Skip to main content

Beneficial Role of Metalloids in Plants: Molecular Understanding and Applicability

  • Chapter
  • First Online:
Recent Approaches in Omics for Plant Resilience to Climate Change

Abstract

Within the periodic table, metalloids are highlighted as a separate class of essential micronutrients which show chemical properties between metals and non-metals. Along with other elements, these metalloids are instrumental in governing plant’s growth, biomass, health, development, metabolism, reproduction and productivity. However, due to modern agricultural practices, rapid industrialization, burning of fossils fuels, military operations, metalliferous mining and anthropogenic activities, there has been an increase in the threshold level of various metals and metalloids in the past 50 years. As a result, the long-term effects of various metalloids have been assessed on the environment, human, livestock and plant health throughout the last two decades. Parallely, the information about bioavailability, accumulation, uptake and metabolism within the plant at various cellular sites has been gathered. One of the relevant components of metalloid which orchestrate the metalloid uptake, translocation and sequestration are metalloid transporters. Therefore, in this chapter, we have highlighted the metalloid sources, beneficial roles, distribution, uptake and transporters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adrees M, Ali S, Rizwan M, Ibrahim M, Abbas F, Farid M et al (2015) The effect of excess copper on growth and physiology of important food crops: a review. Environ Sci Pollut Res 22:8148–8162

    Article  CAS  Google Scholar 

  • Afshan S, Ali S, Bharwana SA, Rizwan M, Farid M, Abbas F et al (2015) Citric acid enhances the phytoextraction of chromium, plant growth, and photosynthesis by alleviating the oxidative damages in Brassica napus L. Environ Sci Pollut Res 22:11679–11689

    Article  CAS  Google Scholar 

  • Agre P, Kozono D (2003) Aquaporin water channels: molecular mechanisms for human diseases. FEBS Lett 555:72–78

    Article  CAS  PubMed  Google Scholar 

  • Agre P, Preston GM, Smith BL, Jung JS, Raina S, Moon C et al (1993) Aquaporin CHIP: the archetypal molecular water channel. Am J Physiol Renal Physiol 265:F463–F476

    Article  CAS  Google Scholar 

  • Alloway BJ (2013) Sources of heavy metals and metalloids in soils. In: Alloway BJ (ed) Heavy metals in soils: trace metals and metalloids in soils and their bioavailability. Springer, Dordrecht, pp 11–50

    Chapter  Google Scholar 

  • Anjum NA, Hasanuzzaman M, Hossain MA, Thangavel P, Roychoudhury A, Gill SS et al (2015) Jacks of metal/metalloid chelation trade in plants—an overview. Front Plant Sci 6:192

    PubMed  PubMed Central  Google Scholar 

  • Archana NP, Verma P (2017) Boron deficiency and toxicity and their tolerance in plants: a review. J Global Biosci 6:4958–4965

    Google Scholar 

  • Bansal A, Sankararamakrishnan R (2007) Homology modeling of major intrinsic proteins in rice, maize and Arabidopsis: comparative analysis of transmembrane helix association and aromatic/arginine selectivity filters. BMC Struct Biol 7:27

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Banuelos G, Terry N, LeDuc DL, Pilon-Smits EAH, Mackey B (2005) Field trial of transgenic Indian mustard plants shows enhanced phytoremediation of selenium-contaminated sediment. Environ Sci Tech 39:1771–1777

    Article  CAS  Google Scholar 

  • Banuelos G, LeDuc DL, Pilon-Smits EAH, Tagmount A, Terry N (2007) Transgenic Indian mustard overexpressing selenocysteine lyase or selenocysteine methyltransferase exhibit enhanced potential for selenium phytoremediation under field conditions. Environ Sci Technol 41:599–605

    Article  CAS  PubMed  Google Scholar 

  • Bardor M, Cremata JA, Lerouge P (2018) Glycan engineering in transgenic plants. Ann Plant Rev 41:409–424

    Article  Google Scholar 

  • Baxter I, Dilkes BP (2012) Elemental profiles reflect plant adaptations to the environment. Science 336:1661

    Article  CAS  PubMed  Google Scholar 

  • Belokobylsky AI, Ginturi EI, Kuchava NE, Kirkesali EI, Mosulishvili L, Frontasyeva MV et al (2004) Accumulation of selenium and chromium in the growth dynamics ofspirulina platensis. J Radioanal Nucl Chem 259:65–68

    Article  CAS  Google Scholar 

  • Bienert GP, Thorsen M, Schüssler MD, Nilsson HR, Wagner A, Tamás MJ et al (2008) A subgroup of plant aquaporins facilitate the bi-directional diffusion of As(OH)3 and Sb(OH)3 across membranes. BMC Biol 6:26

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bohnsack CW, Albert LS (1977) Early effects of boron deficiency on indoleacetic acid oxidase levels of squash root tips. Plant Physiol 59:1047–1050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boldrin PF, Faquin V, Ramos SJ, Boldrin KVF, Ávila FW, Guilherme LRG (2013) Soil and foliar application of selenium in rice biofortification. J Food Compos Anal 31:238–244

    Article  CAS  Google Scholar 

  • Bonilla I, Mergold-Villasenor C, Campos ME, Sanchez N, Perez H, Lopez L et al (1997) The aberrant cell walls of boron-deficient bean root nodules have no covalently bound hydroxyproline-/proline-rich proteins. Plant Physiol 115:1329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Borgnia M, Nielsen S, Engel A, Agre P (1999) Cellular and molecular biology of the aquaporin water channels. Annu Rev Biochem 68:425–458

    Article  CAS  PubMed  Google Scholar 

  • Bowen P, Menzies J, Ehret D, Samuels L, Glass ADM (1992) Soluble silicon sprays inhibit powdery mildew development on grape leaves. J Am Soc Hortic Sci 117:906–912

    Article  CAS  Google Scholar 

  • Brenchley WE, Waeikngton K (1927) The role of boron in the growth of plants. Ann Bol 41:167

    Article  CAS  Google Scholar 

  • Buchner P, Stuiver CEE, Westerman S, Wirtz M, Hell R, Hawkesford MJ et al (2004) Regulation of sulfate uptake and expression of sulfate transporter genes in Brassica oleracea as affected by atmospheric H2S and pedospheric sulfate nutrition. Plant Physiol 136:3396–3408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Camacho-Cristóbal JJ, González-Fontes A (1999) Boron deficiency causes a drastic decrease in nitrate content and nitrate reductase activity, and increases the content of carbohydrates in leaves from tobacco plants. Planta 209:528–536

