Skip to main content

A Gray-Box Approach for Curriculum Learning

  • Conference paper
  • First Online:
Optimization of Complex Systems: Theory, Models, Algorithms and Applications (WCGO 2019)

Abstract

Curriculum learning is often employed in deep reinforcement learning to let the agent progress more quickly towards better behaviors. Numerical methods for curriculum learning in the literature provides only initial heuristic solutions, with little to no guarantee on their quality. We define a new gray-box function that, including a suitable scheduling problem, can be effectively used to reformulate the curriculum learning problem. We propose different efficient numerical methods to address this gray-box reformulation. Preliminary numerical results on a benchmark task in the curriculum learning literature show the viability of the proposed approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gpyopt: a bayesian optimization framework in python. http://github.com/SheffieldML/GPyOpt (2016)

  2. Belotti, P., Kirches, C., Leyffer, S., Linderoth, J., Luedtke, J., Mahajan, A.: Mixed-integer nonlinear optimization. Acta Numer. 22, 1–131 (2013)

    Google Scholar 

  3. Bergstra, J.: Hyperopt: distributed asynchronous hyperparameter optimization in python (2013)

    Google Scholar 

  4. Bergstra, J., Yamins, D., Cox, D.D.: Making a science of model search: hyperparameter optimization in hundreds of dimensions for vision architectures (2013)

    Google Scholar 

  5. Bergstra, J.S., Bardenet, R., Bengio, Y., Kégl, B.: Algorithms for hyper-parameter optimization. In: Advances in Neural Information Processing Systems, pp. 2546–2554 (2011)

    Google Scholar 

  6. Custódio, A.L., Scheinberg, K., Nunes Vicente, L.: Methodologies and software for derivative-free optimization. In: Advances and Trends in Optimization with Engineering Applications, pp. 495–506 (2017)

    Google Scholar 

  7. Di Pillo, G., Liuzzi, G., Lucidi, S., Piccialli, V., Rinaldi, F.: A DIRECT-type approach for derivative-free constrained global optimization. Comput. Optim. Appl. 65(2), 361–397 (2016)

    Google Scholar 

  8. Foglino, F., Leonetti, M.: An optimization framework for task sequencing in curriculum learning (2019). arXiv preprint arXiv:1901.11478

  9. Frazier, P.I.: A tutorial on bayesian optimization (2018). arXiv preprint arXiv:1807.02811

  10. Leonetti, M., Kormushev, P., Sagratella, S.: Combining local and global direct derivative-free optimization for reinforcement learning. Cybern. Inf. Technol. 12(3), 53–65 (2012)

    Google Scholar 

  11. Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness, J., Bellemare, M.G., Graves, A., Riedmiller, M., Fidjeland, A.K., Ostrovski, G., et al.: Human-level control through deep reinforcement learning. Nature 518(7540), 529 (2015)

    Google Scholar 

  12. Rasmussen, C.E.: Gaussian processes in machine learning. In: Advanced Lectures on Machine Learning, pp. 63–71. Springer (2004)

    Google Scholar 

  13. Shahriari, B., Swersky, K., Wang, Z., Adams, R.P., De Freitas, N.: Taking the human out of the loop: a review of bayesian optimization. Proc. IEEE 104(1), 148–175 (2016)

    Google Scholar 

  14. Snoek, J., Larochelle, H., Adams, R.P.: Practical bayesian optimization of machine learning algorithms. In: Advances in Neural Information Processing Systems, pp. 2951–2959 (2012)

    Google Scholar 

  15. Svetlik, M., Leonetti, M., Sinapov, J., Shah, R., Walker, N., Stone, P.: Automatic curriculum graph generation for reinforcement learning agents. In: AAAI, pp. 2590–2596 (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simone Sagratella .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Foglino, F., Leonetti, M., Sagratella, S., Seccia, R. (2020). A Gray-Box Approach for Curriculum Learning. In: Le Thi, H., Le, H., Pham Dinh, T. (eds) Optimization of Complex Systems: Theory, Models, Algorithms and Applications. WCGO 2019. Advances in Intelligent Systems and Computing, vol 991. Springer, Cham. https://doi.org/10.1007/978-3-030-21803-4_72

Download citation

Publish with us

Policies and ethics