Skip to main content

Sperm DNA Fragmentation: Consequences for Reproduction

  • Chapter
  • First Online:
Genetic Damage in Human Spermatozoa

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1166))

Abstract

DNA fragmentation, or the accumulation of single- and double-strand DNA breaks, is a common property of sperm, and an increase in the level of sperm DNA fragmentation is known to influence natural reproduction. The effect of sperm DNA fragmentation on male infertility and assisted reproductive treatment (ART) outcomes remains controversial and is one of the most frequently debated topics of reproductive medicine. For the past 30 years, a number of assays have been developed to quantify the level of sperm DNA fragmentation. In this chapter, we review the causes of sperm DNA fragmentation, describe the commonly used tests to evaluate these abnormalities, and perform a systematic review of existing studies to determine the impact of sperm DNA fragmentation on male fertility and ART outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abd-Elmoaty MA et al (2010) Increased levels of oxidants and reduced antioxidants in semen of infertile men with varicocele. Fertil Steril 94(4):1531–1534

    Article  CAS  PubMed  Google Scholar 

  • Agarwal A, Allamaneni SS (2005) Sperm DNA damage assessment: a test whose time has come. Fertil Steril 84(4):850–853

    Article  PubMed  Google Scholar 

  • Agarwal A et al (2014) Reactive oxygen species and sperm DNA damage in infertile men presenting with low level leukocytospermia. Reprod Biol Endocrinol 12:1–8

    Article  CAS  Google Scholar 

  • Ahmadi A, Ng SC (1999) Fertilizing ability of DNA-damaged spermatozoa. J Exp Zool 284(6):696–704

    Article  CAS  PubMed  Google Scholar 

  • Aitken RJ (2012) Aetiology of defective sperm function and DNA damage in the male germ line. J Reprod Immunol 94(1):7–8

    Article  Google Scholar 

  • Aitken RJ, De Iuliis GN (2007) Origins and consequences of DNA damage in male germ cells. Reprod Biomed Online 14(6):727–733

    Article  CAS  PubMed  Google Scholar 

  • Aitken RJ, De Iuliis GN (2010) On the possible origins of DNA damage in human spermatozoa. Mol Hum Reprod 16(1):3–13

    Article  CAS  PubMed  Google Scholar 

  • Aitken RJ, Koppers AJ (2011) Apoptosis and DNA damage in human spermatozoa. Asian J Androl 13(1):36–42

    Article  CAS  PubMed  Google Scholar 

  • Aitken RJ et al (2005) Impact of radio frequency electromagnetic radiation on DNA integrity in the male germline. Int J Androl 28(3):171–179

    Article  CAS  PubMed  Google Scholar 

  • Alkan I et al (1997) Reactive oxygen species production by the spermatozoa of patients with idiopathic infertility: relationship to seminal plasma antioxidants. J Urol 157(1):140–143

    Article  CAS  PubMed  Google Scholar 

  • Alkhayal A et al (2013) Sperm DNA and chromatin integrity in semen samples used for intrauterine insemination. J Assist Reprod Genet 30(11):1519–1524

    Article  PubMed  PubMed Central  Google Scholar 

  • Andersen AG et al (2002) Time to pregnancy in relation to semen quality assessed by CASA before and after sperm separation. Hum Reprod 17(1):173–177

    Article  CAS  PubMed  Google Scholar 

  • Anderson D et al (2003) Oestrogenic compounds and oxidative stress (in human sperm and lymphocytes in the Comet assay). Mutat Res 544(2–3):173–178

    Article  CAS  PubMed  Google Scholar 

  • Anifandis G et al (2015) Sperm DNA fragmentation measured by Halosperm does not impact on embryo quality and ongoing pregnancy rates in IVF/ICSI treatments. Andrologia 47(3):295–302

    Article  CAS  PubMed  Google Scholar 

  • Aoki VW et al (2005) DNA integrity is compromised in protamine-deficient human sperm. J Androl 26(6):741–748

    Article  CAS  PubMed  Google Scholar 

  • Aoki VW et al (2006) Sperm protamine 1/protamine 2 ratios are related to in vitro fertilization pregnancy rates and predictive of fertilization ability. Fertil Steril 86(5):1408–1415

