Skip to main content

In Vitro Screening of Crop Plants for Abiotic Stress Tolerance

  • Chapter
  • First Online:
Recent Approaches in Omics for Plant Resilience to Climate Change

Abstract

Due to the increasing world population, more attention has been attracted for increasing agricultural production. At the same time, environmental stresses are an important obstacle for increased agricultural production around the world. For this reason, plant breeders seek to breed important crop plants against major stresses such as drought, salinity and cold. Genetic diversity is the important key to success for plant breeders. This diversity occurs naturally or be induced by plant breeders within a plant species. Because of the low rate of natural mutations, plant breeders are attempting to create mutation by chemical and physical mutagens. However, chemical and physical mutagens that induced mutations are strongly dangerous for operator and some of them need advanced equipment. There is another way to create variations in the genome safely named somaclonal variations. Somaclonal variations are originated from culture and subculture of cells from a previous culture to fresh growth medium. One of the biggest advantages of this method (creation of somaclonal variations) is that plant breeder can guide somaclonal variations to create a desirable trait using selective agents. In this chapter, we tried to introduce the application of this method to breeding crops against abiotic stresses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aazami MA, Torabi M, Jalili E (2010) In vitro response of promising tomato genotypes for tolerance to osmotic stress. Afr J Biotechnol 9(26):4014–4017

    CAS  Google Scholar 

  • Ahmed AA, Roosens N, Dewaele E, Jacobs M, Angenon G (2015) Overexpression of a novel feedback-desensitized Δ1-pyrroline-5-carboxylate synthetase increases proline accumulation and confers salt tolerance in transgenic Nicotiana plumbaginifolia. Plant Cell Tissue Organ Cult 122(2):383–393

    Article  CAS  Google Scholar 

  • Albiski F, Najla S, Sanoubar R, Alkabani N, Murshed R (2012) In vitro screening of potato lines for drought tolerance. Physiol Mol Biol Plants 18(4):315–321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anjum MA (1998) Selection of hydroxyproline-resistant cell lines from Solanum Tuberosum L. Callus II Plant regeneration and frost tolerance of regenerated plants. Eng Life Sci 18(4):361–366

    CAS  Google Scholar 

  • Bahramnejad B, Nasri S, Mozafari A, Siosemardeh A (2015) Agrobacterium tumefaciens-mediated transformation of two economically important strawberry cultivars with P5CS gene. J Plant Physiol Breed 5(1):55–66

    Google Scholar 

  • Bajaj YPS (1987) Biotechnology in agriculture and forestry, Potato, vol 3. Springer-Verlag, Berlin

    Google Scholar 

  • Barakat MN, Abdel-Latif TH (1995) In vitro selection for drought tolerant lines in wheat. I Effect of PEG on the embryonic cultures. Alex J Agric Res 40:97–112

    Google Scholar 

  • Barakat MN, Abdel-Latif TH (1996) In vitro selection of wheat callus tolerant to high levels of salt and plant regeneration. Euphytica 91:127–140

    Google Scholar 

  • Basu S, Gangopadhyay G, Mukherjee BB, Gupta S (1997) Plant regeneration of salt adapted callus of indica rice (var. Basmati 370) in saline conditions. Plant Cell Tiss Org Cult 50:153–159

    Article  CAS  Google Scholar 

  • Bayliss MW (1980) Chromosomal variation in plant tissues in culture. Int Rev Cytol Suppl 11A:113–144

    Google Scholar 

  • Bertin P, Bouharmont J (1997) Use of somaclonal variation and in vitro selection for chilling tolerance improvement in rice. Euphytica 96(1):135–142

    Article  Google Scholar 

  • Binh DQ, Heszky LE (1990) Restoration of regeneration potential of long term cell culture in rice (Oryza sativa L.) by salt pre-treatment. J Plant Physiol 136:336–340

    Article  Google Scholar 

  • Biswas J, Chowdhury B, Bhattacharya A, Mandal AB (2002) In vitro screening for increased drought tolerance in rice. In Vitro Cell Dev Biol Plant 38(5):525–530

    Article  Google Scholar 

  • Blum A (1988) Plant breeding for stress environments. CRC Press Inc., Boca Raton. ISBN-10: 0849363888

    Google Scholar 

  • Breese ED (1969) The measurement and significant of genotype-environment interaction in grasses. Heredity 21:27–47

    Article  Google Scholar 

  • Carloni E, Tommasino E, Colomba EL, Ribotta A, Quiroga M, Griffa S, Grunberg K (2017) In vitro selection and characterization of buffelgrass somaclones with different responses to water stress. Plant Cell Tiss Organ Cult 130:265.

