Skip to main content

Unravelling the Complex Networks Involved in Plant Stress Tolerance Through Metabolomics

  • Chapter
  • First Online:
Recent Approaches in Omics for Plant Resilience to Climate Change

Abstract

Plants undergo a variety of molecular cascades in response to the external stimuli that affect the metabolome as a whole, resulting in activation of some specialized compounds called metabolites which help them to acclimatize to the changing environment. The study of these metabolites has led to the discovery of metabolomics which is defined as the comprehensive, qualitative and quantitative profiling of all the small molecules in cells, tissues or whole organisms at a specific point of time. It is bridging the gap between genotype and phenotype by providing a more comprehensive view of how cells function, as well as identifying novel or striking changes in specific metabolites. Currently, metabolomics research is being applied to myriad different uses, from plant science (in studies relating to biomass accumulation, environmental stress resistance and secondary metabolite production) to medicine. Metabolomics has contributed significantly not only to the understanding of plant physiology and biology from the view of small chemical molecules that reflect the end point of biological activities but also to the attempts to improve plant behaviour under both normal and stressed conditions during past decades. Recently, metabolomics has been proposed as a complementary approach to the genomics-assisted selection for crop improvement and a few methylation quantitative trait loci (mQTLs) have already been identified in Arabidopsis, tomato and Populus.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmed IM, Nadira UA, Bibi N, Cao F, He X, Zhang G, Wu F (2015) Secondary metabolism and antioxidants are involved in the tolerance to drought and salinity, separately and combined, in Tibetan wild barley. Environ Exp Bot 111:1–12

    Article  CAS  Google Scholar 

  • Alvarez S, Marsh EL, Schroeder SG, Schachtman DP (2008) Metabolomic and proteomic changes in the xylem sap of maize under drought. Plant Cell Environ 31:325–340

    Article  CAS  PubMed  Google Scholar 

  • Anonymous (n.d.) The human metabolome project (https://www.ebi.ac.uk/training/online/course/introduction-metabolomics/references)

  • Arbona V, Gómez-Cadenas A (2016) Metabolomics of disease resistance in crops. Curr Issues Mol Biol 19:13–30

    PubMed  Google Scholar 

  • Arbona V, Manzi M, Ollas de C, Gómez-Cadenas A (2013) Metabolomics as a tool to investigate abiotic stress tolerance in plants. Int J Mol Sci 14:4885–4911. https://doi.org/10.3390/ijms14034885

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barchet G (2007) A brief overview of metabolomics: what it means, how it is measured, and its utilization. The science creative quarterly. https://www.scq.ubc.ca/abriefoverviewofmetabolomicswhatitmeanshowitismeasuredanditsutilization/1/4

  • Benevenuto RF, Agapito-Tenfen SZ, Vilperte V, Wikmark O-G, van Rensburg PJ, Nodari RO (2017) Molecular responses of genetically modified maize to abiotic stresses as determined through proteomic and metabolomic analyses. PLoS One 12(2):e0173069. https://doi.org/10.1371/journal.pone.0173069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bowne JB, Erwin TA, Juttner J, Schnurbusch T, Langridge P, Bacic A et al (2012) Drought responses of leaf tissues from wheat cultivars of differing drought tolerance at the metabolite level. Mol Plant Mar 5(2):418–429

    Article  CAS  Google Scholar 

  • Chalker-Scott L, Fnchigami LH (1989) The role of phenolic compounds in plant stress responses. In: Paul HL (ed) Low temperature stress physiology in crops. CRC Press Inc., Boca Raton, FL, p 40

    Google Scholar 

  • Charlton AJ, Donarski JA, Harrison M, Jones SA, Godward J et al (2008) Responses of the pea (Pisumsativum L.) leaf metabolome to drought stress assessed by nuclear magnetic resonance spectroscopy. Metabolomics 4:312–327

    Article  CAS  Google Scholar 

  • Chebrolu KK, Fritschi FB, Ye S, Krishnan HB, Smith JR, Gillman JD (2016a) Impact of heat stress during seed development on soybean seed metabolome. Metabolomics 12:28