    Article  CAS  PubMed  Google Scholar 

  • Aravindan GR et al (1997) Susceptibility of human sperm to in situ DNA denaturation is strongly correlated with DNA strand breaks identified by single-cell electrophoresis. Exp Cell Res 236(1):231–237

    Article  CAS  PubMed  Google Scholar 

  • Avendano C et al (2010) DNA fragmentation of normal spermatozoa negatively impacts embryo quality and intracytoplasmic sperm injection outcome. Fertil Steril 94(2):549–557

    Article  PubMed  Google Scholar 

  • Baker K et al (2013) Pregnancy after varicocelectomy: impact of postoperative motility and DFI. Urology 81(4):760–766

    Article  PubMed  Google Scholar 

  • Bakos HW et al (2007) Elevated glucose levels induce lipid peroxidation and DNA damage in human spermatozoa. Aust N Z J Obstet Gynaecol 47:A1–A1

    Article  Google Scholar 

  • Barbieri ER et al (1999) Varicocele-associated decrease in antioxidant defenses. J Androl 20(6):713–717

    CAS  PubMed  Google Scholar 

  • Barroso G, Morshedi M, Oehninger S (2000) Analysis of DNA fragmentation, plasma membrane translocation of phosphatidylserine and oxidative stress in human spermatozoa. Hum Reprod 15(6):1338–1344

    Article  CAS  PubMed  Google Scholar 

  • Benchaib M et al (2003) Sperm DNA fragmentation decreases the pregnancy rate in an assisted reproductive technique. Hum Reprod 18(5):1023–1028

    Article  PubMed  Google Scholar 

  • Benchaib M et al (2007) Sperm deoxyribonucleic acid fragmentation as a prognostic indicator of assisted reproductive technology outcome. Fertil Steril 87(1):93–100

    Article  CAS  PubMed  Google Scholar 

  • Bianchi PG et al (1993) Effect of deoxyribonucleic acid protamination on fluorochrome staining and in situ nick-translation of murine and human mature spermatozoa. Biol Reprod 49(5):1083–1088

    Article  CAS  PubMed  Google Scholar 

  • Boe-Hansen GB, Ersboll AK, Christensen P (2005a) Variability and laboratory factors affecting the sperm chromatin structure assay in human semen. J Androl 26(3):360–368

    Article  CAS  PubMed  Google Scholar 

  • Boe-Hansen GB, Ersbøll AK, Christensen P (2005b) Variability and laboratory factors affecting the sperm chromatin structure assay in human semen. J Androl 26(3):360–368

    Article  CAS  PubMed  Google Scholar 

  • Boe-Hansen GB et al (2006) The sperm chromatin structure assay as a diagnostic tool in the human fertility clinic. Hum Reprod 21(6):1576–1582

    Article  PubMed  Google Scholar 

  • Bonde JPE et al (1998) Relation between semen quality and fertility: a population-based study of 430 first-pregnancy planners. Lancet 352(9135):1172–1177

    Article  CAS  PubMed  Google Scholar 

  • Borini A et al (2006) Sperm DNA fragmentation: paternal effect on early post-implantation embryo development in ART. Hum Reprod 21(11):2876–2881

    Article  CAS  PubMed  Google Scholar 

  • Buck Louis GM et al (2014) Semen quality and time to pregnancy: the Longitudinal Investigation of Fertility and the Environment Study. Fertil Steril 101(2):453–462

    Article  PubMed  Google Scholar 

  • Bungum M et al (2004) The predictive value of sperm chromatin structure assay (SCSA) parameters for the outcome of intrauterine insemination, IVF and ICSI. Hum Reprod 19(6):1401–1408

    Article  CAS  PubMed  Google Scholar 

  • Bungum M et al (2007) Sperm DNA integrity assessment in prediction of assisted reproduction technology outcome. Hum Reprod 22(1):174–179

    Article  CAS  PubMed  Google Scholar 

  • Bungum M et al (2008) Sperm chromatin structure assay parameters measured after density gradient centrifugation are not predictive for the outcome of ART. Hum Reprod 23(1):4–10

    Article  CAS  PubMed  Google Scholar 

  • Caglar GS et al (2007) Semen DNA fragmentation index, evaluated with both TUNEL and Comet assay, and the ICSI outcome. In Vivo 21(6):1075–1080