    Article  PubMed  Google Scholar 

  • Camacho-Cristóbal JJ, Rexach J, González-Fontes A (2008) Boron in plants: deficiency and toxicity. J Integr Plant Biol 50:1247–1255

    Article  PubMed  CAS  Google Scholar 

  • Camacho-Cristóbal JJ, Navarro-Gochicoa MT, Rexach J, González-Fontes A, Herrera-Rodríguez MB (2018) Plant response to boron deficiency and boron use efficiency in crop plants. Plant micronutrient use efficiency. Academic Press, New York, NY

    Google Scholar 

  • Cañon P, Aquea F, Rodríguez-Hoces de La Guardia A, Arce-Johnson P (2013) Functional characterization of Citrus macrophylla BOR1 as a boron transporter. Physiol Plant 149:329–339

    PubMed  Google Scholar 

  • Cao D, Liu Y, Ma L, Jin X, Guo G, Tan R et al (2018) Transcriptome analysis of differentially expressed genes involved in selenium accumulation in tea plant (Camellia sinensis). PLoS One 13:e0197506

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Carpena Artes O, Carpena Ruiz RO (1983) Influence of boron on amino acid contents in tomato plant I. sap. Agrochimica 27:498–505

    CAS  Google Scholar 

  • Castrillo G, Sánchez-Bermejo E, de Lorenzo L, Crevillén P, Fraile-Escanciano A, Mohan TC (2013) WRKY6 transcription factor restricts arsenate uptake and transposon activation in Arabidopsis. Plant Cell 25:2944–2957

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Catarecha P, Segura MD, Franco-Zorrilla JM, García-Ponce B, Lanza M, Solano R et al (2007) A mutant of the arabidopsis phosphate transporter pht1;1 displays enhanced arsenic accumulation. Plant Cell 19:1123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chatterjee C, Sinha P, Agarwala SC (1990) Interactive effect of boron and phosphorus on growth and metabolism of maize grown in refined sand. Can J Plant Sci 70:455–460

    Article  CAS  Google Scholar 

  • Chatterjee M, Tabi Z, Galli M, Malcomber S, Buck A, Muszynski M et al (2014) The boron efflux transporter rotten ear is required for maize inflorescence development and fertility. Plant Cell 26:2962–2977

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Y, Sun SK, Tang Z, Liu G, Moore KL, Maathuis FJ et al (2017) The Nodulin 26-like intrinsic membrane protein OsNIP3; 2 is involved in arsenite uptake by lateral roots in rice. J Exp Bot 68:3007–3016

    Article  CAS  PubMed  Google Scholar 

  • Chiba Y, Mitani N, Yamaji N, Ma JF (2009) HvLsi1 is a silicon influx transporter in barley. Plant J 57:810–818

    Article  CAS  PubMed  Google Scholar 

  • Coskun D, Britto DT, Huynh WQ, Kronzucker HJ (2016) The role of silicon in higher plants under salinity and drought stress. Front Plant Sci 7:1072

    Article  PubMed  PubMed Central  Google Scholar 

  • Dallagnol LJ, Rodrigues FA, Mielli MVB (2013) Silicon improves the emergence and sanity of rice seedlings obtained from seeds infected with Bipolaris oryzae. Trop Plant Pathol 38:478–484

    Article  Google Scholar 

  • Dannel F, Pfeffer H, Ro MV (2000) Characterization of root boron pools, boron uptake and boron translocation in sunflower using the stable isotope 10B and 11B. Austr J Plant Physiol 156:756–761

    Article  Google Scholar 

  • Datnoff LE (2005) Silicon in the life and performance of turfgrass. Appl Turfgrass Sci

    Google Scholar 

  • Dave IC, Kannan S (1981) Influence of boron deficiency on micronutrients absorption by Phaseolus vulgaris and protein contents in cotyledons. Acta Physiol Plant 3:27–32

    CAS  Google Scholar 

  • Deshmukh RK, Vivancos J, Guérin V, Sonah H, Labbé C, Belzile F et al (2013) Identification and functional characterization of silicon transporters in soybean using comparative genomics of major intrinsic proteins in Arabidopsis and rice. Plant Mol Biol 83:303–315

    Article  CAS  PubMed  Google Scholar 

  • Deshmukh RK, Vivancos J, Ramakrishnan G, Guérin V, Carpentier G, Sonah H et al (2015) A precise spacing between the NPA domains of aquaporins is essential for silicon permeability in plants. Plant J 83:489–500

    Article  CAS  PubMed  Google Scholar 

  • Dhankher OP, Li Y, Rosen BP, Shi J, Salt D, Senecoff JF et al (2002) Engineering tolerance and hyperaccumulation of arsenic in plants by combining arsenate reductase and γ-glutamylcysteinesynthetase expression. Nat Biotechnol 20:1140–1145

    Article  CAS  PubMed  Google Scholar 

  • Ding TP, Zhou JX, Wan DF, Chen ZY, Wang CY, Zhang F (2008) Silicon isotope fractionation in bamboo and its significance to the biogeochemical cycle of silicon. Geochim Cosmochim Acta 72:1381–1395

    Article  CAS  Google Scholar 

  • DiTusa SF, Fontenot EB, Wallace RW, Silvers MA, Steele TN, Elnagar AH et al (2015) A member of the Phosphate transporter 1 (Pht1) family from the arsenic-hyperaccumulating fern Pteris vittata is a high-affinity arsenate transporter. New Phytol 209:762–772

    Article  PubMed  CAS  Google Scholar 

  • Doshi R, McGrath AP, Piñeros M, Szewczyk P, Garza DM, Kochian LV et al (2017) Functional characterization and discovery of modulators of SbMATE, the agronomically important aluminium tolerance transporter from Sorghum bicolor. Sci Rep 7:17996

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Duggar WM (1983) Boron in plant metabolism. Encyl Plant Physiol New Ser 15B:626–650

    Google Scholar 

  • Durbak AR, Phillips KA, Pike S, O’Neill MA, Mares J, Gallavotti A et al (2014) Transport of boron by the tassel-less1 aquaporin is critical for vegetative and reproductive development in maize. Plant Cell 26:2978–2995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Durrett TP, Gassmann W, Rogers EE (2007) The FRD3-mediated efflux of citrate into the root vasculature is necessary for efficient iron translocation. Plant Physiol 144:197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • El Kassis E, Cathala N, Rouached H, Fourcroy P, Berthomieu P, Terry N et al (2007) Characterization of a selenate-resistant arabidopsis mutant. Root growth as a potential target for selenate toxicity. Plant Physiol 143:1231–1241

