Skip to main content

Bayesian Optimization for Recommender System

  • Conference paper
  • First Online:
Optimization of Complex Systems: Theory, Models, Algorithms and Applications (WCGO 2019)

Abstract

Many web services have a Recommender System to help the users in their choices such as movies to watch or products to buy. The aim is to make accurate predictions on the user preferences depending on his/her past choices. Matrix-factorization is one of the most widely adopted method to build a Recommender System. Like many Machine Learning algorithms, matrix-factorization has a set of hyper-parameters to tune, leading to a complex expensive black-box optimization problem. The objective function maps any possible hyper-parameter configuration to a numeric score quantifying the quality of predictions. In this work, we show how Bayesian Optimization can efficiently optimize three hyper-parameters of a Recommender System: number of latent factors, regularization term and learning rate. A widely adopted acquisition function, namely Expected Improvement, is compared with a variant of Thompson Sampling. Numerical for both a benchmark 2-dimensional test function and a Recommender System evaluated on a benchmark dataset proved that Bayesian Optimization is an efficient tool for improving the predictions of a Recommendation System, but a clear choice between the two acquisition function is not evident.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aggarwal, C.C.: Recommender Systems. Springer International Publishing (2016). https://doi.org/10.1007/978-3-319-29659-3

  2. Basu, K., Ghosh, S.: Analysis of Thompson Sampling for Gaussian Process Optimization in the Bandit Setting (2017). arXiv preprint arXiv:1705.06808

  3. Bottou, L.: Large-scale machine learning with stochastic gradient descent. In: Proceedings of COMPSTAT 2010-19th International Conference on Computational Statistics, Keynote, Invited and Contributed Papers, pp. 177–186 (2010). https://doi.org/10.1007/2F978-3-7908-2604-3_16

  4. Cacheda, F., Carneiro, V., Fernández, D., Formoso, V.: Comparison of collaborative filtering algorithms. ACM Trans. Web 5(1), 1–33 (2011). https://doi.org/10.1145/1921591.1921593

    Google Scholar 

  5. Candelieri, A., Perego, R., Archetti, F.: Bayesian optimization of pump operations in water distribution systems. J. Glob. Optim. 71(1), 213–235 (2018). https://doi.org/10.1007/s10898-018-0641-2

    Google Scholar 

  6. Candelieri, A., Giordani, I., Archetti, F., Barkalov, K., Meyerov, I., Polovinkin, A., Sysoyev, A., Zolotykh, N.: Tuning hyperparameters of a SVM-based water demand forecasting system through parallel global optimization. Comput. Oper. Res. (2018). https://doi.org/10.1016/j.cor.2018.01.013

    Google Scholar 

  7. Crespo, R.G., Martínez, O.S., Lovelle, J.M.C., García-Bustelo, B.C.P., Gayo, J.E.L., Pablos, P.O.D.: Recommendation system based on user interaction data applied to intelligent electronic books. Comput. Hum. Behav. 27(4), 1445–1449 (2011). https://doi.org/10.1016/j.chb.2010.09.012

    Google Scholar 

  8. Dewancker, I., McCourt, M., Clark, S.: Bayesian Optimization for Machine Learning : A Practical Guidebook (2016). arXiv preprint arXiv:1612.04858

  9. Frazier, P.I.: A Tutorial on Bayesian Optimization (2018). arXiv preprint arXiv:1807.02811

  10. Garnett, R., Osborne, M.A., Roberts, S.J.: Bayesian optimization for sensor set selection. In: Proceedings of the 9th ACM/IEEE International Conference on Information Processing in Sensor Networks-IPSN 2010, Stockholm, pp. 209–219 (2010). https://doi.org/10.1145/1791212.1791238

  11. Gaviano, M., Kvasov, D.E., Lera, D., Sergeyev, Y.D.: Algorithm 829: software for generation of classes of test functions with known local and global minima for global optimization. ACM Trans. Math. Softw. 29(4), 469–480 (2003). https://doi.org/10.1145/962437.962444

    Google Scholar 

  12. Gaviano, M., Kvasov, D., Lera, D., Sergeyev, Y.D.: Software for generation of classes of test functions with known local and global minima for global optimization. ACM Trans. Math. Softw. 29(4), 469–480 (2003)