    CAS  PubMed  Google Scholar 

  • Castillo J et al (2011) Protamine/DNA ratios and DNA damage in native and density gradient centrifuged sperm from infertile patients. J Androl 32(3):324–332

    Article  CAS  PubMed  Google Scholar 

  • Check JH et al (2005) Effect of an abnormal sperm chromatin structural assay (SCSA) on pregnancy outcome following (IVF) with ICSI in previous IVF failures. Arch Androl 51(2):121–124

    Article  CAS  PubMed  Google Scholar 

  • Collins JA, Barnhart KT, Schlegel PN (2008) Do sperm DNA integrity tests predict pregnancy with in vitro fertilization? Fertil Steril 89(4):823–831

    Article  PubMed  Google Scholar 

  • Cooper TG et al (2010) World Health Organization reference values for human semen characteristics. Hum Reprod Update 16(3):231–245

    Article  PubMed  Google Scholar 

  • Dar S et al (2013) In vitro fertilization-intracytoplasmic sperm injection outcome in patients with a markedly high DNA fragmentation index (>50%). Fertil Steril 100(1):75–80

    Article  PubMed  Google Scholar 

  • Daris B et al (2010) Sperm morphological abnormalities as indicators of DNA fragmentation and fertilization in ICSI. Arch Gynecol Obstet 281(2):363–367

    Article  PubMed  Google Scholar 

  • Donnelly ET, McClure N, Lewis SE (2001) Cryopreservation of human semen and prepared sperm: effects on motility parameters and DNA integrity. Fertil Steril 76(5):892–900

    Article  CAS  PubMed  Google Scholar 

  • Duran EH et al (2002) Sperm DNA quality predicts intrauterine insemination outcome: a prospective cohort study. Hum Reprod 17(12):3122–3128

    Article  CAS  PubMed  Google Scholar 

  • Erenpreiss J et al (2002) Effect of leukocytospermia on sperm DNA integrity: a negative effect in abnormal semen samples. J Androl 23(5):717–723

    PubMed  Google Scholar 

  • Erenpreiss J et al (2006) Sperm chromatin structure and male fertility: biological and clinical aspects. Asian J Androl 8(1):11–29

    Article  CAS  PubMed  Google Scholar 

  • Esbert M et al (2011) Impact of sperm DNA fragmentation on the outcome of IVF with own or donated oocytes. Reprod Biomed Online 23(6):704–710

    Article  CAS  PubMed  Google Scholar 

  • Evenson D, Jost L (2000) Sperm chromatin structure assay is useful for fertility assessment. Methods Cell Sci 22(2–3):169–189

    Article  CAS  PubMed  Google Scholar 

  • Evenson DP, Wixon R (2005) Environmental toxicants cause sperm DNA fragmentation as detected by the Sperm Chromatin Structure Assay (SCSA). Toxicol Appl Pharmacol 207(2. Suppl):532–537

    Article  PubMed  CAS  Google Scholar 

  • Evenson DP, Darzynkiewicz Z, Melamed MR (1980) Relation of mammalian sperm chromatin heterogeneity to fertility. Science 210(4474):1131–1133

    Article  CAS  PubMed  Google Scholar 

  • Evenson DP et al (1999) Utility of the sperm chromatin structure assay as a diagnostic and prognostic tool in the human fertility clinic. Hum Reprod 14(4):1039–1049

    Article  CAS  PubMed  Google Scholar 

  • Evenson DP, Larson KL, Jost LK (2002) Sperm chromatin structure assay: its clinical use for detecting sperm DNA fragmentation in male infertility and comparisons with other techniques. J Androl 23(1):25–43

    Article  PubMed  Google Scholar 

  • Fang L, et al. (2011) [A study on correlation between sperm DNA fragmentation index and age of male, various parameters of sperm and in vitro fertilization outcome]. Zhonghua Yi Xue Yi Chuan Xue Za Zhi 28(4):432–435

    Google Scholar 

  • Fatehi AN et al (2006) DNA damage in bovine sperm does not block fertilization and early embryonic development but induces apoptosis after the first cleavages. J Androl 27(2):176–188

