Skip to main content

Cryopreservation of Sperm: Effects on Chromatin and Strategies to Prevent Them

  • Chapter
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1166))

Abstract

Cryopreservation is a technique that can keep sperm alive indefinitely, enabling the conservation of male fertility. It involves the cooling of semen samples and their storage at −196 °C in liquid nitrogen. At this temperature all metabolic processes are arrested. Sperm cryopreservation is of fundamental importance for patients undergoing medical or surgical treatments that could induce sterility, such as cancer patients about to undergo genotoxic chemotherapy or radiotherapy, as it offers these patients not only the hope of future fertility but also psychological support in dealing with the various stages of the treatment protocols.

Despite its importance for assisted reproduction technology (ART) and its success in terms of babies born, this procedure can cause cell damage and impaired sperm function. Various studies have evaluated the impact of cryopreservation on chromatin structure, albeit with contradictory results. Some, but not all, authors found significant sperm DNA damage after cryopreservation. However, studies attempting to explain the mechanisms involved in the aetiology of cryopreservation-induced DNA damage are still limited. Some reported an increase in sperm with activated caspases after cryopreservation, while others found an increase in the percentage of oxidative DNA damage. There is still little and contradictory information on the mechanism of the generation of DNA fragmentation after cryopreservation. A number of defensive strategies against cryoinjuries have been proposed in the last decade. Most studies focused on supplementing cryoprotectant medium with various antioxidant molecules, all aimed at minimising oxidative damage and thus improving sperm recovery. Despite the promising results, identification of the ideal antioxidant treatment method is still hampered by the heterogeneity of the studies, which describe the use of different antioxidant regimens at different concentrations or in different combinations. For this reason, additional studies are needed to further investigate the use of antioxidants, individually and in combination, in the cryopreservation of human sperm, to determine the most beneficial conditions for optimal sperm recovery and preservation of fertility.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Agarwal A, Majzoub A (2017) Role of antioxidants in assisted reproductive techniques. World J Mens Health 35:77–93

    Article  PubMed  PubMed Central  Google Scholar 

  • Agarwal A, Said TM (2004) Carnitines and male infertility. Reprod Biomed Online 8:376–384

    Article  CAS  PubMed  Google Scholar 

  • Agarwal A, Nallella KP, Allamaneni SS, Said TM (2004) Role of antioxidants in treatment of male infertility: an overview of the literature. Reprod Biomed Online 8:616–627

    Article  CAS  PubMed  Google Scholar 

  • Agarwal A, Gupta S, Sikka S (2006) The role of free radicals and antioxidants in reproduction. Curr Opin Obstet Gynecol 18:325–332

    Article  PubMed  Google Scholar 

  • Agarwal A, Durairajanayagam D, du Plessis SS (2014a) Utility of antioxidants during assisted reproductive techniques: an evidence based review. Reprod Biol Endocrinol 24:112

    Article  CAS  Google Scholar 

  • Agarwal A, Virk G, Ong C, du Plessis SS (2014b) Effect of oxidative stress on male reproduction. World J Mens Health 32(1):17

    Article  Google Scholar 

  • Ahmadi S, Bashiri R, Ghadiri-Anari A, Nadjarzadeh A (2016) Antioxidant supplements and semen parameters: an evidence based review. Int J Reprod Biomed (Yazd) 14:729–736

    Article  CAS  Google Scholar 

  • Ahmed SD, Karira KA, Jagdesh, Ahsan S (2011) Role of L-carnitine in male infertility. J Pak Med Assoc 61:732–736

    PubMed  Google Scholar 

  • Akmal M, Qadri JQ, Al-Waili NS, Thangal S, Haq A, Saloom KY (2006) Improvement in human semen quality after oral supplementation of vitamin C. J Med Food 9:440–442

    Article  CAS  PubMed  Google Scholar 

  • Alahmar AT (2018) The effects of oral antioxidants on the semen of men with idiopathic oligoasthenoteratozoospermia. Clin Exp Reprod Med 45:57–66

    Article  PubMed  PubMed Central  Google Scholar 

  • Amidi F, Pazhohan A, Shabani Nashtaei M, Khodarahmian M, Nekoonam S (2016) The role of antioxidants in sperm freezing: a review. Cell Tissue Bank 17:745–756

    Article  CAS  PubMed  Google Scholar 

  • Amor H, Zeyad A, Alkhaled Y, Laqqan M, Saad A, Ben Ali H, Hammadeh ME (2018) Relationship between nuclear DNA fragmentation, mitochondrial DNA damage and standard sperm parameters in spermatozoa of fertile and sub-fertile men before and after freeze-thawing procedure. Andrologia 50:e12998

