhibiting PPAR-g expression. J Cell Physiol 229:631–639

    Article  CAS  PubMed  Google Scholar 

  • Peinado H et al (2012) Melanoma exosomes educate bone marrow progenitor cells toward a pro-metastatic phenotype through MET. Nat Med 18:883–891

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peinado H et al (2017) Pre-metastatic niches: organ-specific homes for metastases. Nat Rev Cancer 17:302–317

    Article  CAS  PubMed  Google Scholar 

  • Peters DL, Pretorius PJ (2012) Continuous adaptation through genetic communication: a putative role for cell-free DNA. Expert Opin Biol Ther 12:S127–S132

    Article  CAS  PubMed  Google Scholar 

  • Pink RC et al (2015) The passenger strand, miR-21-3p, plays a role in mediating cisplatin resistance in ovarian cancer cells. Gynecol Oncol 137:143–151

    Article  CAS  PubMed  Google Scholar 

  • Pitt JM et al (2014) Dendritic cell-derived exosomes as immunotherapies in the fight against cancer. J Immunol 193:1006–1011

    Article  CAS  PubMed  Google Scholar 

  • Prada I et al (2016) A new approach to follow a single extracellular vesicle-cell interaction using optical tweezers. BioTechniques 60:35–41

    Article  CAS  PubMed  Google Scholar 

  • Psaila B, Lyden D (2009) The metastatic niche: adapting the foreign soil. Nat Rev Cancer 9:285–293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raposo G, Stoorvogel W (2013) Extracellular vesicles: exosomes, microvesicles, and friends. J Cell Biol 200:373–383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ratajczak J et al (2006) Embryonic stem cell-derived microvesicles reprogram hematopoietic progenitors: evidence for horizontal transfer of mRNA and protein delivery. Leukemia 20:847–856

    Article  CAS  PubMed  Google Scholar 

  • Ridder K (2015) Extracellular vesicle-mediated transfer of functional RNA in the tumor microenvironment. Oncoimmunology 4:e1008371

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ronquist KG et al (2009) Human prostasomes contain chromosomal DNA. Prostate 69:737–743

    Article  CAS  PubMed  Google Scholar 

  • Salzberg SL (2017) Horizontal gene transfer is not a hallmark of the human genome. Genome Biol 18:85

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sansone P et al (2017) Packaging and transfer of mitochondrial DNA via exosomes regulate escape from dormancy in hormonal therapy-resistant breast cancer. Proc Natl Acad Sci U S A 114:E9066–E9075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schorey JS et al (2015) Exosomes and other extracellular vesicles in host-pathogen interactions. EMBO Rep 16:24–43

    Article  CAS  PubMed  Google Scholar 

  • Schulz WA et al (2006) Methylation of endogenous human retroelements in health and disease. Curr Top Microbiol Immunol 310:211–250

    CAS  PubMed  Google Scholar 

  • Schwarzenbach H et al (2011) Cell-free nucleic acids as biomarkers in cancer patients. Nat Rev Cancer 11:426–437

    Article  CAS  PubMed  Google Scholar 

  • Shibue T, Weinberg RA (2011) Metastatic colonization: settlement, adaptation and propagation of tumor cells in a foreign tissue environment. Semin Cancer Biol 21:99–106

    Article  CAS  PubMed  Google Scholar 

  • Shojaei F et al (2009) G-CSF-initiated myeloid cell mobilization and angiogenesis mediate tumor refractoriness to anti-VEGF therapy in mouse models. Proc Natl Acad Sci USA 106:6742–6747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Siegel RL et al (2018) Cancer statistics, 2018. CA Cancer J Clin 68:7–30

    Article  PubMed  Google Scholar 

  • Silva M, Melo SA (2015) Non-coding RNAs in exosomes: new players in cancer biology. Curr Genomics 16:295–303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Simpson RJ et al (2012) ExoCarta as a resource for exosomal research. J Extracell Vesicles 1:18374

    Article  CAS  Google Scholar 

  • Skog J et al (2008) Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers. Nat Cell Biol 10:1470–1476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sleeman JP (2012) The metastatic niche and stromal progression. Cancer Metastasis Rev 31:429–440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sleeman JP (2015) The lymph node pre-metastatic niche. J Mol Med 93:1173–1184