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ellis DR, Sors TG, Brunk DG, Albrecht C, Orser C, Lahner B et al (2004) Production of Se-methylselenocysteine in transgenic plants expressing selenocysteine methyltransferase. BMC Plant Biol 4:1–11

    Article  PubMed  PubMed Central  Google Scholar 

  • Emamverdian A, Ding Y, Mokhberdoran F, Xie Y (2015) Heavy metal stress and some mechanisms of plant defense response. Scientific World Journal 2015:18

    Article  CAS  Google Scholar 

  • Fang CX, Wang QS, Yu Y, Li QM, Zhang HL, Wu XC et al (2011) Suppression and overexpression of Lsi1 induce differential gene expression in rice under ultraviolet radiation. Plant Growth Regul 65:1–10

    Article  CAS  Google Scholar 

  • Farooq MA, Islam F, Ali B, Najeeb U, Mao B, Gill RA et al (2016) Arsenic toxicity in plants: cellular and molecular mechanisms of its transport and metabolism. Environ Exp Bot 132:42–52

    Article  CAS  Google Scholar 

  • Fauteux F, Chain F, Belzile F, Menzies JG, Bélanger RR (2006) The protective role of silicon in the Arabidopsis–powdery mildew pathosystem. Proc Natl Acad Sci 103:17554–17559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feist LJ, Parker DR (2008) Ecotypic variation in selenium accumulation among populations of Stanleya pinnata. New Phytol 149:61–69

    Article  Google Scholar 

  • Fordyce F (2005) Selenium deficiency and toxicity in the environment. Elsevier, London

    Google Scholar 

  • Frick A, Eriksson UK, de Mattia F, Oberg F, Hedfalk K, Neutze R et al (2014) X-ray structure of human aquaporin 2 and its implications for nephrogenic diabetes insipidus and trafficking. Proc Natl Acad Sci U S A 111:6305–6310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Furukawa J, Yamaji N, Wang H, Mitani N, Murata Y, Sato K et al (2007) An aluminum-activated citrate transporter in barley. Plant Cell Physiol 48:1081–1xxx

    Article  CAS  PubMed  Google Scholar 

  • Gigolashvili T, Kopriva S (2014) Transporters in plant sulphur metabolism. Front Plant Sci 5:422

    Article  Google Scholar 

  • González E, Solano R, Rubio V, Leyva A, Paz-Ares J (2005) PHOSPHATE TRANSPORTER TRAFFIC FACILITATOR1 is a plantspecific SEC12-related protein that enables the endoplasmic reticulum exit of a high-affinity phosphate transporter in Arabidopsis. Plant Cell 17:3500–3512

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • González-Fontes A, Navarro-Gochicoa MT, Camacho-Cristóbal JJ, Herrera-Rodríguez MB, Quiles-Pando C, Rexach J (2014) Is Ca2+ involved in the signal transduction pathway of boron deficiency? New hypotheses for sensing boron deprivation. Plant Sci 217:135–139

    Article  PubMed  CAS  Google Scholar 

  • Grispen VMJ, Irtelli B, Hakvoorta HJ, Vooijs R, Bliek B, Bookum WM et al (2009) Expression of the Arabidopsis metallothionein 2b enhances arsenite sensitivity and root to shoot translocation in tobacco. Environ Exp Bot 66:69–73

    Article  CAS  Google Scholar 

  • Groppa MD, Ianuzzo MP, Tomaro ML, Benavides MP (2007) Polyamine metabolism in sunflower plants under long term cadmium or copper stress. Amino Acids 32:265–275

    Article  CAS  PubMed  Google Scholar 

  • Gupta M, Gupta S (2016) An overview of selenium uptake, metabolism, and toxicity in plants. Front Plant Sci 7:2074

    PubMed  Google Scholar 

  • Hajiboland R, Farhanghi F (2010) Remobilization of boron, photosynthesis, phenolic metabolism and anti-oxidant defense capacity in boron-deficient turnip (Brassica rapa L.) plants. Soil Sci Plant Nutr 56:427–437

    Article  CAS  Google Scholar 

  • Han S, Chen L-S, Jiang H-X, Smith BR, Yang L-T, Xie C-Y (2008) Boron deficiency decreases growth and photosynthesis, and increases starch and hexoses in leaves of citrus seedlings. J Plant Physiol 165:1331–1341

    Article  CAS  PubMed  Google Scholar 

  • Hanaoka H, Uraguchi S, Takano J, Tanaka M, Fujiwara T (2014) OsNIP3;1, a rice boric acid channel, regulates boron distribution and is essential for growth under boron-deficient conditions. Plant J 78:890–902

    Article  CAS  PubMed  Google Scholar 

  • Hanson B, Lindblom SD, Loeffler ML, Pilon-Smits EAH (2004) Selenium protects plants from phloem-feeding aphids due to both deterrence and toxicity. New Phytol 162:655–662

    Article  CAS  PubMed  Google Scholar 

  • Hartikainen H, Xue T (1999) The promotive effect of selenium on plant growth as triggered by ultraviolet irradiation. J Environ Qual 28:1372–1375

    Article  CAS  Google Scholar 

  • Hasanuzzaman M, Nahar K, Hossain SM, Mahmud AJ, Rahman A, Inafuku M et al (2017) Coordinated actions of glyoxalase and antioxidant defense systems in conferring abiotic stress tolerance in plants. Int J Mol Sci 18:200

    Article  PubMed Central  CAS  Google Scholar 

  • Hawrylak-Nowak B (2009) Beneficial effects of exogenous selenium in cucumber seedlings subjected to salt stress. Biol Trace Elem Res 132:259–269

    Article  CAS  PubMed  Google Scholar 

  • Hawrylak-Nowak B, Dresler S, Wójcik M (2014) Selenium affects physiological parameters and phytochelatins accumulation in cucumber (Cucumis sativus L.) plants grown under cadmium exposure. Sci Hortic 172:10–18

    Article  CAS  Google Scholar 

  • He Z, Yan H, Chen Y, Shen H, Xu W, Zhang H et al (2016) An aquaporin Pv TIP 4; 1 from Pteris vittata may mediate arsenite uptake. New Phytol 209:746–761

    Article  CAS  PubMed  Google Scholar 

  • Helliwell EE, Wang Q, Yang Y (2013) Transgenic rice with inducible ethylene production exhibits broad-spectrum disease resistance to the fungal pathogens Magnaportheoryzae and Rhizoctoniasolani. Plant Biotechnol J 11:33–42

    Article  CAS  PubMed  Google Scholar 

  • Hladun KR, Parker DR, Tran KD, Trumble JT (2013) Effects of selenium accumulation on phytotoxicity, herbivory, and pollination ecology in radish (Raphanus sativus L.). Environ Pollut 172:70–75