    Article  CAS  PubMed  Google Scholar 

  • Feijó CM, Esteves SC (2014) Diagnostic accuracy of sperm chromatin dispersion test to evaluate sperm deoxyribonucleic acid damage in men with unexplained infertility. Fertil Steril 101(1):58–63.e3

    Article  PubMed  CAS  Google Scholar 

  • Fernández JL, Gosálvez J (2002) Application of FISH to detect DNA damage. DNA breakage detection-FISH (DBD-FISH). Methods Mol Biol 203:203–216

    PubMed  Google Scholar 

  • Fernandez JL et al (2003) The sperm chromatin dispersion test: a simple method for the determination of sperm DNA fragmentation. J Androl 24(1):59–66

    CAS  PubMed  Google Scholar 

  • Ford HB, Schust DJ (2009) Recurrent pregnancy loss: etiology, diagnosis, and therapy. Rev Obstet Gynecol 2(2):76–83

    PubMed  PubMed Central  Google Scholar 

  • Fraser L (2004) Structural damage to nuclear DNA in mammalian spermatozoa: its evaluation techniques and relationship with male infertility. Pol J Vet Sci 7(4):311–321

    CAS  PubMed  Google Scholar 

  • Frydman N et al (2008) Adequate ovarian follicular status does not prevent the decrease in pregnancy rates associated with high sperm DNA fragmentation. Fertil Steril 89(1):92–97

    Article  CAS  PubMed  Google Scholar 

  • Gandini L et al (2004) Full-term pregnancies achieved with ICSI despite high levels of sperm chromatin damage. Hum Reprod 19(6):1409–1417

    Article  CAS  PubMed  Google Scholar 

  • Giwercman A et al (2010) Sperm chromatin structure assay as an independent predictor of fertility in vivo: a case-control study. Int J Androl 33(1):e221–e227

    Article  PubMed  Google Scholar 

  • Gorczyca W, Gong J, Darzynkiewicz Z (1993) Detection of DNA strand breaks in individual apoptotic cells by the in situ terminal deoxynucleotidyl transferase and nick translation assays. Cancer Res 53(8):1945–1951

    CAS  PubMed  Google Scholar 

  • Gosalvez J et al (2013) Can DNA fragmentation of neat or swim-up spermatozoa be used to predict pregnancy following ICSI of fertile oocyte donors? Asian J Androl 15(6):812–818

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gu LJ et al (2009) Sperm chromatin anomalies have an adverse effect on the outcome of conventional in vitro fertilization: a study with strictly controlled external factors. Fertil Steril 92(4):1344–1346

    Article  PubMed  Google Scholar 

  • Gu LJ, et al. (2011) [Effects of abnormal structure of sperm chromatin on the outcome of in vitro fertilization and embryo transfer]. Zhonghua Yi Xue Yi Chuan Xue Za Zhi 28(2):156–159

    Google Scholar 

  • Guerin P, et al. (2005) [Impact of sperm DNA fragmentation on ART outcome]. Gynecol Obstet Fertil 33(9):665–668

    Google Scholar 

  • Hales BF, Barton TS, Robaire B (2005) Impact of paternal exposure to chemotherapy on offspring in the rat. J Natl Cancer Inst Monogr (34):28–31

    Google Scholar 

  • Hammadeh ME et al (2006) Comparison of reactive oxygen species concentration in seminal plasma and semen parameters in partners of pregnant and non-pregnant patients after IVF/ICSI. Reprod Biomed Online 13(5):696–706

    Article  CAS  PubMed  Google Scholar 

  • Hammadeh ME et al (2008) Reactive oxygen species, total antioxidant concentration of seminal plasma and their effect on sperm parameters and outcome of IVF/ICSI patients. Arch Gynecol Obstet 277(6):515–526

    Article  CAS  PubMed  Google Scholar 

  • Henkel R et al (2003) DNA fragmentation of spermatozoa and assisted reproduction technology. Reprod Biomed Online 7(4):477–484

    Article  PubMed  Google Scholar 

  • Host E et al (1999) DNA strand breaks in human sperm cells: a comparison between men with normal and oligozoospermic sperm samples. Acta Obstet Gynecol Scand 78(4):336–339

