Skip to main content

Concepts and Criteria of Resolution

  • Chapter
  • First Online:
Superresolution Optical Microscopy

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 227))

Abstract

In the first chapter I defined the terms resolution, contrast , and magnification. I contrasted the terms resolution and magnification. I stressed the synergy between resolution and contrast in the microscope. In this chapter I discuss the various definitions and concepts that are used as metrics of resolution. In addition, I introduce some topics from physical optics and others from information theory that lead to a deeper understanding of the concept of resolution. I will answer the following questions about optical resolution and resolving power : What is resolution? How do we measure resolution? What limits resolution and what confounds our concepts and understanding of it? Then, I segue from a discussion of resolution concepts to the concept of superresolution, the content of Part III of this book.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams, C. S., and Hughes, I. G. (2019). Optics f2f: From Fourier to Fresnel. Oxford: Oxford University Press.

    Google Scholar 

  • Abbe, E. (1873). Beiträge zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung. M. Schultze’s Archive für Mikroskopische Anatomie, IX, 413–468.

    Google Scholar 

  • Abbe, E. (1881). On the Estimation of Aperture in the Microscope. Journal of the Royal Microscopical Society, 1, 388–423.

    Google Scholar 

  • Airy, G. B. (1835). Diffraction of an object-glass with circular aperture. Trans. Cambridge Philosophical Society, 5, 283–291.

    Google Scholar 

  • Al-Amri, M., Liao, Z., and Zubairy, M. S. (2012). Beyond the Rayleigh Limit in Optical Lithography. In: Advances in Atomic, Molecular, and Optical Physics, 61, Amsterdam, Elsevier Inc., Chapter 8, pp. 409–466.

    Google Scholar 

  • Als-Nielsen, J., and McMorrow, D. (2001). Elements of Modern X-Ray Physics. Chichester: John Wiley & Sons Ltd.

    Google Scholar 

  • Baker, L., Editor (1992a). Selected Papers on Optical Transfer Function: Foundation and Theory. SPIE Milestone Series, MS 59. Bellingham: SPIE Optical Engineering Press.

    Google Scholar 

  • Baker, L., Editor (1992b). Selected Papers on Optical Transfer Function: Measurement. SPIE Milestone Series, MS 60. Bellingham: SPIE Optical Engineering Press.

    Google Scholar 

  • Barakat, R. (1962). Application of apodization to increase two-point resolution by the Sparrow criterion: I. Coherent illumination. J. Opt. Soc. Am., 52, 276–283.

    Google Scholar 

  • Barrett, H. H., and Myers, K. J. (2004). Foundations of Image Science. Hoboken: John Wiley & Sons, Inc.

    Google Scholar 

  • Born, M., and Wolf, E. (1999). Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light. Seventh edition (expanded). Cambridge: Cambridge University Press.

    Google Scholar 

  • Bradt, H. (2004). Astronomy Methods: A Physical Approach to Astronomical Observations. Cambridge: Cambridge University Press.

    Google Scholar 

  • Cremer, C., and Masters, B. R. (2013). Resolution enhancement techniques in microscopy. European Physical Journal, 38, 281–344. Open access publication.

    Google Scholar 

  • de Villiers, G., and Pike, E. R. (2016). The Limits of Resolution. Boca Raton, Florida: CRC Press.

    Google Scholar 

  • Duffieux, P. M. (1946). L’intégrale de Fourier et ses applications à l’optique. Paris: Masson, Editeur. Republished in English as: Duffieux, P. M. (1970). The Fourier Transform and Its Applications to Optics, Second edition. New York: John Wiley and Sons.

    Google Scholar 

  • Gaskill, J. D. (1978). Linear Systems, Fourier Transforms, and Optics. New York: Wiley-Interscience.

    Google Scholar 

  • Giacovazzo, C., Monaco, H. L., Artioli, G., Viterbo, D., Milanesio, M., Ferraris, G., Gilli, G., Gilli, P., Zanotti, G., and Catti, M. (2011). Fundamentals of Crystallography. Third edition. Oxford: Oxford University Press.

    Google Scholar 

  • Gonzalez, R. C., and Woods, R. E. (2008). Digital Imaging Processing. Third edition. Upper Saddle River: Pearson Prentice Hall.

    Google Scholar 

  • Goodman, J. W. (2015). Statistical Optics. Second edition. Hoboken: John Wiles & Sons, Inc., pp. 288–289.

    Google Scholar 

  • Goodman, J. W. (2017). Introduction to Fourier Optics. Fourth Edition. New York: W. H. Freeman and Company.

    Google Scholar 

  • Gray, R. M., and Goodman, J. W. (1995). Fourier transforms: An Introduction for Engineers. Boston: Kluwer Academic Publishers.

    Google Scholar 

  • Gustafsson, M. (2000). Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy. Journal of Microscopy, 198, 82–87.