    Article  Google Scholar 

  • Cha-um S, Takabe T, Kirdmanee C (2012) Physio-biochemical responses of oil palm (Elaeis guineensis Jacq.) seedlings to mannitol and polyethylene glycol-induced iso-osmotic stresses. Plant Prod Sci 15:65–72

    Article  CAS  Google Scholar 

  • Davenport SB, Gallego SM, Benavides MP, Tomaro ML (2003) Behaviour of antioxidant defense system in the adaptive response to salt stress in Helianthusannuus L. cells. Plant Growth Regul 40:81–88

    Article  CAS  Google Scholar 

  • Delanauney AJ, Verma DPS (1993) Proline biosynthesis and osmoregulation in plants. Plant J 4:215–223. https://doi.org/10.1046/j.1365-313X.1993.04020215.x

    Article  Google Scholar 

  • Dorffling K, Dorffling H, Lesselich G (1993) In vitro-selection and regeneration of hydroxyproline-resistant lines of winter wheat with increased proline content and increased frost tolerance. J Plant Physiol 142(2):222–225

    Article  Google Scholar 

  • Dörffling K, Dörffling H, Lesselich G, Luck E, Zimmermann C, Melz G, Jürgens HU (1997) Heritable improvement of frost tolerance in winter wheat by in vitro-selection of hydroxyproline-resistant proline overproducing mutants. Euphytica 93(1):1–10

    Article  Google Scholar 

  • Dorffling K, Dorffling H, Luck E (2009) Improved frost tolerance and winter hardiness in proline overaccumulating winter wheat mutants obtained by in vitro-selection is associated with increased carbohydrate, soluble protein and abscisic acid (ABA) levels. Euphytica 165(3):545–556

    Article  CAS  Google Scholar 

  • Duncan RR, Waskom RM, Nabors MW (1995) In vitro screening and field evaluation of tissue-culture-regenerated sorghum (Sorghum bicolor L. Moench) for soil stress tolerance. Euphytica 85:373–380

    Article  Google Scholar 

  • Dziadczyk P, Bolibok H, Tyrka M, Hortynski JA (2003) In vitro selection of strawberry (Fragaria × ananassa Duch.) clones tolerant to salt stress. Euphytica 132(1):49–55

    Article  CAS  Google Scholar 

  • Elavumoottil OC, Martin JP, Moreno ML (2003) Changes in sugars, sucrose synthase activity and proteins in salinity tolerant callus and cell suspension cultures of Brassica oleracea L. Biol Plant 46:7–12

    Article  CAS  Google Scholar 

  • El-Haris MK, Barakat MN (1998) Evaluation of the in vitro selected drought tolerant wheat lines under drought stress conditions. Alex J Agric Res 43:293–302

    Google Scholar 

  • El-Minisy AM, Abbas MS, Aly UI, El-Shabrawi HM (2016) In vitro selection and characterization of salt tolerant cell lines in cassava plant (Manihot esculenta Crantz). Int J ChemTech Res 9(5):215–227

    CAS  Google Scholar 

  • Errabii T, Gandonou CB, Essalmani H, Abrini J, Idomar M, Senhaji NS (2006) Growth, proline and ion accumulation in sugarcane callus cultures underdrought-induced osmotic stress and its subsequent relief. Afr J Biotechnol 5:1488–1493

    CAS  Google Scholar 

  • Errabii T, Gandonou CB, Essalmani H, Abrini J, Idaomar M, Senhaji NS (2007) Effects of NaCl and mannitol induced stress on sugarcane (Saccharum sp.) callus cultures. Acta Physiol Plant 29:95–102

    Article  CAS  Google Scholar 

  • Fallon KM, Phillips R (1989) Responses to water stress in adapted and unadapted carrot cell suspension cultures. J Exp Bot 40:681–687

    Article  CAS  Google Scholar 

  • Flowers TJ (2004) Improving crop salt tolerance. J Exp Bot 55:307–319

    Article  CAS  PubMed  Google Scholar 

  • Gandonou CB, Errabii T, Abrini J, Idaomar M, Senhaji NS (2006) Selection of callus cultures of sugarcane (Saccharum sp.) tolerant to NaCl and their response to salt stress. Plant Cell Tissue Organ Cult 87:9–16