    Article  CAS  PubMed  Google Scholar 

  • Høst E et al (1999) DNA strand breaks in human sperm cells: a comparison between men with normal and oligozoospermic sperm samples. Acta Obstet Gynecol Scand 78(4):336–339

    Article  PubMed  Google Scholar 

  • Hsu PC et al (2006) Sperm DNA damage correlates with polycyclic aromatic hydrocarbons biomarker in coke-oven workers. Int Arch Occup Environ Health 79(5):349–356

    Article  CAS  PubMed  Google Scholar 

  • Huang CC et al (2005) Sperm DNA fragmentation negatively correlates with velocity and fertilization rates but might not affect pregnancy rates. Fertil Steril 84(1):130–140

    Article  PubMed  Google Scholar 

  • Hughes CM et al (1996) A comparison of baseline and induced DNA damage in human spermatozoa from fertile and infertile men, using a modified comet assay. Mol Hum Reprod 2(8):613–619

    Article  CAS  PubMed  Google Scholar 

  • Hughes CM, McKelvey-Martin VJ, Lewis SEM (1999) Human sperm DNA integrity assessed by the Comet and ELISA assays. Mutagenesis 14(1):71–75

    Article  CAS  PubMed  Google Scholar 

  • Irvine DS et al (2000) DNA integrity in human spermatozoa: relationships with semen quality. J Androl 21(1):33–44

    CAS  PubMed  Google Scholar 

  • Jiang HH, et al. (2011) [Sperm chromatin integrity test for predicting the outcomes of IVF and ICSI]. Zhonghua Nan Ke Xue 17(12):1083–1086

    Google Scholar 

  • Kennedy C et al (2011) Sperm chromatin structure correlates with spontaneous abortion and multiple pregnancy rates in assisted reproduction. Reprod Biomed Online 22(3):272–276

    Article  CAS  PubMed  Google Scholar 

  • Klaude M et al (1996) The comet assay: mechanisms and technical considerations. Mutat Res 363(2):89–96

    Article  PubMed  Google Scholar 

  • Koca Y et al (2009) Antioxidant activity of seminal plasma in fertile and infertile men. Arch Androl 49(5):355–359

    Article  CAS  Google Scholar 

  • Lackner JE et al (2008) Effect of leukocytospermia on fertilization and pregnancy rates of artificial reproductive technologies. Fertil Steril 90(3):869–871

    Article  PubMed  Google Scholar 

  • Larson KL et al (2000) Sperm chromatin structure assay parameters as predictors of failed pregnancy following assisted reproductive techniques. Hum Reprod 15(8):1717–1722

    Article  CAS  PubMed  Google Scholar 

  • Larson-Cook KL et al (2003) Relationship between the outcomes of assisted reproductive techniques and sperm DNA fragmentation as measured by the sperm chromatin structure assay. Fertil Steril 80(4):895–902

    Article  PubMed  Google Scholar 

  • Lazaros L et al (2013) Sperm flow cytometric parameters are associated with ICSI outcome. Reprod Biomed Online 26(6):611–618

    Article  PubMed  Google Scholar 

  • Lewis SE, Agbaje IM (2008) Using the alkaline comet assay in prognostic tests for male infertility and assisted reproductive technology outcomes. Mutagenesis 23(3):163–170

    Article  CAS  PubMed  Google Scholar 

  • Lewis SE et al (2004) An algorithm to predict pregnancy in assisted reproduction. Hum Reprod 19(6):1385–1394

    Article  CAS  PubMed  Google Scholar 

  • Li N, Jiang L (2011) Effect of sperm DNA on the outcome of in vitro fertilization-embryo transfer. Guangxi Med J 33(3):257–260

    Google Scholar 

  • Li Z et al (2006) Correlation of sperm DNA damage with IVF and ICSI outcomes: a systematic review and meta-analysis. J Assist Reprod Genet 23(9–10):367–376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin MH et al (2008) Sperm chromatin structure assay parameters are not related to fertilization rates, embryo quality, and pregnancy rates in in vitro fertilization and intracytoplasmic sperm injection, but might be related to spontaneous abortion rates. Fertil Steril 90(2):352–359

    Article  PubMed  Google Scholar 

  • Lopes S et al (1998) Sperm deoxyribonucleic acid fragmentation is increased in poor-quality semen samples and correlates with failed fertilization in intracytoplasmic sperm injection. Fertil Steril 69(3):528–532