    Article  CAS  PubMed  Google Scholar 

  • Soucy SM et al (2015) Horizontal gene transfer: building the web of life. Nat Rev Genet 16:472–482

    Article  CAS  PubMed  Google Scholar 

  • Squadrito ML et al (2014) Endogenous RNAs modulate microRNA sorting to exosomes and transfer to acceptor cells. Cell Rep 8:1432–1446

    Article  CAS  PubMed  Google Scholar 

  • Steeg PS (2016) Targeting metastasis. Nat Rev Cancer 16:201–218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Steenbeek SC et al (2018) Cancer cells copy migratory behavior and exchange signaling networks via extracellular vesicles. EMBO J 37:e98357

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Stollar BD, Stephenson F (2002) Apoptosis and nucleosomes. Lupus 11:787–789

    Article  CAS  PubMed  Google Scholar 

  • Svensson KJ et al (2013) Exosome uptake depends on ERK1/2-heat shock protein 27 signaling and lipid Raft-mediated endocytosis negatively regulated by caveolin-1. J Biol Chem 288:17713–17724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Szczesny B et al (2018) Mitochondrial DNA damage and subsequent activation of Z-DNA binding protein 1 links oxidative stress to inflammation in epithelial cells. Sci Rep 8:914

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tangkijvanich P et al (2007) Serum LINE-1 hypomethylation as a potential prognostic marker for hepatocellular carcinoma. Clin Chim Acta 379:127–133

    Article  CAS  PubMed  Google Scholar 

  • Thakur BK et al (2014) Double-stranded DNA in exosomes: a novel biomarker in cancer detection. Cell Res 24:766–769

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thèry C et al (2002) Exosomes: composition, biogenesis and function. Nat Rev Immunol 2:569–579

    Article  PubMed  CAS  Google Scholar 

  • Thèry C et al (2018) Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J Extracell Vesicles 7:1535750

    Article  PubMed  PubMed Central  Google Scholar 

  • Thierry AR et al (2014) Clinical validation of the detection of KRAS and BRAF mutations from circulating tumor DNA. Nat Med 20:430–435

    Article  CAS  PubMed  Google Scholar 

  • Thierry AR et al (2016) Origins, structures, and functions of circulating DNA in oncology. Cancer Metastasis Rev 35:347–376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tian T et al (2010) Visualizing of the cellular uptake and intracellular trafficking of exosomes by live-cell microscopy. J Cell Biochem 111:488–496

    Article  CAS  PubMed  Google Scholar 

  • Tian Y et al (2014) A doxorubicin delivery platform using engineered natural membrane vesicle exosomes for targeted tumor therapy. Biomaterials 35:2383–2390

    Article  CAS  PubMed  Google Scholar 

  • Treiber T, Treiber N, Meister G (2019) Regulation of microRNA biogenesis and its crosstalk with other cellular pathways. Nat Rev Mol Cell Biol 20:5–20

    Article  CAS  PubMed  Google Scholar 

  • Trejo-Becerril C et al (2012) Cancer progression mediated by horizontal gene transfer in an in vivo model. PLoS One 7:e52754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Umetani N et al (2006a) Increased integrity of free circulating DNA in sera of patients with colorectal or periampullary cancer: direct quantitative PCR for ALU repeats. Clin Chem 52:1062–1069

    Article  CAS  PubMed  Google Scholar 

  • Umetani N et al (2006b) Prediction of breast tumor progression by integrity of free circulating DNA in serum. J Clin Oncol 24:4270–4276

    Article  CAS  PubMed  Google Scholar 

  • Umezu T et al (2014) Exosomal miR-135b shed from hypoxic multiple myeloma cells enhances angiogenesis by targeting factor-inhibiting HIF-1. Blood 124:3748–3757

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uzawa K et al (2012) Circulating tumor-derived mutant mitochondrial DNA: a predictive biomarker of clinical prognosis in human squamous cell carcinoma. Oncotarget 3:670–677

    Article  PubMed  PubMed Central  Google Scholar 

  • Vader P et al (2014) Extracellular vesicles: emerging targets for cancer therapy. Trends Mol Med 20:385–393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Valadi H et al (2007) Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol 9:654–659