    Article  CAS  PubMed  Google Scholar 

  • Arav A, Zeron Y, Leslie SB, Behboodi E, Anderson GB, Crowe JH (1996) Phase transition temperature and chilling sensitivity of bovine oocytes. Cryobiology 33:589–599

    Article  CAS  PubMed  Google Scholar 

  • Ashrafi I, Kohram H, Ardabili FF (2013) Antioxidative effects of melatonin on kinetics, microscopic and oxidative parameters of cryopreserved bull spermatozoa. Anim Reprod Sci 139:25–30

    Article  CAS  PubMed  Google Scholar 

  • Avdatek F, Yeni D, İnanç ME, Çil B, Tuncer BP, Türkmen R, Taşdemir U (2018) Supplementation of quercetin for advanced DNA integrity in bull semen cryopreservation. Andrologia, Feb 7

    Google Scholar 

  • Bailey JL, Bilodeau JF, Cormier N (2000) Semen cryopreservation in domestic animals: a damaging and capacitating phenomenon. J Androl 21:1–7

    CAS  PubMed  Google Scholar 

  • Balercia G, Regoli F, Armeni T, Koverech A, Mantero F, Boscaro M (2005) Placebo-controlled double-blind randomized trial on the use of l-carnitine, l-acetylcarnitine, or combined l-carnitine and l-acetylcarnitine in men with idiopathic asthenozoospermia. Fertil Steril 84:662–671

    Article  CAS  PubMed  Google Scholar 

  • Banihani S, Agarwal A, Sharma R, Bayachou M (2014) Cryoprotective effect of l-carnitine on motility, vitality and DNA oxidation of human spermatozoa. Andrologia 46:637–641

    Article  CAS  PubMed  Google Scholar 

  • Behrman SJ, Sawada Y (1966) Heterologous and homologous insemination with human semen frozen and stored in a liquid-nitrogen refrigerator. Fertil Steril 17:457–466

    Article  CAS  PubMed  Google Scholar 

  • Ben Abdallah F, Zribi N, Ammar-Keskes L (2011) Antioxidative potential of Quercetin against hydrogen peroxide induced oxidative stress in spermatozoa in vitro. Andrologia 43:261–265

    Article  CAS  PubMed  Google Scholar 

  • Benoff S (1997) Carbohydrates and fertilization: an overview. Mol Hum Reprod 3:599–637

    Article  CAS  PubMed  Google Scholar 

  • Bianchi PG, Manicardi GC, Bizzaro D, Bianchi U, Sakkas D (1993) Effect of deoxyribonucleic acid protamination on fluorochrome staining and in situ nick-translation of murine and human mature spermatozoa. Biol Reprod 49:1083–1088

    Article  CAS  PubMed  Google Scholar 

  • Boots AW, Haenen GR, Bast A (2008) Health effects of quercetin: from antioxidant to nutraceutical. Eur J Pharmacol 585:325–337

    Article  CAS  PubMed  Google Scholar 

  • Borges E Jr, Rossi LM, Locambo de Freitas CV, Guilherme P, Bonetti TC, Iaconelli A, Pasqualotto FF (2007) Fertilization and pregnancy outcome after intracytoplasmic injection with fresh or cryopreserved ejaculated spermatozoa. Fertil Steril 87:316–320

    Article  PubMed  Google Scholar 

  • Branco CS, Garcez ME, Pasqualotto FF, Erdtman B, Salvador M (2010) Resveratrol and ascorbic acid prevent DNA damage induced by cryopreservation in human semen. Cryobiology 60:235–237

    Article  CAS  PubMed  Google Scholar 

  • Bui AD, Sharma R, Henkel R, Agarwal A (2018) Reactive oxygen species impact on sperm DNA and its role in male infertility. Andrologia 50:e13012

    Article  CAS  PubMed  Google Scholar 

  • Bunge RG, Sherman JK (1953) Fertilizing capacity of frozen human spermatozoa. Nature 172:767–768

    Article  CAS  PubMed  Google Scholar 

  • Bunge RG, Keettel WC, Sherman JK (1954) Clinical use of frozen semen: report of four cases. Fertil Steril 5:520–529

    Article  CAS  PubMed  Google Scholar 

  • Chanapiwat P, Kaeoket K, Tummaruk P (2009) Effects of DHA-enriched hen egg yolk and L-cysteine supplementation on quality of cryopreserved boar semen. Asian J Androl 11:600–608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chi HJ, Kim JH, Ryu CS, Lee JY, Park JS, Chung DY, Choi SY, Kim MH, Chun EK, Roh SI (2008) Protective effect of antioxidant supplementation in sperm-preparation medium against oxidative stress in human spermatozoa. Hum Reprod 23:1023–1028