    Article  CAS  PubMed  Google Scholar 

  • Huysen T, Terry N, Pilon-Smits EAH (2004) Exploring the selenium phytoremediation potential of transgenic indian mustard overexpressing ATP sulfurylase or cystathionine-γ-synthase. Int J Phytoremediation 6:111–118

    Article  PubMed  CAS  Google Scholar 

  • Hwang J-U, Song W-Y, Hong D, Ko D, Yamaoka Y, Jang S et al (2016) Plant ABC transporters enable many unique aspects of a terrestrial plant’s lifestyle. Mol Plant 9:338–355

    Article  CAS  PubMed  Google Scholar 

  • Isayenkov SV, Maathuis FJ (2008) The Arabidopsis thaliana aquaglyceroporin AtNIP7;1 is a pathway for arsenite uptake. FEBS Lett 582:1625–1628

    Article  CAS  PubMed  Google Scholar 

  • Jehangir IA, Wani SH, Bhat MA, Hussain A, Raja W, Haribhushan A (2017) Micronutrients for crop production: role of boron. Int J Curr Microbiol App Sci 6:5347–5353

    Article  CAS  Google Scholar 

  • Josten P, Kutschera U (1999) The micronutrient boron causes the development of adventitious roots in sunflower cuttings. Ann Bot 84:337–342

    Article  CAS  Google Scholar 

  • Kamiya T, Islam MR, Duan GL, Uraguchi S, Fujiwara T (2013) Phosphate deficiency signaling pathway is a target of arsenate and phosphate transporter OsPT1 is involved in As accumulation in shoots of rice. Soil Sci Plant Nutr 59:580–590

    Article  CAS  Google Scholar 

  • Kanto T, Matsuura K, Yamada M, Usami T, Amemiya Y (2009) UV-B radiation for control of strawberry powdery mildew. Acta Hortic 842:359–362

    Article  CAS  Google Scholar 

  • Kastori R, Petrović N (1989) Effect of boron on nitrate reductase activity in young sunflower plants. J Plant Nutr 12:621–632

    Article  CAS  Google Scholar 

  • Kato Y, Miwa K, Takano J, Wada M, Fujiwara T (2009) Highly boron deficiency-tolerant plants generated by enhanced expression of NIP5;1, a boric acid channel. Plant Cell Physiol 50:58–66

    Article  CAS  PubMed  Google Scholar 

  • Kelley LA, Mezulis S, Yates CM, Wass MN, Sternberg MJE (2015) The Phyre2 web portal for protein modeling, prediction and analysis. Nat Protoc 10:845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kitchen P, Conner AC (2015) Control of the aquaporin-4 channel water permeability by structural dynamics of aromatic/arginine selectivity filter residues. Biochemistry 17:6753–6755

    Article  CAS  Google Scholar 

  • Kohl HC, Oertli JJ (1961) Distribution of boron in leaves. Plant Physiol 36:420–424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kouchi H, Kumazawa K (1976) Anatomical responses of root tips to boron deficiency. Soil Sci Plant Nutr 22:53–71

    Article  CAS  Google Scholar 

  • Kudo M, Kidokoro S, Yoshida T, Mizoi J, Todaka D, Fernie AR et al (2017) Double overexpression of DREB and PIF transcription factors improves drought stress tolerance and cell elongation in transgenic plants. Plant Biotechnol J 15:458–471

    Article  CAS  PubMed  Google Scholar 

  • Kumar K, Mosa KA, Chhikara S, Musante C, White JC, Dhankher OP (2014) Two rice plasma membrane intrinsic proteins, OsPIP2; 4 and OsPIP2; 7, are involved in transport and providing tolerance to boron toxicity. Planta 239:187–198

    Article  CAS  PubMed  Google Scholar 

  • Kumarathilaka P, Seneweera S, Meharg A, Bundschuh J (2018) Arsenic accumulation in rice (Oryza sativa L.) is influenced by environment and genetic factors. Sci Total Environ 642:485–496

    Article  CAS  PubMed  Google Scholar 

  • LeBlanc MS, McKinney EC, Meagher RB, Smith AP (2013) Hijacking membrane transporters for arsenic phytoextraction. J Biotechnol 163:1–9

    Article  CAS  PubMed  Google Scholar 

  • LeDuc DL, Tarun AS, Montes-Bayon M, Meija J, Malit MF, Wu CP et al (2004) Overexpression of selenocysteine methyltransferase in arabidopsis and Indian mustard increases selenium tolerance and accumulation. Plant Physiol 135:377–383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • LeDuc DL, AbdelSamie M, Móntes-Bayon M, Wu CP, Reisinger SJ, Terry N (2006) Overexpressing both ATP sulfurylase and selenocysteine methyltransferase enhances selenium phytoremediation traits in Indian mustard. Environ Pollut 144:70–76

    Article  CAS  PubMed  Google Scholar 

  • Lenoble ME, Blevins DG, Miles RJ (1996) Prevention of aluminium toxicity with supplemental boron. II. Stimulation of root growth in an acidic, high-aluminium subsoil. Plant Cell Environ 19:1143–1148

    Article  CAS  Google Scholar 

  • Li H-F, McGrath SP, Zhao F-J (2008) Selenium uptake, translocation and speciation in wheat supplied with selenate or selenite. New Phytol 178:92–102

    Article  CAS  PubMed  Google Scholar 

  • Li G, Santoni V, Maurel C (2014) Plant aquaporins: roles in plant physiology. Biochim Biophys Acta 1840:1574–1582

    Article  CAS  PubMed  Google Scholar 

  • Lindblom SD, Wangeline AL, Valdez Barillas JR, Devilbiss B, Fakra SC, Pilon-Smits EAH (2018) Fungal endophyte alternaria tenuissima can affect growth and selenium accumulation in its hyperaccumulator host Astragalus bisulcatus. Front Plant Sci 9:1213

    Article  PubMed  PubMed Central  Google Scholar 

  • Lu G, Wu T, Yuan Q, Wang H, Wang H, Ding F et al (2015) Synthesis of large single-crystal hexagonal boron nitride grains on Cu–Ni alloy. Nat Commun 6:6160

    Article  CAS  PubMed  Google Scholar 

  • Lv Q, Wang L, Wang J-Z, Li P, Chen Y-L, Du J et al (2017) SHB1/HY1 alleviates excess boron stress by increasing bor4 expression level and maintaining boron homeostasis in Arabidopsis roots. Front Plant Sci 8:790

    Article  PubMed  PubMed Central  Google Scholar 

  • Lyons GH, Genc Y, Soole K, Stangoulis JCR, Liu F, Graham RD (2009) Selenium increases seed production in Brassica. Plant and Soil 318:73–80