    Article  Google Scholar 

  • Chebrolu KK, Fritschi FB, Ye S, Krishnan HB, Smith JR, Gillman JD (2016b) Impact of heat stress during seed development on soybean seed metabolome. Metabolomics 12:28

    Article  Google Scholar 

  • Chen W, Gao Y, Xie W, Gong L, Lu K, Wang W, Li Y, Liu X, Zhang H, Dong H, Zhang W, Zhang L, Yu S, Wang G, Lian X, Luo J (2014) Genome-wide association analyses provide genetic and biochemical insights into natural variation in rice metabolism. Nat Genet 46:714–721

    Article  CAS  PubMed  Google Scholar 

  • Cheong JJ, Choi YD (2003) Methyl jasmonate as a vital substance in plants. Trends Genet 19:409–413. https://doi.org/10.1016/S0168-9525(03)00138-0

    Article  CAS  PubMed  Google Scholar 

  • Clish Clary B (2015) Metabolomics: an emergingbut powerful tool for precision medicine Broad Institute of MIT and Harvard University, Cambridge, Massachusetts 02142. USA Cold Spring Harbor Molecular Case Studies 1:a000588

    Article  CAS  PubMed  Google Scholar 

  • D’Auria JC, Gershenzon J (2005) The secondary metabolism of Arabidopsis thaliana: Growing like a weed. Curr Opin Plant Biol 8:308–316

    Article  PubMed  Google Scholar 

  • Das A, Rushton PJ, Rohila JS (2017a) Metabolomic profiling of soybeans (Glycine max L.) reveals the importance of sugar and nitrogen metabolism under drought and heat stress. Plan Theory 6(2):21. https://doi.org/10.3390/plants6020021

    Article  CAS  Google Scholar 

  • Das A, Rushton PJ, Rohila JS (2017b) Metabolomic profiling of soybeans (Glycine max L.) reveals the importance of sugar and nitrogen metabolism under drought and heat stress. Plan Theory 6(2):21

    Google Scholar 

  • Dias DA, Hill CB, Jayasinghea NS, Atieno J, Sutton T, Roessnerab U (2015) Quantitative profiling of polar primary metabolites of two chickpea cultivars with contrasting responses to salinity. J Chromatogr B 1000:1–13

    Article  CAS  Google Scholar 

  • Dixon RA, Paiva N (1995) Stressed induced phenyl propanoid metabolism. Plant Cell 7:1085–1097. https://doi.org/10.1105/tpc.7.7.1085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dixon RA, Gang DR, Charlton AJ, Fiehn O, Kuiper HA, Reynolds TL, Tjeerdema RS, Jeffery EH, German BJ, Ridley WP, Seiber JN (2006) Applications of metabolomics in agriculture. J Agric Food Chem 54:8984–8994

    Article  CAS  PubMed  Google Scholar 

  • Doust AN, Kellogg EA, Devos KM, Bennetzen JL (2009) Foxtail millet: a sequence-driven grass model system. Plant Physiol 149:137–141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Estrada EI, Hernández RMS and Mariana PT (2016) Metabolomics as a tool in agriculture. Chapter from the book metabolomics—Fundamentals and applications. http://www.intechopen.com/books/metabolomics-fundamentalsand-applications, https://doi.org/10.5772/66485

    Google Scholar 

  • Fernie AR, Schauer N (2009) Metabolomics-assisted breeding: a viable option for crop improvement? Trends Genet 25:39–48

    Article  CAS  PubMed  Google Scholar 

  • Fumagalli E, Baldoni E, Abbruscato P, Piffanelli P, Genga A, Lamanna R, Consonni R (2009) NMR techniques coupled with multivariate statistical analysis: tools to analyse Oryzasativa metabolic content under stress conditions. J Agron Crop Sci 195(2):77–88

    Article  CAS  Google Scholar 

  • Haghighi Z, Karimi N, Modarresi M, Mollayi S (2012) Enhancement of compatible solute and secondary metabolites production in Plantagoovata Forsk. by salinity stress. J Med Plant Res 6(18):3495–3500. https://doi.org/10.5897/JMPR12.159