    Article  CAS  PubMed  Google Scholar 

  • Lopez G et al (2013) Diagnostic value of sperm DNA fragmentation and sperm high-magnification for predicting outcome of assisted reproduction treatment. Asian J Androl 15(6):790–794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Manicardi GC et al (1995) Presence of endogenous nicks in DNA of ejaculated human spermatozoa and its relationship to chromomycin A3 accessibility. Biol Reprod 52(4):864–867

    Article  CAS  PubMed  Google Scholar 

  • Marchetti C et al (2002) Study of mitochondrial membrane potential, reactive oxygen species, DNA fragmentation and cell viability by flow cytometry in human sperm. Hum Reprod 17(5):1257–1265

    Article  PubMed  Google Scholar 

  • McKelvey-Martin VJ et al (1997) Two potential clinical applications of the alkaline single-cell gel electrophoresis assay: (1). Human bladder washings and transitional cell carcinoma of the bladder; and (2). Human sperm and male infertility. Mutat Res 375(2):93–104

    Article  CAS  PubMed  Google Scholar 

  • Meseguer M et al (2011) Effect of sperm DNA fragmentation on pregnancy outcome depends on oocyte quality. Fertil Steril 95(1):124–128

    Article  CAS  PubMed  Google Scholar 

  • Micinski P et al (2009) The sperm chromatin structure assay (SCSA) as prognostic factor in IVF/ICSI program. Reprod Biol 9(1):65–70

    Article  PubMed  Google Scholar 

  • Migliore L et al (2002) Assessment of sperm DNA integrity in workers exposed to styrene. Hum Reprod 17(11):2912–2918

    Article  CAS  PubMed  Google Scholar 

  • Morris ID (2002) Sperm DNA damage and cancer treatment. Int J Androl 25(5):255–261

    Article  CAS  PubMed  Google Scholar 

  • Morris ID et al (2002) The spectrum of DNA damage in human sperm assessed by single cell gel electrophoresis (Comet assay) and its relationship to fertilization and embryo development. Hum Reprod 17(4):990–998

    Article  CAS  PubMed  Google Scholar 

  • Muriel L et al (2006) Value of the sperm chromatin dispersion test in predicting pregnancy outcome in intrauterine insemination: a blind prospective study. Hum Reprod 21(3):738–744

    Article  PubMed  Google Scholar 

  • Nasr-Esfahani MH et al (2005) Effect of sperm DNA damage and sperm protamine deficiency on fertilization and embryo development post-ICSI. Reprod Biomed Online 11(2):198–205

    Article  CAS  PubMed  Google Scholar 

  • Ni W et al (2014) Effect of sperm DNA fragmentation on clinical outcome of frozen-thawed embryo transfer and on blastocyst formation. PLoS One 9(4):e94956

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nicopoullos JD et al (2008) Sperm DNA fragmentation in subfertile men: the effect on the outcome of intracytoplasmic sperm injection and correlation with sperm variables. BJU Int 101(12):1553–1560

    Article  PubMed  Google Scholar 

  • Nijs M et al (2009) Chromomycin A3 staining, sperm chromatin structure assay and hyaluronic acid binding assay as predictors for assisted reproductive outcome. Reprod Biomed Online 19(5):671–684

    Article  CAS  PubMed  Google Scholar 

  • Nijs M et al (2011) Correlation between male age, WHO sperm parameters, DNA fragmentation, chromatin packaging and outcome in assisted reproduction technology. Andrologia 43(3):174–179

    Article  CAS  PubMed  Google Scholar 

  • Nunez-Calonge R et al (2012) An improved experimental model for understanding the impact of sperm DNA fragmentation on human pregnancy following ICSI. Reprod Sci 19(11):1163–1168

    Article  CAS  PubMed  Google Scholar 

  • Oh E et al (2005) Evaluation of immuno- and reproductive toxicities and association between immunotoxicological and genotoxicological parameters in waste incineration workers. Toxicology 210(1):65–80

    Article  CAS  PubMed  Google Scholar 

  • Ola B et al (2001) Should ICSI be the treatment of choice for all cases of in-vitro conception? Considerations of fertilization and embryo development, cost effectiveness and safety. Hum Reprod 16(12):2485–2490