    Google Scholar 

  13. Harper, F.M., Konstan, J.A.: The movielens datasets. ACM Trans. Interact. Intell. Syst. 5(4), 1–19 (2015). https://doi.org/10.1145/2827872

    Google Scholar 

  14. Kandasamy, K., Krishnamurthy, A., Schneider, J., Póczos, B.: Parallelised Bayesian optimisation via Thompson sampling. In: International Conference on Artificial Intelligence and Statistics, pp. 133–142 (2018)

    Google Scholar 

  15. Koren, Y., Bell, R., Volinsky, C.: Matrix factorization techniques for recommender systems. Computer 42(8), 30–37 (2009). https://doi.org/10.1109/MC.2009.263

    Google Scholar 

  16. Lee, S.K., Cho, Y.H., Kim, S.H.: Collaborative filtering with ordinal scale-based implicit ratings for mobile music recommendations. Inf. Sci. 180(11), 2142–2155 (2010). https://doi.org/10.1016/j.ins.2010.02.004

    Google Scholar 

  17. McNally, K., O’Mahony, M.P., Coyle, M., Briggs, P., Smyth, B.: A case study of collaboration and reputation in social web search. ACM Trans. Intell. Syst. Technol. 3(1), 1–29 (2011). https://doi.org/10.1145/2036264.2036268

    Google Scholar 

  18. Meldgaard, S.A., Kolsbjerg, E.L., Hammer, B.: Machine learning enhanced global optimization by clustering local environments to enable bundled atomic energies. J. Chem. Phys. 149(13) (2018). https://doi.org/10.1063/1.5048290

  19. Mockus, J.: Bayesian Approach to Global Optimization, vol. 37. Springer Netherlands (1989). https://doi.org/10.1007/978-94-009-0909-0

  20. Olofsson, S., Mehrian, M., Calandra, R., Geris, L., Deisenroth, M., Misener, R.: Bayesian multi-objective optimisation with mixed analytical and black-box functions: application to tissue engineering (2018). https://doi.org/10.1109/TBME.2018.2855404

  21. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: machine learning in python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

    Google Scholar 

  22. Perdikaris, P., Karniadakis, G.E.: Model inversion via multi-fidelity Bayesian optimization: a new paradigm for parameter estimation in haemodynamics, and beyond. J. R. Soc. Interface 13(118) (2016). https://doi.org/10.1098/rsif.2015.1107

  23. Roustant, O., Ginsbourger, D., Deville, Y.: DiceKriging, DiceOptim: two R packages for the analysis of computer experiments by kriging-based metamodeling and optimization. J. Stat. Softw. 51(1), 1–55. http://www.jstatsoft.org/v51/i01/ (2012)

  24. Salakhutdinov, R., Mnih, A.: Probabilistic matrix factorization. In: Advances in Neural Information Processing Systems (NIPS), pp. 1257–1264 (2008)

    Google Scholar 

  25. Shahriari, B., Swersky, K., Wang, Z., Adams, R.P., De Freitas, N.: Taking the human out of the loop: a review of Bayesian optimization. Proc. IEEE 104, 148–175 (2016). https://doi.org/10.1109/JPROC.2015.2494218

  26. Takács, G., Pilászy, I., Németh, B., Tikk, D.: Scalable collaborative filtering approaches for large recommender systems. J. Mach. Learn. Res. 10, 623–656 (2009). https://doi.org/10.1145/1577069.1577091

    Google Scholar 

  27. Vanchinathan, H.P., Nikolic, I., De Bona, F., Krause, A.: Explore-exploit in top-N recommender systems via Gaussian processes. In: Proceedings of the 8th ACM Conference on Recommender systems-RecSys 2014, No. June 2015, pp. 225–232. (2014). https://doi.org/10.1145/2645710.2645733

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruno Giovanni Galuzzi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Galuzzi, B.G., Giordani, I., Candelieri, A., Perego, R., Archetti, F. (2020). Bayesian Optimization for Recommender System. In: Le Thi, H., Le, H., Pham Dinh, T. (eds) Optimization of Complex Systems: Theory, Models, Algorithms and Applications. WCGO 2019. Advances in Intelligent Systems and Computing, vol 991. Springer, Cham. https://doi.org/10.1007/978-3-030-21803-4_75

Download citation

Publish with us

Policies and ethics