    Article  CAS  Google Scholar 

  • Hall RD (2006) Plant metabolomics: from holistic hope, to hype, to hot topic. New Phytol 169:453–468

    Article  CAS  PubMed  Google Scholar 

  • Hall R, Beale M, Fiehn O, Hardy N, Sumner L, Bino R (2002) Plant metabolomics the missing link in functional genomics strategies. Plant Cell 14(7):1437–1440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hong J, Yang L, Zhang D, Jianxin S (2016) Plant metabolomics: an indispensable system biology tool for plant science. Int J Mol Sci 17:767. https://doi.org/10.3390/ijms17060767

    Article  CAS  PubMed Central  Google Scholar 

  • Irchhaiya R, Kumar A, Yadav A, Gupta N, Kumar S, Gupta N, Kumar S, Yadav V, Prakash A, Gurjar H (2014) Metabolites in plants and its classification. World J Pharm Pharm Sci 4(1):287–305

    Google Scholar 

  • Jain M (2013) Emerging role of metabolic pathways in abiotic stress tolerance. J Plant Biochem Physiol 1:2. https://doi.org/10.4172/2329-9029.1000108

    Article  Google Scholar 

  • Joshi T, Patil K, Fitzpatrick MR, Franklin LD, Yao Q, Cook JR, Wang Z, Libault M, Brechenmacher L, Valliyodan B, Wu X, Cheng J, Stacey G, Nguyen HT, Xu D (2012) Soybean Knowledge Base (SoyKB): a web resource for soybean translational genomics. BMC Genomics 13(Suppl 1):S15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim JK, Park S-Y, Yeo Y, Cho HS, Kim YB, Bae H, Park CH, Lee J-H, Park SU (2013) Metabolic profiling of millet (Panicum miliaceum) using gas chromatography–time-offlight mass spectrometry (GC-TOFMS) for quality assessment. Plant Omics J 6:73–78

    CAS  Google Scholar 

  • Kliebenstein D (2009) Advancing genetic theory and application by metabolic quantitative trait loci analysis. Plant Cell 21:1637–1646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Komatsu S, Yamamoto A, Nakamura T, Nouri MZ, Nanjo Y, Nishizawa K, Furukawa K (2011) Comprehensive analysis of mitochondria in roots and hypocotyls of soybean under flooding stress using proteomics and metabolomics techniques. J Proteome Res 10(9):3993–4004

    Article  CAS  PubMed  Google Scholar 

  • Kuc J (1995) Phytoalexins, stress metabolism, and disease resistance in plants. Annu Rev Phytopathol 33:275–297

    Article  CAS  PubMed  Google Scholar 

  • Lattanzio V, Lattanzio Veronica MT, Cardinali A (2006) Role of phenolics in the resistance mechanisms of plants against fungal pathogens and insects. Phytochem Adv Res:23–67. Editor: Filippo Imperato Research Signpost 37/661 (2), Fort P.O., Trivandrum-695 023, Kerala, India

    Google Scholar 

  • Li X, Lawas LM, Malo R, Glaubitz U, Erban A, Mauleon R, Heuer S, Zuther E, Kopka J, Hincha DK (2015) Metabolic and transcriptomic signatures of rice floral organs reveal sugar starvation as a factor in reproductive failure under heat and drought stress. Plant Cell Environ 38:2171–2192

    Article  CAS  PubMed  Google Scholar 

  • Li M, Guo R, Jiao Y, Jin X, Zhang H, Shi L (2017) Comparison of salt tolerance in Soja based on metabolomics of seedling roots. Front Plant Sci 8:1101

    Article  PubMed  PubMed Central  Google Scholar 

  • Lu YH, Lam HM, Pi EX, Zhan Q, Tsai S, Wang C et al (2013) Comparative metabolomics in Glycine max and Glycine soja under salt stress to reveal the phenotypes of their offspring. J Agric Food Chem 36:8711–8721