    Article  CAS  PubMed  Google Scholar 

  • Clarke GN, Liu DY, Baker HW (2003) Improved sperm cryopreservation using cold cryoprotectant. Reprod Fertil Dev 15:377–381

    Article  CAS  PubMed  Google Scholar 

  • Coyan K, Başpınar N, Bucak MN, Akalın PP (2011) Effects of cysteine and ergothioneine on post-thawed Merino ram sperm and biochemical parameters. Cryobiology 63:1–6

    Article  CAS  PubMed  Google Scholar 

  • Cross NL, Overstreet JW (1987) Glycoconjugates of the human sperm surface: distribution and alterations that accompany capacitation in vitro. Gamete Res 16:23–35

    Article  CAS  PubMed  Google Scholar 

  • Cyrus A, Kabir A, Goodarzi D, Moghimi M (2015) The effect of adjuvant vitamin C after varicocele surgery on sperm quality and quantity in infertile men: a double blind placebo controlled clinical trial. Int Braz J Urol 41:230–238

    Article  PubMed  PubMed Central  Google Scholar 

  • De Paula TS, Bertolla RP, Spaine DM, Cunha MA, Schor N, Cedenho AP (2006) Effect of cryopreservation on sperm apoptotic deoxyribonucleic acid fragmentation in patients with oligozoospermia. Fertil Steril 86:597–600

    Article  PubMed  CAS  Google Scholar 

  • Di Santo M, Tarozzi N, Nadalini M, Borini A (2012) Human sperm cryopreservation: update on techniques, effect on DNA integrity, and implications for ART. Adv Urol 2012:854837

    Article  PubMed  Google Scholar 

  • Donnelly ET, McClure N, Lewis SE (1999) The effect of ascorbate and alpha-tocopherol supplementation in vitro on DNA integrity and hydrogen peroxide-induced DNA damage in human spermatozoa. Mutagenesis 14:505–512

    Article  CAS  PubMed  Google Scholar 

  • Donnelly ET, Steele EK, McClure N, Lewis SE (2001a) Assessment of DNA integrity and morphology of ejaculated spermatozoa from fertile and infertile men before and after cryopreservation. Hum Reprod 16:1191–1199

    Article  CAS  PubMed  Google Scholar 

  • Donnelly ET, McClure N, Lewis SE (2001b) Cryopreservation of human semen and prepared sperm: effects on motility parameters and DNA integrity. Fertil Steril 76:892–900

    Article  CAS  PubMed  Google Scholar 

  • Duru NK, Morshedi MS, Schuffner A, Oehninger S (2001) Cryopreservation-Thawing of fractionated human spermatozoa is associated with membrane phosphatidylserine externalization and not DNA fragmentation. J Androl 22:646–651

    CAS  PubMed  Google Scholar 

  • Enomoto A, Wempe MF, Tsuchida H, Shin HJ, Cha SH, Anzai N, Goto A, Sakamoto A, Niwa T, Kanai Y, Anders MW, Endou H (2002) Molecular identification of a novel carnitine transporter specific to human testis. Insights into the mechanism of carnitine recognition. J Biol Chem 277:36262–36271

    Article  CAS  PubMed  Google Scholar 

  • Eslamian G, Amirjannati N, Rashidkhani B, Sadeghi MR, Hekmatdoost A (2017) Nutrient patterns and asthenozoospermia: a case-control study. Andrologia 49:e12624

    Article  CAS  Google Scholar 

  • Espino J, Bejarano I, Ortiz A, Lozano GM, García JF, Pariente JA, Rodríguez AB (2010) Melatonin as a potential tool against oxidative damage and apoptosis in ejaculated human spermatozoa. Fertil Steril 94:1915–1917

    Article  CAS  PubMed  Google Scholar 

  • Estrada E, Rodríguez-Gil JE, Rocha LG, Balasch S, Bonet S, Yeste M (2014) Supplementing cryopreservation media with reduced glutathione increases fertility and prolificacy of sows inseminated with frozen-thawed boar semen. Andrology 2:88–99

    Article  CAS  PubMed  Google Scholar 

  • Fabbri R, Ciotti P, Di Tommaso B, Magrini O, Notarangelo L, Porcu E, Contro E, Venturosi S (2004) Tecniche di crioconservazione riproduttiva. Riv Ital Ostet Ginecol 3:33–41

    Google Scholar 

  • Fanaei H, Khayat S, Halvaei I, Ramezani V, Azizi Y, Kasaeian A, Mardaneh J, Parvizi MR, Akrami M (2014) Effects of ascorbic acid on sperm motility, viability, acrosome reaction and DNA integrity in teratozoospermic samples. Iranian J Reprod Med 12:103–110