    Article  CAS  Google Scholar 

  • Ma JF (2004) Role of silicon in enhancing the resistance of plants to biotic and abiotic stresses. Soil Sci Plant Nutr 50:11–18

    Article  CAS  Google Scholar 

  • Ma JF, Yamaji N (2015) A cooperative system of silicon transport in plants. Trends Plant Sci 20:435–442

    Article  CAS  PubMed  Google Scholar 

  • Ma JF, Tamai K, Yamaji N, Mitani N, Konishi S, Katsuhara M et al (2006) A silicon transporter in rice. Nature 440:688–691

    Article  CAS  PubMed  Google Scholar 

  • Ma JF, Yamaji N, Mitani N, Tamai K, Konishi S, Fujiwara T et al (2007) An efflux transporter of silicon in rice. Nature 448:209

    Article  CAS  PubMed  Google Scholar 

  • Malerba M, Cerana R (2018) Effect of selenium on the responses induced by heat stress in plant cell cultures. Plants 7:64

    Article  PubMed Central  Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants. Academic, Boston, MA

    Google Scholar 

  • Marschner P (2012) Mineral nutrition of higher plants. Academic Press, San Diego, CA

    Google Scholar 

  • Maurel C, Boursiac Y, Luu DT, Santoni V, Shahzad Z, Verdoucq L (2015) Aquaporins in plants. Physiol Rev 95:1321–1358

    Article  CAS  PubMed  Google Scholar 

  • Maze P (1919) Mineral nutrient solution for maize. Ann Inst Pasteur 33:139–173

    CAS  Google Scholar 

  • Meena PD, Thomas L, Singh D (2014) Assessment of yield losses in Brassica juncea due to downy mildew (Hyaloperonospora brassicae). J Oilseed Brassica 5:73–77

    Google Scholar 

  • Meharg Andrew A, Hartley-Whitaker J (2002) Arsenic uptake and metabolism in arsenic resistant and nonresistant plant species. New Phytol 154:29–43

    Article  Google Scholar 

  • Mendoza-Cózatl DG, Jobe TO, Hauser F, Schroeder JI (2011) Long-distance transport, vacuolar sequestration, tolerance, and transcriptional responses induced by cadmium and arsenic. Curr Opin Plant Biol 14:554–562

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Missana T, Alonso U, García-Gutiérrez M (2009) Experimental study and modelling of selenite sorption onto illite and smectite clays. J Colloid Interface Sci 334:132–138

    Article  CAS  PubMed  Google Scholar 

  • Mitani N, Ma JF, Iwashita T (2005) Identification of the silicon form in xylem sap of rice (Oryza sativa L.). Plant Cell Physiol 46:279–283

    Article  CAS  PubMed  Google Scholar 

  • Mitani N, Yamaji N, Ma JF (2008) Characterization of substrate specificity of a rice silicon transporter, Lsi1. Pflugers Arch 456:679–686

    Article  CAS  PubMed  Google Scholar 

  • Mitani N, Yamaji N, Ma JF (2009) Identification of maize silicon influx transporters. Plant Cell Physiol 50:5–12

    Article  CAS  PubMed  Google Scholar 

  • Mitani N, Yamaji N, Ago Y, Iwasaki K, Ma JF (2011) Isolation and functional characterization of an influx silicon transporter in two pumpkin cultivars contrasting in silicon accumulation. Plant J 66:231–240

    Article  CAS  PubMed  Google Scholar 

  • Miwa K, Fujiwara T (2010) Boron transport in plants: co-ordinated regulation of transporters. Ann Bot 105:1103–1108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miwa K, Takano J, Fujiwara T (2006) Improvement of seed yields under boron-limiting conditions through overexpression of BOR1, a boron transporter for xylem loading, in Arabidopsis thaliana. Plant J 46:1084–1091

    Article  CAS  PubMed  Google Scholar 

  • Montpetit J, Vivancos J, Mitani-Ueno N, Yamaji N, Rémus-Borel W, Belzile F et al (2012) Cloning, functional characterization and heterologous expression of TaLsi1, a wheat silicon transporter gene. Plant Mol Biol 79:35–46

    Article  CAS  PubMed  Google Scholar 

  • Moog PR, Kooij TAW, Brüggemann W, Schiefelbein JW, Kuiper PJC (1995) Responses to iron deficiency in Arabidopsis thaliana: the Turbo iron reductase does not depend on the formation of root hairs and transfer cells. Planta 195:505–513

    Article  CAS  PubMed  Google Scholar 

  • Mosa KA, Kumar K, Chhikara S, Mcdermott J, Liu Z, Musante C et al (2012) Members of rice plasma membrane intrinsic proteins subfamily are involved in arsenite permeability and tolerance in plants. Transgenic Res 21:1265–1277

    Article  CAS  PubMed  Google Scholar 

  • Mosa KA, Kumar K, Chhikara S, Musante C, White JC, Dhankher OP (2016) Enhanced boron tolerance in plants mediated by bidirectional transport through plasma membrane intrinsic proteins. Sci Rep 6:21640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mroczek-Zdyrska M, Wójcik M (2012) The influence of selenium on root growth and oxidative stress induced by lead in Vicia faba L. minor plants. Biol Trace Elem Res 147:320–328

    Article  CAS  PubMed  Google Scholar 

  • Nagajyoti PC, Lee KD, Sreekanth TVM (2010) Heavy metals, occurrence and toxicity for plants: a review. Environ Chem Lett 8:199–216

    Article  CAS  Google Scholar 

  • Nakagawa Y, Hanaoka H, Kobayashi M, Miyoshi K, Miwa K, Fujiwara T (2007) Cell-type specificity of the expression of Os BOR1, a rice efflux boron transporter gene, is regulated in response to boron availability for efficient boron uptake and xylem loading. Plant Cell 19:2624–2635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nascimento CWA, Xing B (2006) Phytoextraction: a review on enhanced metal availability and plant accumulation. Sci Agric 63:299–311

    Article  Google Scholar 

  • Navaza AP, Bayon MM, LeDuc DL, Terry N, Sanz-Medel A (2006) Study of phytochelatins and other related thiols as complexing biomolecules of As and Cd inwild type and genetically modified Brassica juncea plants. J. Mass Spectrom 41:323–331

    Article  CAS  Google Scholar 

  • Nawaz F, Ahmad R, Ashraf MY, Waraich EA, Khan SZ (2015) Effect of selenium foliar spray on physiological and biochemical processes and chemical constituents of wheat under drought stress. Ecotoxicol Environ Saf 113:191–200