    Article  Google Scholar 

  • Mazid M, Khan TA, Mohammad F (2011) Role of secondary metabolites in defense mechanisms of plants. Biol Med 3(2 Special Issue):232–249

    CAS  Google Scholar 

  • Meyer RC, Steinfath M, Lisec J, Becher M, Witucka-Wall H, Törjék O, Fiehn O, Eckardt A, Willmitzer L, Selbig J, Altmann T (2007) The metabolic signature related to high plant growth rate in Arabidopsis thaliana. Proc Natl Acad Sci 104(11):4759–4764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mittler R, Vanderauwera S, Gollery M, Van Breusegem F (2004) Reactive oxygen gene network of plants. Trends Plant Sci 9(10):490–498

    Article  CAS  PubMed  Google Scholar 

  • Muscolo A, Junker A, Klukas C, Weigelt-Fischer K, Riewe D, Altmann T (2015) Phenotypic and metabolic responses to drought and salinity of four contrasting lentil accessions. J Exp Bot 66(18):5467–5480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Newgard Christopher B (2017) Metabolomics and metabolic diseases: where do we stand? Cell Metab 25:43–56. https://doi.org/10.1016/j.cmet.2016.09.018

    Article  CAS  PubMed  Google Scholar 

  • Oksman-Caldentey KM, Saito K (2005) Integrating genomics and metabolomics for engineering plant metabolic pathways. CurrOpin Biotech 16:174–179

    CAS  Google Scholar 

  • Oliver SG, Winson MK, Kell DB, Baganz F (1998) Systematic functional analysis of the yeast genome. Trends Biotechnol 16:373–378

    Article  CAS  PubMed  Google Scholar 

  • Pelleschi S, Leonardi A, Rocher JP, Cornic G, De Vienne D, Thevenot C, Prioul JL (2006) Analysis of the relationships between growth, photosynthesis and carbohydrate metabolism using quantitative trait loci (QTLs) in young maize plants subjected to water deprivation. Mol Breed 17(1):21–39

    Article  CAS  Google Scholar 

  • Ramakrishna A, Ravishankar GA (2013) In: Tuteja N, Gill SS (eds) Role of plant metabolites in abiotic stress tolerance under changing climatic conditions with special reference to secondary compounds, in climate change and plant abiotic stress tolerance. Wiley, Weinheim. https://doi.org/10.1002/9783527675265.ch26

    Chapter  Google Scholar 

  • Rathinasabapathi B (2000) Metabolic engineering for stress tolerance: installing osmoprotectant synthesis pathways. Ann Bot 86:709–716. https://doi.org/10.1006/anbo.2000.1254

    Article  CAS  Google Scholar 

  • Raval SS, Mahatma MK, Chakraborty K et al (2018) Metabolomics of groundnut (Arachishypogaea L.) genotypes under varying temperature regimes. Plant Growth Regul 84:493–505. https://doi.org/10.1007/s10725-017-0356-2

    Article  CAS  Google Scholar 

  • Roessner U, Bowne J (2009) What is metabolomics all about? Beyond Darwin: The Future of Molecular Biology. BioTechniques 46(5):363–365

    Article  CAS  PubMed  Google Scholar 

  • Ruan CJ, Teixeira da Silva JA (2011) Metabolomics: creating new potentials for unraveling the mechanisms in response to salt and drought stress and for the biotechnological improvement of xero-halophytes. Crit Rev Biotechnol 31:153–169

    Article  CAS  PubMed  Google Scholar 

  • Sanchez DH, Erban A, Kopka J, Udvardi MK (2012) Comparative metabolomics of drought acclimation in model and forage legumes. Plant Cell Environ 35:136–149

    Article  CAS  PubMed  Google Scholar 

  • Schauer N, Semel Y, Balbo I, Steinfath M, Repsilber D et al (2008) Mode of inheritance of primary metabolic traits in tomato. Plant Cell 20:509–523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seger C, Sturm S (2006) Analytical aspects of plant metabolite profiling platforms: current standings and future aims. J Proteome Res 6:480–497