    CAS  Google Scholar 

  • Gadea J, Molla M, Selles E, Marco MA, Garcia-Vazquez FA, Gardon JC (2011) Reduced glutathione content in human sperm is decreased after cryopreservation: effect of the addition of reduced glutathione to the freezing and thawing extenders. Cryobiology 62:40–46

    Article  CAS  PubMed  Google Scholar 

  • Garcez ME, dos Santos Branco C, Lara LV, Pasqualotto FF, Salvador M (2010) Effects of resveratrol supplementation on cryopreservation medium of human semen. Fertil Steril 94:2118–2121

    Article  CAS  PubMed  Google Scholar 

  • Gavella M, Lipovac V (2000) Antioxidative effect of melatonin on human spermatozoa. Arch Androl 44:23–27

    Article  CAS  PubMed  Google Scholar 

  • Gavella M, Lipovac V (2013) Protective effects of exogenous gangliosides on ROS-induced changes in human spermatozoa. Asian J Androl 15:375–381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Geva E, Bartoov B, Zabludovsky N, Lessing J, Lerner-Geva L, Amit A (1996) The effect of antioxidant treatment on human spermatozoa and fertilization rate in an in vitro fertilization program. Fertil Steril 66:430–434

    Article  CAS  PubMed  Google Scholar 

  • Ghorbani M, Vatannejad A, Khodadadi I, Amiri I, Tavilani H (2016) Protective effects of glutathione supplementation against oxidative stress during cryopreservation of human spermatozoa. Cryo Letters 37:34–40

    PubMed  Google Scholar 

  • Giaretta E, Estrada E, Bucci D, Spinaci M, Rodríguez-Gil JE, Yeste M (2015) Combining reduced glutathione and ascorbic acid has supplementary beneficial effects on boar sperm cryotolerance. Theriogenology 83:399–407

    Article  CAS  PubMed  Google Scholar 

  • Giraud MN, Motta C, Boucher D, Grizard G (2000) Membrane fluidity predicts the outcome of cryopreservation of human spermatozoa. Hum Reprod 15:2160–2164

    Article  CAS  PubMed  Google Scholar 

  • Gorczyca W, Traganos F, Jesionowska H, Darzynkiewicz Z (1993) Presence of DNA strand breaks and increased sensitivity of DNA in situ to denaturation in abnormal human sperm cells: analogy to apoptosis of somatic cells. Exp Cell Res 207:202–205

    Article  CAS  PubMed  Google Scholar 

  • Gosálvez J, Cortés-Gutierez E, López-Fernández C, Fernández JL, Caballero P, Nuñez R (2009) Sperm deoxyribonucleic acid fragmentation dynamics in fertile donors. Fertil Steril 92:170–173

    Article  PubMed  CAS  Google Scholar 

  • Greco E, Romano S, Iacobelli M, Ferrero S, Baroni E, Minasi MG, Ubaldi F, Rienzi L, Tesarik J (2005a) ICSI in cases of sperm DNA damage: beneficial effect of oral antioxidant treatment. Hum Reprod 20:2590–2594

    Article  CAS  PubMed  Google Scholar 

  • Greco E, Iacobelli M, Rienzi L, Ubaldi F, Ferrero S, Tesarik J (2005b) Reduction of the incidence of sperm DNA fragmentation by oral antioxidant treatment. J Androl 26:349–353

    Article  CAS  PubMed  Google Scholar 

  • Gülçin I (2006) Antioxidant and antiradical activities of L-carnitine. Life Sci 78:803–811

    Article  PubMed  CAS  Google Scholar 

  • Halliwell B, Gutterridge J (1984) Lipid peroxidation, oxygen radicals, cell damage and antioxidant therapy. Lancet 231:1396–1397

    Article  Google Scholar 

  • Hammadeh ME, Askari AS, Georg T, Rosenbaum P, Schmidt W (1999) Effect of freeze-thawing procedure on chromatin stability, morphological alteration and membrane integrity of human spermatozoa in fertile and subfertile men. Int J Androl 22:155–162

    Article  CAS  PubMed  Google Scholar 

  • Hardie DG, Hawley SA, Scott JW (2006) AMP-activated protein kinase – development of the energy sensor concept. J Physiol 574:7–15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hezavehei M, Sharafi M, Kouchesfahani HM, Henkel R, Agarwal A, Esmaeili V, Shahverdi A (2018) Sperm cryopreservation: a review on current molecular cryobiology and advanced approaches. Reprod Biomed Online 37:327–339

    Article  CAS  PubMed  Google Scholar 

  • Jenkins TG, Aston KI, Carrell DT (2011) Supplementation of cryomedium with ascorbic acid-2-glucoside (AA2G) improves human sperm post-thaw motility. Fertil Steril 95:2001–2004