    Google Scholar 

  • Hänninen, P. E., Hell, S. W., Salo, J., Soini, E., and Cremer, C. (1995). Two-photon excitation 4Pi confocal microscope: Enhanced axial resolution microscope for biological research. Applied Physics Letters, 66, 1698–1700.

    Google Scholar 

  • Hell, S. W., Lindek, S., Cremer, C., and Stelzer, E. H. K. (1994a). Measurement of the 4Pi-confocal point spread function proves 75 nm axial resolution. Applied Physics Letters, 64, 1335–1337.

    Google Scholar 

  • Hell, S. W., Stelzer, E. H. K., Lindek, S., and Cremer, C., (1994b). Confocal microscopy with an increased detection aperture: type-B 4Pi confocal microscopy. Optics Letters, 19, 222–224.

    Google Scholar 

  • Hell, S., and Stelzer, E. H. K. (1992a). Properties of a 4Pi confocal fluorescence microscope. Journal of the Optical Society of America A, 9, 2159–2166.

    Google Scholar 

  • Hell, S., and Stelzer, E. H. K. (1992b). Fundamental improvement of a 4Pi confocal fluorescence microscope using two-photon excitation. Optics Communications, 93, 277–282.

    Google Scholar 

  • Hell, S. (1990). Double confocal microscope. European Patent 0491289.

    Google Scholar 

  • Hopkins, H. H. (1950). Wave Theory of Aberrations. Oxford: Oxford University Press.

    Google Scholar 

  • Hopkins, H. H. (1951). The concept of partial coherence in optics. Proceedings of the Royal Society of London, Series A, 208, 263–277.

    Google Scholar 

  • Howard, J. N. (1964). John William Strutt, Third Baron Rayleigh. Applied Optics, 3, 1091–1101.

    Google Scholar 

  • Lipson, A, Lipson, S. G., and Lipson, H. (2011). Optical Physics. Fourth Edition: Cambridge University Press.

    Google Scholar 

  • Lukosz, W. (1966). Optical systems with resolving powers exceeding the classical limit, Part 1. Journal of the Optical Society of America A 56, 1463–1472.

    Google Scholar 

  • Lukosz, W. (1967). Optical systems with resolving powers exceeding the classical limit, Part 2. Journal of the Optical Society of America A, 57, 932–941.

    Google Scholar 

  • Lummer, O., and Reiche, F. (1910). Die Lehre von der Bildentstehung im Mikroskop von Ernst Abbe. Braunschweig: Friedrich View und Sohn.

    Google Scholar 

  • Madisetti, V. K., and Williams, D. B. (1998). The Digital Signal Processing Handbook. Boca Raton: CRC Press.

    Google Scholar 

  • Masters, B. R. (1996). Selected Papers on Confocal Microscopy. SPIE Milestone Series, MS 131. Bellingham: SPIE Optical Engineering Press.

    Google Scholar 

  • Masters, B. R. (2009). Lord Rayleigh: A scientific life. Optics and Photonics News, June, 32–41.

    Google Scholar 

  • McCutchen, C. W. (1967). Superresolution in microscopy and the Abbe resolution limit. Journal of the Optical Society of America A, 57, 1190–1192.

    Google Scholar 

  • Pendry, J. B. (2000). Negative refraction makes perfect lens. Physical Review Letters, 85, 3966–3969.

    Google Scholar 

  • Rayleigh, L. (1880a). Investigations in optics, with special reference to the spectroscope. 1: Resolving or separating, power of optical instruments. London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, VIII XXXI, 261–274.

    Google Scholar 

  • Rayleigh, L. (1880b). On the resolving-power of telescopes. London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, X, 116–119.

    Google Scholar 

  • Rayleigh, L. (1896). On the theory of optical images, with special reference to the microscope. London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 42, Part XV, 167–195.

    Google Scholar 

  • Rayleigh, L. (1899). Investigations in optics, with special reference to the spectroscope. In Scientific Papers by John William Strutt, Baron Rayleigh, Cambridge, Cambridge University Press, Vol. 1, pp. 415–459.

    Google Scholar 

  • Shannon, C. E. (1949). Communications in the presence of noise. Proceedings of the Institute of Radio Engineers, 37, 10–21.

    Google Scholar 

  • Schellenberg, F. M. (2004). Selected Papers on Resolution Enhancement Techniques in Optical Lithography. SPIE Milestone Series, MS 178. Bellingham: SPIE Press.

    Google Scholar 

  • Schellenberg, F. M. (2005). A history of resolution enhancement technology. Optical Review, 12, 83–89.

    Google Scholar 

  • Sheppard, C. J. R. (2007). Fundamentals of superresolution. Micron, 38, 165–169.

    Google Scholar 

  • Slayter, E. M., and Slayter, H. S. (1992). Light and Electron Microscopy. New York, Cambridge University Press.

    Google Scholar 

  • Sparrow, C. M. (1916). On spectroscopic resolving power. Astrophysical Journal, 44, 76–86

    Google Scholar 

  • Strutt, J. W. (1994). The collected optics papers of Lord Rayleigh. Part A, 1869–1892; Part B, 1892–1919. Washington, D.C.: Optical Society of America.