    Article  CAS  Google Scholar 

  • Gangopadhyay G, Basu S, Gupta S (1997) In vitro selection and physiological characterization of NaCl-and mannitol-adapted callus lines in Brassica juncea. Plant Cell Tissue Organ Cult 50:161–169

    Article  CAS  Google Scholar 

  • Ghane SG, Lokhande VH, Nikam TD (2014) Growth, physiological, and biochemical responses in relation to salinity tolerance for In Vitro selection in oil seed crop Guizotia abyssinica Cass. J Crop Sci Biotechnol 17(1):11–20

    Article  Google Scholar 

  • Hasissou D, Bouharmont J (1994) In vitro selection and characterization of drought tolerant plants of durum wheat (Triticum durum desf). Agronomy 14:65–70

    Article  Google Scholar 

  • Hassan NS, Wilkins DA (1988) In vitro selection for salt tolerant lines in Lycopersicon peruvianum. Plant Cell Rep 7:463–466

    CAS  PubMed  Google Scholar 

  • Hassan NS, Shaaban LD, Hashem ESA, Seleem EE (2004) In vitro selection for water stress tolerant callus line of Helianthus annus L. Cv. Myak. Int J Agric Biol 6:1–13

    Google Scholar 

  • Hassan NM, Serag MS, El-Feky FM, Nemat Alla MM (2008) In vitro selection of mung bean and tomato for improving tolerance to NaCl. Ann Appl Biol 152:319–330

    Article  CAS  Google Scholar 

  • He S, Han Y, Wang Y, Zhai H, Liu Q (2009) In vitro selection and identification of sweet potato (Ipomoea batatas (L.) Lam.) plants tolerant to NaCl. Plant Cell Tissue Organ Cult 96:69–74

    Article  CAS  Google Scholar 

  • Hohl M, Schopfer P (1991) Water relations of growing Maize coleoptiles comparison between mannitol and polyethylene glycol 6000 as external osmotica for adjusting turgor pressure. Plant Physiol 95:716–722

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hong Z, Lakkineni K, Zang Z, Verma DPS (2000) Removal of feedback inhibition of _1-pyrroline-5-carboxylate synthetase results in increased proline accumulation and protection of plants from osmotic stress. Plant Physiol 122:1129–1136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hossain Z, Mandal AKA, Datta SK, Biswas AK (2007) Development of NaCl tolerant line in Chrysanthemum morifolium Ramat. through shoot organogenesis of selected callus line. J Biotechnol 129:658–667

    Article  CAS  PubMed  Google Scholar 

  • Jain RK, Jain S, Nainawatee HS, Chowdhury JB (1990) Salt tolerance in Brassica juncea L.I. In vitro selection, agronomic evaluation and genetic stability. Euphytica 48:141–152

    Article  Google Scholar 

  • Joshi R, Shukla A, Sairam RK (2011) In vitro screening of rice genotypes for drought tolerance using polyethylene glycol. Acta Physiol Plant 33(6):2209–2217

    Article  CAS  Google Scholar 

  • Karadimova M, Djambova G (1993) Increased NaCl-tolerance in wheat (Triticum aestivum L. and T. durum desf.) through in vitro selection. In Vitro Cell Dev Biol Plant 29(4):180–182

    Article  Google Scholar 

  • Karp A (1995) Somaclonal variation as a tool for crop improvement. Euphytica 85:295–302

    Article  Google Scholar 

  • Kendall EJ, Qureshi JA, Kartha KK, Leung N, Chevrier N, Caswell K, Chen TH (1990) Regeneration of freezing-tolerant spring wheat (Triticum aestivum L.) plants from cryoselected callus. Plant Physiol 94(4):1756–1762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kripkyy O, Kerkeb L, Molina A, Belver A, Rodrigues Rosales P, Donaire PJ (2001) Effects of salt-adaptation and salt-stress on extracellular acidification and microsome phosphohydrolase activities in tomato cell suspensions. Plant Cell Tissue Organ Cult 66:41–47

    Article  CAS  Google Scholar 

  • Kubala S, Wojtyla Ł, Quinet M, Lechowska K, Lutts S, Garnczarska M (2015) Enhanced expression of the proline synthesis gene P5CSA in relation to seed osmo priming improvement of Brassica napus germination under salinity stress. J Plant Physiol 183:1–12

    Article  CAS  PubMed  Google Scholar 

  • Larkin PJ, Scowcroft WR (1981) Somaclonal variation - a novel source of variability from cell cultures for plant improvement. Theor Appl Genet 60:197–214