    Article  CAS  PubMed  Google Scholar 

  • Jeulin C, Soufir JC, Weber P, Laval-Martin D, Calvayrac R (1989) Catalase activity in human spermatozoa and seminal plasma. Gamete Res 24:185–196

    Article  CAS  PubMed  Google Scholar 

  • Thachil JV, Jewett MAS (1981) Preservation techniques for human semen. Fertil Steril 35:546–548

    Article  CAS  PubMed  Google Scholar 

  • Kalthur G, Adiga SK, Upadhya D, Rao S, Kumar P (2008) Effect of cryopreservation on sperm DNA integrity in patients with teratosperm. Fertil Steril 89:1723–1727

    Article  PubMed  Google Scholar 

  • Kalthur G, Raj S, Thiyagarajan A, Kumar S, Kumar P, Adiga SK (2011) Vitamin E supplementation in semen-freezing medium improves the motility and protects sperm from freeze-thaw–induced DNA damage. Fertil Steril 95:1149–1151

    Article  CAS  PubMed  Google Scholar 

  • Karimfar MH, Niazvand F, Haghani K, Ghafourian S, Shirazi R, Bakhtiyari S (2015) The protective effects of melatonin against cryopreservation induced oxidative stress in human sperm. Int J Immunopathol Pharmacol 28:69–76

    Article  CAS  PubMed  Google Scholar 

  • Karow AM Jr (1974) Cryopreservation: pharmacological considerations. In: Karow AM, Abouna GJ, Humphries AL (eds) Organ preservation for transplantation. Little Brown, Boston, pp 86–107

    Google Scholar 

  • Kim TH, Yuh IS, Park IC, Cheong HT, Kim JT, Park JK, Yang BK (2014) Effects of quercetin and genistein on boar sperm characteristics and porcine IVF embryo developments. J Embrio Transfer 29:141–148

    Article  Google Scholar 

  • Kobori Y, Ota S, Sato R, Yagi H, Soh S, Arai G, Okada H (2014) Antioxidant cosupplementation therapy with vitamin C, vitamin E, and coenzyme Q10 in patients with oligoasthenozoospermia. Arch Ital Urol Androl 86:1–4

    Article  PubMed  CAS  Google Scholar 

  • Lassalle B, Testart J (1994) Human zona pellucida recognition associated with removal of sialic acid from human sperm surface. J Reprod Fertil 101:703–711

    Article  CAS  PubMed  Google Scholar 

  • Lasso JL, Noiles EE, Alvarez JG, Storey BT (1994) Mechanism of superoxide dismutase loss from human sperm cells during cryopreservation. J Androl 15:255–265

    CAS  PubMed  Google Scholar 

  • Lenzi A, Sgrò P, Salacone P (2004) A placebo-controlled double-blind randomized trial of the use of combined L-carnitine and L-acetylcarnitine treatment in men with asthenozoospermia. Fertil Steril 8:1578–1584

    Article  CAS  Google Scholar 

  • Li Z, Lin Q, Liu R, Xiao W, Liu W (2010) Protective effects of ascorbate and catalase on human spermatozoa during cryopreservation. J Androl 31:437–444

    Article  CAS  PubMed  Google Scholar 

  • Lopes S, Sun JG, Jurisicova A, Meriano J, Casper RF (1998) Sperm deoxyribonucleic acid fragmentation is increased in poor-quality semen samples and correlates with failed fertilization in intracytoplasmic sperm injection. Fertil Steril 69:528–532

    Article  CAS  PubMed  Google Scholar 

  • Lusignan MF, Li X, Herrero B, Delbes G, Chan PTK (2018) Effects of different cryopreservation methods on DNA integrity and sperm chromatin quality in men. Andrology 6:829

    Article  CAS  PubMed  Google Scholar 

  • Mahadevan M, Trounson AO (1984) Effect of cooling, freezing and thawing rates and storage conditions on preservation of human spermatozoa. Andrologia 16:52–60

    Article  CAS  PubMed  Google Scholar 

  • Majzoub A, Agarwal A (2018) Systematic review of antioxidant types and doses in male infertility: benefits on semen parameters, advanced sperm function, assisted reproduction and live-birth rate. Arab J Urol 16:113–124

    Article  PubMed  PubMed Central  Google Scholar 

  • Martinez-Soto JC, De Dioshourcade J, Gutiérrez-Adán A, Landeras JL, Gadea J (2010) Effect of genistein supplementation of thawing medium on characteristics of frozen human spermatozoa. Asian J Androl 12:431–441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mazur P (1984) Freezing of living cells: mechanisms and implications. Am J Physiol 247(3 Pt 1):C125–C142