    Google Scholar 

  • Sicher RC, Barnaby JY (2012) Impact of carbon dioxide enrichment on the responses of maize leaf transcripts and metabolites to water stress. Physiol Plant 144(3):238–253

    Article  CAS  PubMed  Google Scholar 

  • Silvente S, Sobolev AP, Lara M (2012a) Metabolite adjustments in drought tolerant and sensitive soybean genotypes in response to water stress. PLoS One 7(6):e38554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Silvente S, Sobolev AP, Lara M (2012b) Metabolite adjustments in drought tolerant and sensitive soybean genotypes in response to water stress. PLoS One 7(6):e38554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song T, Xu H, Sun N, Jiang L, Tian P, Yong Y, Yang W, Cai H, Cui G (2017) Metabolomic analysis of alfalfa (Medicagosativa L.) root-symbiotic rhizobia responses under alkali stress. Front Plant Sci 8:1208. https://doi.org/10.3389/fpls.2017.01208

    Article  PubMed  PubMed Central  Google Scholar 

  • Sun C, Gao X, Fu J, Zhou J, Wu X (2015) Metabolic response of maize (Zea mays L.) plants to combined drought and salt stress. Plant Soil 388:99–117

    Article  CAS  Google Scholar 

  • Tiwari R, Rana CS (2015) Plant secondary metabolites: a review. Int J Eng Res Gen Sci 3(5):661–670

    Google Scholar 

  • Velázquez SF, Hernández VEB (2013) Abiotic stress in plants and metabolic responses. INTECH Open:25–48. https://doi.org/10.5772/54859

    Google Scholar 

  • Verbruggen N, Hermans C (2008) Proline accumulation in plants: a review. Amino Acids 35(4):753–759

    Article  CAS  PubMed  Google Scholar 

  • Verslues PE, Agarwal M, Katiyar-Agarwal S, Zhu J, Zhu JK (2006) Methods and concepts in quantifying resistance to drought, salt and freezing, abiotic stresses that affect plant water status. Plant J 45(4):523–539

    Article  CAS  PubMed  Google Scholar 

  • Wahid A, Gelani S, Ashraf M, Foolad MR (2007) Heat tolerance in plants: an overview. Environ Exp Bot 61:199–223

    Article  Google Scholar 

  • Walton JD (2001) Secondary metabolites: killing pathogens. https://doi.org/10.1038/npg.els.0000917

  • Wentzell AM, Rowe HC, Hansen BG, Ticconi C, Halkier BA et al (2007) Linking metabolic QTLs with network and cis-eQTLs controlling biosynthetic pathways. PLoS Genet 3:1687–1701

    Article  CAS  PubMed  Google Scholar 

  • Witt S, Galicia L, Lisec J, Cairns J, Tiessen A, Araus JL, Palacios-Rojas N, Fernie AR (2012) Metabolic and phenotypic responses of greenhouse-grown maize hybrids to experimentally controlled drought stress. Mol Plant 5:401–417

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Liang W, Yang X, Luo X, Jiang N, Ma H, Zhang D (2010) Carbon starved anther encodes a MYB domain protein that regulates sugar partitioning required for rice pollen development. Plant Cell 22:672–689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang JY, Cruz DE, Carvalho MH, Torres-Jerez I, Kang Y, Allen SN, Huhman DV, Tang Y, Murray J, Sumner LW, Udvardi MK (2014) Global reprogramming of transcription and metabolism in Medicagotruncatula during progressive drought and after rewatering. Plant Cell Environ 37(11):2553–2576

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mamta Arya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Arya, M., Bhartiya, A., Aditya, J.P., Satpute, G., Ratnaparkhe, M. (2019). Unravelling the Complex Networks Involved in Plant Stress Tolerance Through Metabolomics. In: Wani, S. (eds) Recent Approaches in Omics for Plant Resilience to Climate Change. Springer, Cham. https://doi.org/10.1007/978-3-030-21687-0_13

Download citation

Publish with us

Policies and ethics