    Article  CAS  PubMed  Google Scholar 

  • Lazar MD, Chen THH, Gusta LV, Kartha KK (1988) Somaclonal variation for freezing tolerance in a population derived from Norstar winter wheat. Theor Appl Genet 75(3):480–484

    Article  Google Scholar 

  • Lee M, PhilIips RL (1988) The chromosomal basis of somaclonal variation. Annu Rev Plant Physiol Mol Biol 39:413–437

    Article  Google Scholar 

  • Lee SY, Lee JH, Kwon TO (2003) Selection of salt-tolerant doubled haploids in rice anther culture. Plant Cell Tissue Organ Cult 74:143–149

    Article  CAS  Google Scholar 

  • Leone A, Costa A, Tucci M, Grillo S (1994) Adaptation versus shock response to polyethylene glycol-induced low water potential in cultured potato cells. Physiol Plant 92:21–30

    Article  CAS  Google Scholar 

  • Limin AE, Fowler DB (1993) Inheritance of cold hardiness in Triticum aestivum × synthetic hexaploid wheat crosses. Plant Breed 110:103–108

    Article  Google Scholar 

  • Liu T, Staden JV (2000) Selection and characterization of sodium chloride-tolerant callus of Glycine max (L.) Merr cv. Acme. Plant Growth Regul 31:195–207

    Article  CAS  Google Scholar 

  • Liu J, Yang Z, Li W, Yu J, Huang B (2013) Improving cold tolerance through in vitro selection for somaclonal variations in Seashore paspalum. J Am Soc Hortic Sci 138(6):452–460

    Article  CAS  Google Scholar 

  • Lu S, Peng X, Guo Z, Zhang G, Wang Z, Wang C, Pang C, Fan Z, Wang J (2007) In vitro selection of salinity tolerant variants from triploid bermuda grass (Cynodon transvaalensis × C. dactylon) and their physiological responses to salt and drought stress. Plant Cell Rep 26:1413–1420

    Article  CAS  PubMed  Google Scholar 

  • Lu S, Chen C, Wang Z, Guo Z, Li H (2009) Physiological responses of somaclonal variants of triploid bermuda grass (Cynodon transvaalensis × Cynodon dactylon) to drought stress. Plant Cell Rep 28:517–526

    Article  CAS  PubMed  Google Scholar 

  • Mahmood I, Razzaq A, Hafiz IA, Kaleem S, Khan AA, Qayyum A, Ahmad M (2012) Interaction of callus selection media and stress duration for in vitro selection of drought tolerant callus of wheat. Afr J Biotechnol 11(17):4000–4006

    CAS  Google Scholar 

  • Matheka JM, Magiri E, Rasha AO, Machuka J (2008) In vitro selection and characterization of drought tolerant somaclones of tropical maize (Zea mays L.). Biotechnology 7:641–650

    Article  CAS  Google Scholar 

  • McCoy TJ (1987) Characterization of alfalfa (Medicago sativa L.) plants regenerated from selected NaCl tolerant cell lines. Plant Cell Rep 6:417–422

    Article  CAS  PubMed  Google Scholar 

  • McHughen A (1987) Salt tolerance through increased vigor in a flax line (STS-II) selected for salt tolerance in vitro. Theor Appl Genet 74:727–732

    Article  CAS  PubMed  Google Scholar 

  • Meksem K, Kahl G (eds) (2009) The handbook of plant mutation screening: mining of natural and induced alleles. Wiley, Hoboken

    Google Scholar 

  • Mitra J (2001) Genetics and genetic improvement of drought resistance in crop plants. Curr Sci 80(6):758–763

    CAS  Google Scholar 

  • Mohamed MAH, Ibrahim TA (2012) Enhanced in vitro production of Ruta graveolens L. coumarins and rutin by mannitol and ventilation. Plant Cell Tissue Organ Cult 111:335–343

    Article  CAS  Google Scholar 

  • Mohamed MH, Harris PJC, Henderson J (2000) In vitro selection and characterisation of a drought tolerant clone of Tagetes minuta. Plant Sci 159:213–222

    Article  CAS  PubMed  Google Scholar 

  • Munns R, Husain S, Rivelli AR, James RA, Condon AG, Lindsay MP et al (2002) Avenues for increasing salt tolerance of crops, and the role of physiologically based selection traits. Plant and Soil 247:93. https://doi.org/10.1023/A:1021119414799