    Article  CAS  PubMed  Google Scholar 

  • Mazzilli F, Rossi T, Sabatini L, Pulcinelli FM, Rapone S, Dondero F, Gazzaniga PP (1995) Human sperm cryopreservation and reactive oxygen species (ROS) production. Acta Eur Fertil 26:145–148

    CAS  PubMed  Google Scholar 

  • Meamar M, Zribi N, Cambi M, Tamburrino L, Marchiani S, Filimberti E, Fino MG, Biggeri A, Menezo Y, Forti G, Baldi E, Muratori M (2012) Sperm DNA fragmentation induced by cryopreservation: new insights and effect of a natural extract from Opuntia ficus-indica. Fertil Steril 98:326–333

    Article  CAS  PubMed  Google Scholar 

  • Medeiros CM, Forell F, Oliveira AT, Rodrigues JL (2002) Current status of sperm cryopreservation: why isn’t it better? Theriogenology 57:327–344

    Article  CAS  PubMed  Google Scholar 

  • Memon AA, Wahid H, Rosnina Y, Goh YM, Ebrahimi M, Nadia FM (2012) Effect of antioxidants on post thaw microscopic, oxidative stress parameter and fertility of Boer goat spermatozoa in Tris egg yolk glycerol extender. Anim Reprod Sci 136:55–60

    Article  CAS  PubMed  Google Scholar 

  • Minaei MB, Barbarestani M, Nekoonam S, Abdolvahabi MA, Takzare N, Asadi MH, Hedayatpour A, Amidi F (2012) Effect of Trolox addition to cryopreservation media on human sperm motility. Iran J Reprod Med 10:99–104

    PubMed  PubMed Central  Google Scholar 

  • Moretti E, Mazzi L, Bonechi C, Salvatici MC, Iacoponi F, Rossi C, Collodel G (2016) Effect of Quercetin-loaded liposomes on induced oxidative stress in human spermatozoa. Reprod Toxicol 60:140–147

    Article  CAS  PubMed  Google Scholar 

  • Moubasher AE, El Din AM, Ali ME, El-sherif WT, Gaber HD (2013) Catalase improves motility, vitality and DNA integrity of cryopreserved human spermatozoa. Andrologia 45:135–139

    Article  CAS  PubMed  Google Scholar 

  • Murawski M, Saczko J, Marcinkowska A, Chwiłkowska A, Gryboś M, Banaś T (2007) Evaluation of superoxide dismutase activity and its impact on semen quality parameters of infertile men. Folia Histochem Cytobiol 45(Suppl 1):S123–S126

    PubMed  Google Scholar 

  • Nekoonam S, Nashtaei MS, Zangi BM, Amidi F (2016) Effect of Trolox on sperm quality in normozospermia and oligozospermia during cryopreservation. Cryobiology 72:106–111

    Article  CAS  PubMed  Google Scholar 

  • Ngamwuttiwong T, Kunathikom S (2007) Evaluation of cryoinjury of sperm chromatin according to liquid nitrogen vapour method (I). J Med Assoc Thai 90:224–228

    PubMed  Google Scholar 

  • O’Connell M, McClure N, Lewis SE (2002) The effects of cryopreservation on sperm morphology, motility and mitochondrial function. Hum Reprod 17:704–709

    Article  PubMed  Google Scholar 

  • Oehninger S, Duru NK, Srisombut C, Morshedi M (2000) Assessment of sperm cryodamage and strategies to improve outcome. Mol Cell Endocrinol 169:3–10

    Article  CAS  PubMed  Google Scholar 

  • Ortiz A, Espino J, Bejarano I, Lozano GM, Monllor F, García JF, Pariente JA, Rodríguez AB (2011) High endogenous melatonin concentrations enhance sperm quality and short-term in vitro exposure to melatonin improves aspects of sperm motility. J Pineal Res 50:132–139

    CAS  PubMed  Google Scholar 

  • Paasch U, Sharma RK, Gupta AK, Grunewald S, Mascha EJ, Thomas AJ Jr, Glander HJ, Agarwal A (2004) Cryopreservation and thawing is associated with varying extent of activation of apoptotic machinery in subsets of ejaculated human spermatozoa. Biol Reprod 71:1828–1837

    Article  CAS  PubMed  Google Scholar 

  • Pini T, Leahy T, de Graaf SP (2018) Sublethal sperm freezing damage: Manifestations and solutions. Theriogenology 118:172–181

    Article  CAS  PubMed  Google Scholar 

  • Polge C, Smith AU, Parkes AS (1949) Revival of spermatozoa after vitrification and dehydration at low temperatures. Nature 164:666

    Article  CAS  PubMed  Google Scholar 

  • Reiter RJ, Tan DX, Manchester LC, Paredes SD, Mayo JC, Sainz RM (2009) Melatonin and reproduction revisited. Biol Reprod 81:445–456