    Article  CAS  PubMed  Google Scholar 

  • Van Niel G et al (2018) Shedding light on the cell biology of extracellular vesicles. Nat Rev Mol Cell Biol 19:213–228

    Article  PubMed  CAS  Google Scholar 

  • Villarroya-Beltri C et al (2013) Sumoylated hnRNPA2B1 controls the sorting of miRNAs into exosomes through binding to specific motifs. Nat Commun 4:2980

    Article  PubMed  CAS  Google Scholar 

  • Vogelstein B et al (1988) Genetic alterations during colorectal-tumor development. N Engl J Med 319:525–532

    Article  CAS  PubMed  Google Scholar 

  • Volik S et al (2016) Cell-free DNA (cfDNA): clinical significance and utility in cancer shaped by emerging technologies. Mol Cancer Res 14:898–908

    Article  CAS  PubMed  Google Scholar 

  • Waldenström A et al (2012) Cardiomyocyte microvesicles contain DNA/RNA and convey biological messages to target cells. PLoS One 7:e34653

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ward TH et al (2008) Biomarkers of apoptosis. Br J Cancer 99:841–846

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weiss L (1986) Metastatic inefficiency: causes and consequences. Cancer Res 3:1–24

    Google Scholar 

  • Weiss RA (2004) Multistage carcinogenesis. Br J Cancer 91:1981–1982

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wendler F et al (2017) Extracellular vesicles swarm the cancer microenvironment: from tumor-stroma communication to drug intervention. Oncogene 36:877–884

    Article  CAS  PubMed  Google Scholar 

  • Weston A, Harris CC (2003) Multistage carcinogenesis. In: Kufe D, Pollock RE, Weichselbaum RR et al (eds) Holland-Frei cancer medicine, 6th edn. BC Decker, Hamilton, ON

    Google Scholar 

  • Whiteside TL (2016) Tumor-derived exosomes and their role in cancer progression. Adv Clin Chem 74:103–141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wiklander OPB et al (2015) Extracellular vesicle in vivo biodistribution is determined by cell source, route of administration and targeting. J Extracell Vesicles 4:26316

    Article  PubMed  Google Scholar 

  • Xu R et al (2018) Extracellular vesicles in cancer: implications for future improvements in cancer care. Nat Rev Clin Oncol 15:617–638

    Article  CAS  PubMed  Google Scholar 

  • Yang S et al (2017) Detection of mutant KRAS and TP53 DNA in circulating exosomes from healthy individuals and patients with pancreatic cancer. Cancer Biol Ther 18:158–165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang Q et al (2018) Regulation of cancer immune escape: the roles of miRNAs in immune checkpoint proteins. Cancer Lett 431:73–84

    Article  CAS  PubMed  Google Scholar 

  • Yokoi A et al (2017) Malignant extracellular vesicles carrying MMP1 mRNA facilitate peritoneal dissemination in ovarian cancer. Nat Commun 8:14470

    Article  PubMed  PubMed Central  Google Scholar 

  • Yuspa SH (2000) Overview of carcinogenesis: past, present and future. Carcinogenesis 21:341–344

    Article  CAS  PubMed  Google Scholar 

  • Zajac O et al (2018) Tumour spheres with inverted polarity drive the formation of peritoneal metastases in patients with hypermethylated colorectal carcinomas. Nat Cell Biol 20:296–306

    Article  CAS  PubMed  Google Scholar 

  • Zhou W et al (2014) Cancer secreted miR-105 destroys vascular endothelial barriers to promote metastasis. Cancer Cell 25:501–515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhuang G et al (2012) Tumour-secreted miR-9 promotes endothelial cell migration and angiogenesis by activating the JAK-STAT pathway. EMBO J 31:3513–3523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Notario .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Abril, A.G., Notario, V. (2019). Role of Horizontal Gene Transfer in Cancer Progression. In: Villa, T., Viñas, M. (eds) Horizontal Gene Transfer. Springer, Cham. https://doi.org/10.1007/978-3-030-21862-1_17

Download citation

Publish with us

Policies and ethics