    Article  CAS  PubMed  Google Scholar 

  • Oleszczuk K et al (2013) Prevalence of high DNA fragmentation index in male partners of unexplained infertile couples. Andrology 1(3):357–360

    Article  CAS  PubMed  Google Scholar 

  • Oliva R (2006) Protamines and male infertility. Hum Reprod Update 12(4):417–435

    Article  CAS  PubMed  Google Scholar 

  • Olive PL et al (2001) Analysis of DNA damage in individual cells. Methods Cell Biol 64:235–249

    Article  CAS  PubMed  Google Scholar 

  • Ostling O, Johanson KJ (1984) Microelectrophoretic study of radiation-induced DNA damages in individual mammalian cells. Biochem Biophys Res Commun 123(1):291–298

    Article  CAS  PubMed  Google Scholar 

  • Ozmen B et al (2007) Relationship between sperm DNA damage, induced acrosome reaction and viability in ICSI patients. Reprod Biomed Online 15(2):208–214

    Article  CAS  PubMed  Google Scholar 

  • Pasqualotto FF et al (2001) Oxidative stress in normospermic men undergoing infertility evaluation. J Androl 22(2):316–322

    CAS  PubMed  Google Scholar 

  • Payne JF et al (2005) Redefining the relationship between sperm deoxyribonucleic acid fragmentation as measured by the sperm chromatin structure assay and outcomes of assisted reproductive techniques. Fertil Steril 84(2):356–364

    Article  PubMed  Google Scholar 

  • Practice Committee of the American Society for Reproductive Medicine (2013) The clinical utility of sperm DNA integrity testing: a guideline. Fertil Steril 99(3):673–677

    Article  CAS  Google Scholar 

  • Pregl Breznik B, Kovacic B, Vlaisavljevic V (2013) Are sperm DNA fragmentation, hyperactivation, and hyaluronan-binding ability predictive for fertilization and embryo development in in vitro fertilization and intracytoplasmic sperm injection? Fertil Steril 99(5):1233–1241

    Article  CAS  PubMed  Google Scholar 

  • Rama Raju GA et al (2012) Noninsulin-dependent diabetes mellitus: effects on sperm morphological and functional characteristics, nuclear DNA integrity and outcome of assisted reproductive technique. Andrologia 44 Suppl 1:490–498

    Article  CAS  PubMed  Google Scholar 

  • Robinson L et al (2012) The effect of sperm DNA fragmentation on miscarriage rates: a systematic review and meta-analysis. Hum Reprod 27(10):2908–2917

    Article  CAS  PubMed  Google Scholar 

  • Sailer BL, Jost LK, Evenson DP (1995) Mammalian sperm DNA susceptibility to in situ denaturation associated with the presence of DNA strand breaks as measured by the terminal deoxynucleotidyl transferase assay. J Androl 16(1):80–87

    CAS  PubMed  Google Scholar 

  • Saleh RA et al (2002) Leukocytospermia is associated with increased reactive oxygen species production by human spermatozoa. Fertil Steril 78(6):1215–1224

    Article  PubMed  Google Scholar 

  • Saleh RA et al (2003a) Negative effects of increased sperm DNA damage in relation to seminal oxidative stress in men with idiopathic and male factor infertility. Fertil Steril 79:1597–1605

    Article  PubMed  Google Scholar 

  • Saleh RA et al (2003b) Evaluation of nuclear DNA damage in spermatozoa from infertile men with varicocele. Fertil Steril 80(6):1431–1436

    Article  PubMed  Google Scholar 

  • Sanchez-Martin P et al (2013) Increased pregnancy after reduced male abstinence. Syst Biol Reprod Med 59(5):256–260

    Article  PubMed  Google Scholar 

  • Seli E et al (2004) Extent of nuclear DNA damage in ejaculated spermatozoa impacts on blastocyst development after in vitro fertilization. Fertil Steril 82(2):378–383

    Article  PubMed  Google Scholar 

  • Sergerie M et al (2005a) Longitudinal study of sperm DNA fragmentation as measured by terminal uridine nick end-labelling assay. Hum Reprod 20(7):1921–1927