    Article  CAS  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681

    Article  CAS  PubMed  Google Scholar 

  • Nanakorn M, Jiamjetjaroon W, Suwanawong S, Wongwattana C, Shim IS (2003) In vitro selection of salt-tolerant cell lines in kallar grass (Diplachnefusca L.). Weed Biol Manage 3:49–52

    Article  Google Scholar 

  • Nanjo T, Kobayashi M, Yoshiba Y, Kakubari Y, Yamaguchi-Shinozaki K, Shinozaki K (1999) Antisense suppression of proline degradation improves tolerance to freezing and salinity in Arabidopsis thaliana. FEBS Lett 461(3):205–210

    Article  CAS  PubMed  Google Scholar 

  • Nguyen TT, Klueva N, Chamareck V, Aarti A, Magpantay G, Millena AC, Pathan MS, Nguyen HT (2004) Saturation mapping of QTL regions and identification of putative candidate genes for drought tolerance in rice. Mol Gen Genomics 272(1):35–46

    Article  CAS  Google Scholar 

  • Ochatt SJ, Marconi PL, Radice S, Arnozis PA, Caso OH (1999) In vitro recurrent selection of potato: production and characterization of salt tolerant cell lines and plants. Plant Cell Tiss Org Cult 55:1–8

    Article  Google Scholar 

  • Queiros F, Fidalgo F, Santos I, Salema R (2007) In vitro selection of salt tolerant cell lines in Solanum tuberosum L. Biol Plant 51:728–734

    Article  CAS  Google Scholar 

  • Rahman MH, Krishnaraj S, Thorpe TA (1995) Selection for salt tolerance in vitrousing microspore-derived embryos of Brassica napus cv. Topas, and the characterization of putative tolerant plants. In Vitro Cell Dev Biol Plant 31:116–121

    Article  Google Scholar 

  • Reddy PS, Jogeswar G, Rasineni GK, Maheswari M, Reddy AR, Varshney RK, Kishor PK (2015) Proline over-accumulation alleviates salt stress and protects photosynthetic and antioxidant enzyme activities in transgenic sorghum [Sorghum bicolor (L.) Moench]. Plant Physiol Biochem 94:104–113

    Article  PubMed  CAS  Google Scholar 

  • Remotti PC (1998) Somaclonal variation and in-vitro selection for crop improvement. In: Somaclonal variation and induced mutations in crop improvement. Springer, Dordrecht, pp 169–201

    Chapter  Google Scholar 

  • Rengasamy P (2002) Transient salinity and subsoil constraints to dryland farming in Australian sodic soils: an overview. Aust J Exp Agric 42:351–361

    Article  Google Scholar 

  • Rout GR, Senapati SK, Panda JJ (2008) Selection of salt tolerant plants of Nicotiana tabacum L. through in vitro and its biochemical characterization. Acta Biol Hung 59:77–92

    Article  CAS  PubMed  Google Scholar 

  • Sabbah S, Tal M (1990) Development of callus and suspension cultures of potato resistant to NaCl and mannitol and their response to stress. Plant Cell Tissue Organ Cult 21:119–124

    Article  CAS  Google Scholar 

  • Safarnejad A, Collin HA, Bruce KD, McNeilly T (1996) Characterization of alfalfa (Medicago sativa L.) following in vitro selection for salt tolerance. Euphytica 92:55–61

    Article  Google Scholar 

  • Sajid ZA, Aftab F (2014) Plant regeneration from in vitro-selected salt tolerant callus cultures of Solanum tuberosum L. Pak J Bot 46(4):1507–1514

    Google Scholar 

  • Santos-Diaz MS, Ochoa-Alejo N (1994) PEG–tolerant cell clones of chili pepper:growth, osmotic potentials and solute accumulation. Plant Cell Tissue Organ Cult 37:1–8

    Article  CAS  Google Scholar 

  • Sawahel WA, Hassan AH (2002) Generation of transgenic wheat plants producing high levels of the osmoprotectant proline. Biotechnol Lett 24:721–725

    Article  CAS  Google Scholar 

  • Shankhdhar D, Shankhdhar SC, Mani SC, Pant RC (2000) In vitro selection for salt tolerance in rice. Biol Plant 43:477–480

    Article  CAS  Google Scholar 

  • Sinha SK (1986) In: Chopra VL, Paroda RS (eds) Approaches for incorporating drought and salinity resistance in crop plants. Oxford and IBH, New Delhi, pp 56–86