    Google Scholar 

  • Toraldo di Francia, G. (1952). Super gain antennas and optical resolving power. Il Nuovo Cimento Suppl., 9, 426–438.

    Google Scholar 

  • Toraldo di Francia, G. (1955). Resolving power and information. Journal of the Optical Society of America A, 45, 497–501.

    Google Scholar 

  • Van den Bos, A., and den Dekker, A. J. (1996). Coherent model-based optical resolution. Journal of the Optical Society of America A, 13, 1667–1669.

    Google Scholar 

  • Van Aert, S., Van Dyck, D., and den Dekker, A. J. (2006). Resolution of coherent and incoherent imaging systems reconsidered – Classical criteria and a statistical alternative. Optics Express, 14, 3830–3839.

    Google Scholar 

  • Van Aert, S., den Dekker, A. J., Van Dyck, D., and Van den Bos, A. (2007). The Notion of Resolution, in: Science of Microscopy, Vol. II, edited by Peter W. Hawkes, John C. H. Spence, New York: Springer.

    Google Scholar 

  • van Cittert, P. H. (1934). Die wahrscheinliche Schwingungsverteilung in einer von einer Lichtquelle direkt oder mittels einer Linse beleuchteten Ebene. Physica. 1: 201–210.

    Google Scholar 

  • Williams, C. S., and Becklund, O. A. (1989). Introduction to the Optical Transfer Function. New York: Wiley-Interscience.

    Google Scholar 

  • Williams, D. B., and Carter, C. B. (2009). Transmission Electron Microscopy, A Textbook for Materials Science, Second Edition. New York: Springer.

    Google Scholar 

  • Zernike, F. (1938). The concept of degree of coherence and its application to optical problems. Physica, 5, 785–795.

    Google Scholar 

Further Reading

  • Bracewell, R. N. (2000). The Fourier transform and its applications. Third Edition, New York: McGraw-Hill.

    Google Scholar 

  • De Graef, M., and McHenry, M. E. (2012). Structure of Material: An Introduction to Crystallography, Diffraction, and Symmetry. Second edition. Cambridge: Cambridge University Press.

    Google Scholar 

  • den Dekker, A. J., and van den Bos, A. (1997). Resolution: A survey. Journal of the Optical Society of America A, 14, 547–555.

    Google Scholar 

  • Fellgett, P. B., and Linfoot, E. H. (1955). On the assessment of optical images. Philosophical Transactions of the Royal Society A, 247, 369–407.

    Google Scholar 

  • Gabor, D. (1946). Theory of communication. Journal of IEEE, 93, 429–441.

    Google Scholar 

  • Grimes, D. N., and Thompson, B. J. (1967). Two-point resolution with partially coherent light. Journal of the Optical Society of America A, 57, 1330–1334.

    Google Scholar 

  • Hopkins, H. H. (1953). On the diffraction theory of optical images. Proceedings of the Physical Society, Series A, 217, 408–432.

    Google Scholar 

  • Hopkins, H. H. (1955). The frequency response of a defocused optical system. Proceedings of the Physical Society, 231, 91–103.

    Google Scholar 

  • Hopkins, H. H., and Barham, P. M. (1950). The influence of the condenser on microscopic resolution. Proceedings of the Physical Society, Section B, 63, Part 10, No. 370B, 737–744.

    Google Scholar 

  • Linfoot, E. H. (1964). Fourier Methods in Optical Image Evaluation. London: Focal Press.

    Google Scholar 

  • Lukosz, W., and Marchand, M. (1963). Optischen Abbildung Unter Ãœberschreitung der Beugungsbedingten Auflösungsgrenze. Optica Acta, 10, 241–255.

    Google Scholar 

  • Mahajan, V. N. (1998). Optical Imaging and Aberrations. Part I: Ray Geometrical Optics. Bellingham: SPIE Press.

    Google Scholar 

  • Mahajan, V. N. (2001). Optical Imaging and Aberrations. Part II: Wave Diffraction Optics. Bellingham: SPIE Press.

    Google Scholar 

  • Mandel, L., and Wolf, E. (1990). Selected Papers on Coherence and Fluctuations of Light (1850–1966). SPIE Milestone Series, MS 19, Part I, Part II. Bellingham: SPIE Optical Engineering Press.

    Google Scholar 

  • Synge, E. H. (1928). A suggested method for extending microscopic resolution into the ultra-microscopic region. Philosophical Magazine, 6, 356–362.

    Google Scholar 

  • Sheppard, C. J. R. (1986). The spatial frequency cut-off in three-dimensional imaging. Optik, 72, 131–133.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barry R. Masters .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Masters, B.R. (2020). Concepts and Criteria of Resolution. In: Superresolution Optical Microscopy. Springer Series in Optical Sciences, vol 227. Springer, Cham. https://doi.org/10.1007/978-3-030-21691-7_2

Download citation

Publish with us

Policies and ethics