    Article  CAS  PubMed  Google Scholar 

  • Rossi T, Mazzilli F, Delfino M, Dondero F (2001) Improved human sperm recovery using superoxide dismutase and catalase supplementation in semen cryopreservation procedure. Cell Tissue Bank 2:9–13

    Article  CAS  PubMed  Google Scholar 

  • Rostand J (1946) Glycerine et resistance du sperm aux basses temperature. CR Acad Sci Paris 222:1524

    Google Scholar 

  • Said TM, Gaglani A, Agarwal A (2010) Implication of apoptosis in sperm cryoinjury. Reprod Biomed Online 21:456–462

    Article  PubMed  Google Scholar 

  • Saito K, Suzuki K, Iwasaki A, Yumura Y, Kubota Y (2005) Sperm cryopreservation before cancer chemotherapy helps in the emotional battle against cancer. Cancer 104:521–524

    Article  PubMed  Google Scholar 

  • Sariözkan S, Bucak MN, Tuncer PB, Ulutaş PA, Bilgen A (2009) The influence of cysteine and taurine on microscopic-oxidative stress parameters and fertilizing ability of bull semen following cryopreservation. Cryobiology 58:134–138

    Article  PubMed  CAS  Google Scholar 

  • Seifi-Jamadi A, Kohram H, Shahneh AZ, Ansari M, Macías-García B (2016) Quercetin ameliorate motility in frozen-thawed Türkmen stallions sperm. J Equine Vet Sci 45:73–77

    Article  Google Scholar 

  • Semercioz A, Onur R, Ogras S, Orhan I (2003) Effects of melatonin on testicular tissue nitric oxide level and antioxidant enzyme activities in experimentally induced left varicocele. Neuro Endocrinol Lett 24:86–90

    CAS  PubMed  Google Scholar 

  • Shabani Nashtaei M, Nekoonam S, Naji M, Bakhshalizadeh S, Amidi F (2018) Cryoprotective effect of resveratrol on DNA damage and crucial human sperm messenger RNAs, possibly through 5' AMP-activated protein kinase activation. Cell Tissue Bank 19:87–95

    Article  CAS  PubMed  Google Scholar 

  • Shafiei M, Forouzanfar M, Hosseini SM, Esfahani MH (2015) The effect of superoxide dismutase mimetic and catalase on the quality of postthawed goat semen. Theriogenology 83:1321–1327

    Article  CAS  PubMed  Google Scholar 

  • Sherman JK (1963) Improved methods of preservation of human spermatozoa by freezing and freeze-drying. Fertil Steril 14:49–64

    Article  CAS  PubMed  Google Scholar 

  • Sherman JF (1990) Cryopreservation of human semen. In: Keel B, Webster BW (eds) Handbook of the laboratory diagnosis and treatment of infertility. CRC Press, Boca Raton/Ann Arbor/Boston, pp 229–260

    Google Scholar 

  • Sierens J, Hartley J, Campbell M, Leathem A, Woodside J (2002) In vitro isoflavone supplementation reduces hydrogen peroxide-induced DNA damage in sperm. Teratog Carcinog Mutagen 22:227–234

    Article  CAS  PubMed  Google Scholar 

  • Silva EC, Cajueiro JF, Silva SV, Soares PC, Guerra MM (2012) Effect of antioxidants resveratrol and quercetin on in vitro evaluation of frozen ram sperm. Theriogenology 77:1722–1726

    Article  CAS  PubMed  Google Scholar 

  • Song GJ, Norkus EP, Lewis V (2006) Relationship between seminal ascorbic acid and sperm DNA integrity in infertile men. Int J Androl 29:569–575

    Article  CAS  PubMed  Google Scholar 

  • Sönmez M, Yüce A, Türk G (2007) The protective effect of melatonin and Vitamin E on antioxidant enzyme activities and epididymal sperm characteristics of homocysteine treated male rats. Reprod Toxicol 23:226–231

    Article  PubMed  CAS  Google Scholar 

  • Spanò M, Cordelli E, Leter G, Lombardo F, Lenzi A, Gandini L (1999) Nuclear chromatin variations in human spermatozoa undergoing swim-up and cryopreservation evaluated by the flow cytometric sperm chromatin structure assay. Mol Hum Reprod 5:29–37

    Article  PubMed  Google Scholar 

  • Stojanović S, Sprinz H, Brede O (2001) Efficiency and mechanism of the antioxidant action of trans-resveratrol and its analogues in the radical liposome oxidation. Arch Biochem Biophys 391:79–89