    Google Scholar 

  • Smith RH, Bhaskaran S, Miller FR (1985) Screening for drought tolerancein sorghum using cell culture. In Vitro Cell Dev Biol Plant 21:541–545

    Article  Google Scholar 

  • Tal M (1996) Somaclonal variation for salt tolerance in tomato and potato. In: Bajaj YPS (ed) Biotechnology in agriculture and forestry, Somaclonal variation in crop improvement II, vol 3. Springer, Berlin, pp 132–145

    Google Scholar 

  • Tantau H, Dorffling K (1991) In vitro-selection of hydroxyproline-resistant cell lines of wheat (Triticum aestivum): accumulation of proline, decrease in osmotic potential, and increase in frost tolerance. Physiol Plant 82(2):243–248

    Article  CAS  Google Scholar 

  • Tantau H, Dörffling K (1991) In vitro-selection of hydroxyproline-resistant cell lines of wheat (Triticum aestivum): accumulation of proline, decrease in osmotic potential, and increase in frost tolerance. Physiol Plant 82(2):243–248

    Article  CAS  Google Scholar 

  • Tantau H, Balko C, Brettschneider B, Melz G, Dorffling K (2004a) Improved frost tolerance and winter survival in winter barley (Hordeum vulgare L.) by in vitro selection of proline overaccumulating lines. Euphytica 139(1):19–32

    Article  CAS  Google Scholar 

  • Tantau H, Balko C, Brettschneider B, Melz G, Dörffling K (2004b) Improved frost tolerance and winter survival in winter barley (Hordeum vulgare L.) by in vitro selection of proline overaccumulating lines. Euphytica 139(1):19–32

    Article  CAS  Google Scholar 

  • Tuinstra MR, Grote EM, Goldsbrough PB, Ejeta G (1996) Identification of quantitative trait loci associated with pre-flowering drought tolerance in sorghum. Crop Sci 36:1337–1344

    Article  CAS  Google Scholar 

  • Vajrabhaya M, Thanapaisal T, Vajrabhaya T (1989) Development of salt tolerant lines of KDML and LPT rice cultivars through tissue culture. Plant Cell Rep 8:411–414

    Article  CAS  PubMed  Google Scholar 

  • Van Swaalj AC, Jacobsen E, Kjel JAKW, Feenstra WJ (1986) Selection, characterization and regeneration of hydroxyproline- resistant cell lines of Solanum tuberosum: tolerance to NaCl and freezing stress. Physiol Plant 68:359–366

    Article  Google Scholar 

  • Van Swaalj AC, Nljdam H, Jacobsen E, Feenstra WJ (1987) Increased frost tolerance and amino acid content in leaves, tubers and leaf callus of regenerated hydroxyproline resistant potato clones. Euphytica 36:369–380

    Article  Google Scholar 

  • Verma D, Ansari MW, Agrawal GK, Rakwal R, Shukla A, Tuteja N (2013) In vitro selection and field responses of somaclonal variant plants of rice cv PS113 for drought tolerance. Plant Signal Behav 8:23519

    Article  Google Scholar 

  • Verslues PE, Ober ES, Sharp RE (1998) Root growth and oxygen relations at low water potentials. Impact of oxygen availability in polyethylene glycol solutions. Plant Physiol 116:1403–1412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wani SH, Sofi PA, Gosal SS, Singh NB (2010) In vitro screening of rice (Oryza sativa L) callus for drought tolerance. Commun Biometry Crop Sci 5:108–115

    Google Scholar 

  • Winkel A (1989) Breeding for drought tolerance in cereals. Vortrage Pflanzenziicht 16:357–368

    Google Scholar 

  • Ye JM, Kao KN, Harvey BL, Rossnagel BG (1987) Screening salt-tolerant barley genotypes via F1 anther culture in salt stress media. Theor Appl Genet 74:426–429

    Article  CAS  PubMed  Google Scholar 

  • Zair I, Chlyah A, Sabounji K, Tittahsen M, Chlyah H (2003) Salt tolerance improvement in some wheat cultivars after application of in vitro selection pressure. Plant Cell Tissue Organ Cult 73:237–244

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mansour Ghorbanpour .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Maleki, M., Ghorbanpour, M., Nikabadi, S., Wani, S.H. (2019). In Vitro Screening of Crop Plants for Abiotic Stress Tolerance. In: Wani, S. (eds) Recent Approaches in Omics for Plant Resilience to Climate Change. Springer, Cham. https://doi.org/10.1007/978-3-030-21687-0_4

Download citation

Publish with us

Policies and ethics