    Article  CAS  PubMed  Google Scholar 

  • Ning C-J, Ding N, Wu G-L, Meng H-J, Wang Y-N, Wang Q-H (2013) Proteomics research on the effects of applying selenium to apple leaves on photosynthesis. Plant Physiol Biochem 70:1–6

    Article  CAS  PubMed  Google Scholar 

  • Ovecka M, Takac T (2014) Managing heavy metal toxicity stress in plants: biological and biotechnological tools. Biotechnol Adv 32:73–86

    Article  CAS  PubMed  Google Scholar 

  • Oves M, Saghir KM, Huda QA, Nadeen FM, Almeelbi T (2016) Heavy metals: biological importance and detoxification strategies. J Bioremed Biodegr 7:334

    Google Scholar 

  • Palmer C, Guerinot ML (2009) A question of balance: facing the challenges of Cu, Fe and Zn homeostasis. Nat Chem Biol 5:333–340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Palmgren MG (2001) Plant plasma membrane H+-ATPases: powerhouses for nutrient uptake. Annu Rev Plant Physiol Plant Mol Biol 52:817–845

    Article  CAS  PubMed  Google Scholar 

  • Palmgren MG, Clemens S, Williams LE, Krämer U, Borg S, Schjørring JK et al (2008) Zinc biofortification of cereals: problems and solutions. Trends Plant Sci 13:464–473

    Article  CAS  PubMed  Google Scholar 

  • Pang Y, Li L, Ren F, Lu P, Wei P, Cai J et al (2010) Overexpression of the tonoplast aquaporin AtTIP5;1 conferred tolerance to boron toxicity in Arabidopsis. J Genet Genomics 37:389–397

    Article  CAS  PubMed  Google Scholar 

  • Peralta-Videa JR, Lopez ML, Narayan M, Saupe G, Gardea-Torresdey J (2009) The biochemistry of environmental heavy metal uptake by plants: implications for the food chain. Int J Biochem Cell Biol 41:1665–1677

    Article  CAS  PubMed  Google Scholar 

  • Pérez-Castro R, Kasai K, Gainza-Cortés F, Ruiz-Lara S, Casaretto JA, Peña-Cortés H et al (2012) VvBOR1, the grapevine ortholog of AtBOR1, encodes an efflux boron transporter that is differentially expressed throughout reproductive development of Vitis vinifera L. Plant Cell Physiol 53:485–494

    Article  PubMed  CAS  Google Scholar 

  • Peterson PJ, Benson LM, Zieve R (1981) Metalloids. In: Lepp NW (ed) Effect of heavy metal pollution on plants: effects of trace metals on plant function. Springer, Dordrecht, pp 279–342

    Chapter  Google Scholar 

  • Pettersson N, Filipsson C, Becit E, Brive L, Hohmann S (2012) Aquaporins in yeasts and filamentous fungi. Biol Cell 97:487–500

    Article  Google Scholar 

  • Pilbeam DJ, Greathead HMR, Drihem K (2015) Selenium. In: Barker AV, Pilbeam DJ (eds) A handbook of plant nutrition. CRC Press, Boca Raton, FL, pp 165–198

    Google Scholar 

  • Pilon-Smits EAH, Quinn CF, Tapken W, Malagoli M, Schiavon M (2009) Physiological functions of beneficial elements. Curr Opin Plant Biol 12:267–274

    Article  CAS  PubMed  Google Scholar 

  • Pilon-Smits EAH, Winkel LHE, Lin Z-Q (2017) Selenium in plants: molecular, physiological, ecological and evolutionary aspects. Springer International Publishing, Cham

    Book  Google Scholar 

  • Pineau C, Loubet S, Lefoulon C, Chalies C, Fizames C, Lacombe B et al (2012) Natural variation at the FRD3 MATE transporter locus reveals cross-talk between Fe homeostasis and Zn tolerance in Arabidopsis thaliana. PLoS Genet 8:e1003120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pommerrenig B, Diehn TA, Bienert GP (2015) Metalloido-porins: essentiality of nodulin 26-like intrinsic proteins in metalloid transport. Plant Sci 238:212–227

    Article  CAS  PubMed  Google Scholar 

  • Porcel R, Bustamante A, Ros R, Serrano R, Mulet Salort JM (2018) BvCOLD1: a novel aquaporin from sugar beet (Beta vulgaris L.) involved in boron homeostasis and abiotic stress. Plant Cell Environ 41:2844

    Article  CAS  PubMed  Google Scholar 

  • Pukacka S, Ratajczak E, Kalemba E (2011) The protective role of selenium in recalcitrant Acer saccharium L. seeds subjected to desiccation. J Plant Physiol 168:220–225

    Article  CAS  PubMed  Google Scholar 

  • Quilis J, López-García B, Meynard D, Guiderdoni E, San Segundo B (2014) Inducible expression of a fusion gene encoding two proteinase inhibitors leads to insect and pathogen resistance in transgenic rice. Plant Biotechnol J 12:367–377

    Article  CAS  PubMed  Google Scholar 

  • Rahmat S, Hajiboland R, Sadeghzade N (2017) Selenium delays leaf senescence in oilseed rape plants. Photosynthetica 55:338–350

    Article  CAS  Google Scholar 

  • Rausch C, Bucher M (2002) Molecular mechanisms of phosphate transport in plants. Planta 21:23–37

    Article  CAS  Google Scholar 

  • Rayman MP (2000) The importance of selenium to human health. Lancet 356:233–241

    Article  CAS  PubMed  Google Scholar 

  • Reid R, Fitzpatrick K (2009) Influence of leaf tolerance mechanisms and rain on boron toxicity in barley and wheat. Plant Physiol 151:413–420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Remy E, Cabrito TR, Batista RA, Teixeira MC, Sá-Correia I, Duque P (2012) The Pht1; 9 and Pht1; 8 transporters mediate inorganic phosphate acquisition by the Arabidopsis thaliana root during phosphorus starvation. New Phytol 195:356–371

    Article  CAS  PubMed  Google Scholar 

  • Renkema H, Koopmans A, Kersbergen L, Kikkert J, Hale B, Berkelaar E (2012) The effect of transpiration on selenium uptake and mobility in durum wheat and spring canola. Plant and Soil 354:239–250

    Article  CAS  Google Scholar 

  • Rivera-Serrano EE, Rodriguez-Welsh MF, Hicks GR, Rojas-Pierce M (2012) A small molecule inhibitor partitions two distinct pathways for trafficking of tonoplast intrinsic proteins in Arabidopsis. PLoS One 7:e44735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sakurai J, Ishikawa F, Yamaguchi T, Uemura M, Maeshima M (2005) Identification of 33 rice aquaporin genes and analysis of their expression and function. Plant Cell Physiol 46:1568–1577