    Article  PubMed  CAS  Google Scholar 

  • Succu S, Berlinguer F, Pasciu V, Satta V, Leoni GG, Naitana S (2011) Melatonin protects ram spermatozoa from cryopreservation injuries in a dose-dependent manner. J Pineal Res 50:310–318

    Article  CAS  PubMed  Google Scholar 

  • Sun JG, Jurisicova A, Casper RF (1997) Detection of deoxyribonucleic acid fragmentation in human sperm: correlation with fertilization in vitro. Biol Reprod 56:602–607

    Article  CAS  PubMed  Google Scholar 

  • Tan DX, Manchester LC, Reiter RJ, Qi WB, Karbownik M, Calvo JR (2000) Significance of melatonin in antioxidative defense system: reactions and products. Biol Signals Recept 9:137–159

    Article  CAS  PubMed  Google Scholar 

  • Taylor K, Roberts P, Sanders K, Burton P (2009) Effect of antioxidant supplementation of cryopreservation medium on post-thaw integrity of human spermatozoa. Reprod Biomed Online 18:184–189

    Article  PubMed  Google Scholar 

  • Thomson LK, Fleming SD, Aitken RJ, De Iuliis GN, Zieschang JA, Clark AM (2009) Cryopreservation-induced human sperm DNA damage is predominantly mediated by oxidative stress rather than apoptosis. Hum Reprod 24:2061–2070

    Article  CAS  PubMed  Google Scholar 

  • Topraggaleh TR, Shahverdi A, Rastegarnia A, Ebrahimi B, Shafiepour V, Sharbatoghli M, Esmaeili V, Janzamin E (2014) Effect of cysteine and glutamine added to extender on post-thaw sperm functional parameters of buffalo bull. Andrologia 46:777–783

    Article  CAS  PubMed  Google Scholar 

  • Uysal O, Bucak MN (2007) Effects of oxidized glutathione, bovine serum albumin, cysteine and lycopene on the quality of frozen-thawed ram semen. Acta Vet Brno 76:383–390

    Article  CAS  Google Scholar 

  • Wang X, Sharma RK, Sikka SC, Thomas AJ, Falcone T, Agarwal A (2003) Oxidative stress is associated with increased apoptosis leading to spermatozoa DNA damage in patients with male factor infertility. Fertil Steril 80:531–535

    Article  PubMed  Google Scholar 

  • White IG (1993) Lipids and calcium uptake of sperm in relation to cold shock and preservation: a review. Reprod Fertil Dev 5:639–658

    Article  CAS  PubMed  Google Scholar 

  • Yan L, Liu J, Wu S, Zhang S, Ji G, Gu A (2014) Seminal superoxide dismutase activity and its relationship with semen quality and SOD gene polymorphism. J Assist Reprod Genet 31:549–554

    Article  PubMed  PubMed Central  Google Scholar 

  • Zeitoun MM, Al-Damegh MA (2014) Effect of nonenzymatic antioxidants on sperm motility and survival relative to free radicals and antioxidant enzymes of chilled-stored ram semen. Open J Anim Sci 5:50

    Article  CAS  Google Scholar 

  • Zeron Y, Pearl M, Borochov A, Arav A (1999) Kinetic and temporal factors influence chilling injury to germinal vesicle and mature bovine oocytes. Cryobiology 38:35–42

    Article  CAS  PubMed  Google Scholar 

  • Zhu Z, Ren Z, Fan X, Pan Y, Lv S, Pan C, Lei A, Zeng W (2017) Cysteine protects rabbit spermatozoa against reactive oxygen species-induced damages. PLoS One 12:e0181110

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zielonka J, Gebicki J, Grynkiewicz G (2003) Radical scavenging properties of genistein. Free Radic Biol Med 35:958–965

    Article  CAS  PubMed  Google Scholar 

  • Zribi N, Feki Chakroun N, El Euch H, Gargouri J, Bahloul A, Ammar Keskes L (2010) Effects of cryopreservation on human sperm deoxyribonucleic acid integrity. Fertil Steril 93:159–166

    Article  CAS  PubMed  Google Scholar 

  • Zribi N, Feki Chakroun N, Ben Abdallah F, Elleuch H, Sellami A, Rebai T, Fakhfakh F, Keskes LA (2012) Effect of freezing-thawing process and quercetin on human sperm survival and DNA integrity. Cryobiology 65:326–331

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donatella Paoli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Paoli, D., Pelloni, M., Lenzi, A., Lombardo, F. (2019). Cryopreservation of Sperm: Effects on Chromatin and Strategies to Prevent Them. In: Baldi, E., Muratori, M. (eds) Genetic Damage in Human Spermatozoa. Advances in Experimental Medicine and Biology, vol 1166. Springer, Cham. https://doi.org/10.1007/978-3-030-21664-1_9

Download citation

Publish with us

Policies and ethics