    Article  CAS  PubMed  Google Scholar 

  • Schiavon M, Pilon-Smits EAH (2016) The fascinating facets of plant selenium accumulation – biochemistry, physiology, evolution and ecology. New Phytol 213:1582–1596

    Article  PubMed  CAS  Google Scholar 

  • Schmidt W (2002) Mechanisms and regulation of reduction-based iron uptake in plants. New Phytol 141:1–26

    Article  Google Scholar 

  • Shehzad MA, Maqsood M, Abbas T, Ahmad N (2016) Foliar boron spray for improved yield, oil quality and water use efficiency in water stressed sunflower. Sains Malaysiana 45:1497–1507

    CAS  Google Scholar 

  • Shelp BJ (1988) Boron mobility and nutrition in broccoli (Brassica oleracea var. italica). Ann Bot 61:83–91

    Article  CAS  Google Scholar 

  • Shelp BJ (1993) Physiology and biochemistry of boron in plants. In: Gupta UC (ed) Boron and its role in crop production. CRC Press, Boca Raton, FL, pp 53–85

    Google Scholar 

  • Shi S, Wang T, Chen Z, Tang Z, Wu Z, Salt DE et al (2016) OsHAC1; 1 and OsHAC1; 2 function as arsenate reductases and regulate arsenic accumulation. Plant Physiol 172:1708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shin H, Shin HS, Dewbre GR, Harrison MJ (2004) Phosphate transport in Arabidopsis: Pht1;1 and Pht1;4 play a major role in phosphate acquisition from both low- and high-phosphate environments. Plant J 39:629–642

    Article  CAS  PubMed  Google Scholar 

  • Shukla D, Kesari R, Mishra S, Dwivedi S, Tripathi RD, Nath P et al (2012) Expression of phytochelatin synthase from aquatic macrophyte Ceratophyllum demersum L. enhances cadmium and arsenic accumulation in tobacco. Plant Cell Rep 31:1687–1699

    Article  CAS  PubMed  Google Scholar 

  • Shukla D, Kesari R, Tiwari M, Dwivedi S, Tripathi RD, Nath P et al (2013) Expressionof Ceratophyllum demersum phytochelatin synthase, CdPCS1, in Escherichia coli and Arabidopsis enhances heavy metal(loid)s accumulation. Protoplasma 250:1263–1272

    Article  CAS  PubMed  Google Scholar 

  • Sinha P, Jain R, Chatterjee C (2000) Interactive effect of boron and zinc on growth and metabolism of mustard. Commun Soil Sci Plant Anal 31:41–49

    Article  CAS  Google Scholar 

  • Song Z, Shao H, Huang H, Shen Y, Wang L, Wu F et al (2017) Overexpression of the phosphate transporter gene OsPT8 improves the Pi and selenium contents in Nicotiana tabacum. Environ Exp Bot 137:158–165

    Article  CAS  Google Scholar 

  • Sors TG, Ellis DR, Na GN, Lahner B, Lee S, Leustek T et al (2005) Analysis of sulfur and selenium assimilation in Astragalus plants with varying capacities to accumulate selenium. Plant J 42:785–797

    Article  CAS  PubMed  Google Scholar 

  • Stroud JL, Li HF, Lopez-Bellido FJ, Broadley MR, Foot I, Fairweather-Tait SJ et al (2010) Impact of sulphur fertilisation on crop response to selenium fertilisation. Plant and Soil 332:31

    Article  CAS  Google Scholar 

  • Sun H, Guo J, Duan Y, Zhang T, Huo H, Gong H (2017) Isolation and functional characterization of CsLsi1, a silicon transporter gene in Cucumis sativus. Physiol Plant 159:201–124

    Article  CAS  PubMed  Google Scholar 

  • Takada S, Miwa K, Omori H, Fujiwara T, Naito S, Takano J (2014) Improved tolerance to boron deficiency by enhanced expression of the boron transporter BOR2. Soil Sci Plant Nutr 60:341–348

    Article  CAS  Google Scholar 

  • Takahashi E, Hino K (1978) Silica uptake by plant with special reference to the forms of dissolved silica. Jpn J Soil Sci Manure 49:357–360

    CAS  Google Scholar 

  • Takahashi E, Ma JF, Miyake Y (1990) The possibility of silicon as an essential element for higher plants. Comm Agric Food Chem 2:99–102

    CAS  Google Scholar 

  • Takano J, Noguchi K, Yasumori M, Kobayashi M, Gajdos Z, Miwa K et al (2002) Arabidopsis boron transporter for xylem loading. Nature 420:337

    Article  CAS  PubMed  Google Scholar 

  • Takano J, Miwa K, Fujiwara T (2008) Boron transport mechanisms: collaboration of channels and transporters. Trends Plant Sci 13:451–457

    Article  CAS  PubMed  Google Scholar 

  • Tanaka M, Wallace IS, Takano J, Roberts DM, Fujiwara T (2008) NIP6;1 is a boric acid channel for preferential transport of boron to growing shoot tissues in Arabidopsis. Plant Cell 20:2860

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tanaka M, Takano J, Chiba Y, Lombardo F, Ogasawara Y, Onouchi H et al (2011) Boron-dependent degradation of NIP5;1 mRNA for acclimation to excess boron conditions in Arabidopsis. Plant Cell 23:3547–3559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tanaka N, Uraguchi S, Saito A, Kajikawa M, Kasai K, Sato Y et al (2013) Roles of pollen-specific boron efflux transporter, OsBOR4, in the rice fertilization process. Plant Cell Physiol 54:2011–2019

    Article  CAS  PubMed  Google Scholar 

  • Tanaka M, Sotta N, Yamazumi Y, Yamashita Y, Miwa K, Murota K et al (2016) The minimum open reading frame, AUG-stop, induces boron-dependent ribosome stalling and mRNA degradation. Plant Cell 28:2830–2840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tchounwou PB, Yedjou CG, Patlolla AK, Sutton DJ (2012) Heavy metals toxicity and the environment. EXS 101:133–164

    PubMed  PubMed Central  Google Scholar 

  • Terry N, Zayed AM, de Souza MP, Tarun AS (2000) Selenium in higher plants. Annu Rev Plant Physiol Plant Mol Biol 51:401–432

    Article  CAS  PubMed  Google Scholar 

  • Tubana BS, Babu T, Datnoff LE (2016) A review of silicon in soils and plants and its role in US agriculture: history and future perspectives. Soil Sci 181:393–411

    CAS  Google Scholar 

  • Uraguchi S, Fujiwara T (2011) Significant contribution of boron stored in seeds to initial growth of rice seedlings. Plant and Soil 340:435–442

    Article  CAS  Google Scholar 

  • Uraguchi S, Kato Y, Hanaoka H, Miwa K, Fujiwara T (2014) Generation of boron-deficiency-tolerant tomato by overexpressing an Arabidopsis thaliana borate transporter AtBOR1. Front Plant Sci 5:125

    Article  PubMed  PubMed Central  Google Scholar 

  • Wagner GJ (1993) Accumulation of cadmium in crop plants and its consequences to human health. Adv Agron 51:173–212

    Article  CAS  Google Scholar 

  • Wakuta S, Mineta K, Amano T, Toyoda A, Fujiwara T, Naito S et al (2015) Evolutionary divergence of plant borate exporters and critical amino acid residues for the polar localization and boron-dependent vacuolar sorting of AtBOR1. Plant Cell Physiol 56:852–862

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Xu Q, Kong YH, Chen Y, Duan JY, Wu WH et al (2014) Arabidopsis WRKY45 transcription factor activates PHT1; 1 expression in response to phosphate starvation. Plant Physiol 164:2020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang P, Zhang W, Mao C, Xu G, Zhao FJ (2016) The role of OsPT8 in arsenate uptake and varietal difference in arsenate tolerance in rice. J Exp Bot 67:6051–6059

    Article  CAS  PubMed  Google Scholar 

  • Wang S, Yoshinari A, Shimada T, Hara-Nishimura I, Mitani-Ueno N, Feng Ma J et al (2017) Polar localization of the nip5;1 boric acid channel is maintained by endocytosis and facilitates boron transport in Arabidopsis roots. Plant Cell 29:824–842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang C, Na G, Bermejo ES, Chen Y, Banks JA, Salt DE et al (2018) Dissecting the components controlling root-to-shoot arsenic translocation in Arabidopsis thaliana. New Phytol 217:206–218

    Article  PubMed  CAS  Google Scholar 

  • Warington K (1923) The effect of boric acid and borax on the bean and certain other plants. Ann Bot 37:629–672

    Article  Google Scholar 

  • White PJ (2015) Selenium accumulation by plants. Ann Bot 117:217–235

    PubMed  PubMed Central  Google Scholar 

  • White PJ, Broadley MR (2009) Biofortification of crops with seven mineral elements often lacking in human diets – iron, zinc, copper, calcium, magnesium, selenium and iodine. New Phytol 182:49–84

    Article  CAS  PubMed  Google Scholar 

  • Wu ZC, Ren HY, Steve PM, Wu P, Zhao FJ (2011) Investigating the contribution of the phosphate transport pathway to arsenic accumulation in rice. Plant Physiol 157:498–508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu Q, Yang Z, Nie Y, Shi Y, Fan D (2014) Multi-drug resistance in cancer chemotherapeutics: mechanisms and lab approaches. Cancer Lett 347:159–166

    Article  CAS  PubMed  Google Scholar 

  • Wuana RA, Okieimen FE (2011) Heavy metals in contaminated soils: a review of sources, chemistry, risks and best available strategies for remediation. ISRN Ecol 2011:20

    Google Scholar 

  • Xu W, Dai W, Yan H, Li S, Shen H, Chen Y et al (2015) Arabidopsis NIP3; 1 plays an important role in arsenic uptake and root-to-shoot translocation under arsenite stress conditions. Mol Plant 8:722–733

    Article  CAS  PubMed  Google Scholar 

  • Xue T, Hartikainen H, Piironen V (2001) Antioxidative and growth-promoting effect of selenium on senescing lettuce. Plant and Soil 237:55–61

    Article  CAS  Google Scholar 

  • Yamagishi M, Yamamoto Y (1994) Effects of boron on nodule development and symbiotic nitrogen fixation in soybean plants. Soil Sci Plant Nutr 40:265–274

    Article  CAS  Google Scholar 

  • Yokosho K, Yamaji N, Ueno D, Mitani N, Ma JF (2009) OsFRDL1 is a citrate transporter required for efficient translocation of iron in rice. Plant Physiol 149:297–305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zeyen RJ, Kruger WM, Lyngkjær MF, Carver TLW (2002) Differential effects of D -mannose and 2-deoxy- D -glucose on attempted powdery mildew fungal infection of inappropriate and appropriate Gramineae. Physiol Mol Plant Pathol 61:315–323

    Article  CAS  Google Scholar 

  • Zhang Y, Pan G, Chen J, Hu Q (2003) Uptake and transport of selenite and selenate by soybean seedlings of two genotypes. Plant and Soil 253:437–443

    Article  CAS  Google Scholar 

  • Zhang LH, Shi WM, Wang XC (2006) Difference in selenite absorption between high-and low-selenium rice cultivars and its mechanism. Plant and Soil 282:183–193

    Article  CAS  Google Scholar 

  • Zhang L, Hu B, Li W, Che R, Deng K, Li H et al (2014a) OsPT2, a phosphate transporter, is involved in the active uptake of selenite in rice. New Phytol 201:1183–1191

    Article  CAS  PubMed  Google Scholar 

  • Zhang M, Tang S, Huang X, Zhang F, Pang Y, Huang Q et al (2014b) Selenium uptake, dynamic changes in selenium content and its influence on photosynthesis and chlorophyll fluorescence in rice (Oryza sativa L.). Environ Exp Bot 107:39–45

    Article  CAS  Google Scholar 

  • Zhao FJ, McGrath SP, Meharg AA (2010a) Arsenic as a food chain contaminant: mechanisms of plant uptake and metabolism and mitigation strategies. Annu Rev Plant Biol 61:535–559

    Article  CAS  PubMed  Google Scholar 

  • Zhao XQ, Mitani N, Yamaji N, Shen RF, Ma JF (2010b) Transporter OsNIP2;1 in selenite uptake in rice. Plant Physiol 153:1871–1877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zohaib A, Tabassum T, Jabbar A, Anjum SA, Abbas T, Mehmood A et al (2018) Author correction: effect of plant density, boron nutrition and growth regulation on seed mass, emergence and offspring growth plasticity in cotton. Sci Rep 8:10489

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dhakate, P. et al. (2019). Beneficial Role of Metalloids in Plants: Molecular Understanding and Applicability. In: Wani, S. (eds) Recent Approaches in Omics for Plant Resilience to Climate Change. Springer, Cham. https://doi.org/10.1007/978-3-030-21687-0_15

Download citation

Publish with us

Policies and ethics