    Article  CAS  PubMed  Google Scholar 

  • Sergerie M et al (2005b) Sperm DNA fragmentation: threshold value in male fertility. Hum Reprod 20(12):3446–3451

    Article  CAS  PubMed  Google Scholar 

  • Shamsi MB, Kumar R, Dada R (2008) Evaluation of nuclear DNA damage in human spermatozoa in men opting for assisted reproduction. Indian J Med Res 127(2):115–123

    CAS  PubMed  Google Scholar 

  • Sharbatoghli M et al (2012) Relationship of sperm DNA fragmentation, apoptosis and dysfunction of mitochondrial membrane potential with semen parameters and ART outcome after intracytoplasmic sperm injection. Arch Gynecol Obstet 286(5):1315–1322

    Article  CAS  PubMed  Google Scholar 

  • Sikka SC, Rajasekaran M, Hellstrom WJ (1995) Role of oxidative stress and antioxidants in male infertility. J Androl 16(6):464–468

    CAS  PubMed  Google Scholar 

  • Simon L, Lewis SE (2011) Sperm DNA damage or progressive motility: which one is the better predictor of fertilization in vitro? Syst Biol Reprod Med 57(3):133–138

    Article  PubMed  Google Scholar 

  • Simon L et al (2010) Clinical significance of sperm DNA damage in assisted reproduction outcome. Hum Reprod 25(7):1594–1608

    Article  CAS  PubMed  Google Scholar 

  • Simon L et al (2011a) Relationships between human sperm protamines, DNA damage and assisted reproduction outcomes. Reprod Biomed Online 23(6):724–734

    Article  CAS  PubMed  Google Scholar 

  • Simon L et al (2011b) Sperm DNA damage measured by the alkaline Comet assay as an independent predictor of male infertility and in vitro fertilization success. Fertil Steril 95(2):652–657

    Article  PubMed  Google Scholar 

  • Simon L et al (2013) Sperm DNA damage has a negative association with live-birth rates after IVF. Reprod Biomed Online 26(1):68–78

    Article  CAS  PubMed  Google Scholar 

  • Simon L et al (2014a) Paternal influence of sperm DNA integrity on early embryonic development. Hum Reprod 29(11):2402–2412

    Article  CAS  PubMed  Google Scholar 

  • Simon L et al (2014b) Comparative analysis of three sperm DNA damage assays and sperm nuclear protein content in couples undergoing assisted reproduction treatment. Hum Reprod 29(5):904–917

    Article  CAS  PubMed  Google Scholar 

  • Simon L et al (2017a) Sperm DNA damage output parameters measured by the alkaline Comet assay and their importance. Andrologia 49(2)

    Google Scholar 

  • Simon L et al (2017b) A systematic review and meta-analysis to determine the effect of sperm DNA damage on in vitro fertilization and intracytoplasmic sperm injection outcome. Asian J Androl 19(1):80–90

    PubMed  Google Scholar 

  • Singh NP, Stephens RE (1998) X-ray-induced DNA double-strand breaks in human sperm. Mutagenesis 13(1):75–79

    Article  CAS  PubMed  Google Scholar 

  • Singh NP et al (1988) A simple technique for quantitation of low levels of DNA damage in individual cells. Exp Cell Res 175(1):184–191

    Article  CAS  PubMed  Google Scholar 

  • Smit M et al (2010) Decreased sperm DNA fragmentation after surgical varicocelectomy is associated with increased pregnancy rate. J Urol 183(1):270–274

    Article  PubMed  Google Scholar 

  • Spanò M et al (1998) The applicability of the flow cytometric sperm chromatin structure assay in epidemiological studies. Asclepios. Hum Reprod 13(9):2495–2505

    Article  PubMed  Google Scholar 

  • Spano M et al (2000) Sperm chromatin damage impairs human fertility. The Danish First Pregnancy Planner Study Team. Fertil Steril 73(1):43–50

    Article  CAS  PubMed  Google Scholar 

  • Spano M et al (2005) Exposure to PCB and p, p'-DDE in European and Inuit populations: impact on human sperm chromatin integrity. Hum Reprod 20(12):3488–3499

    Article  CAS  PubMed  Google Scholar 

  • Speyer BE et al (2010) Fall in implantation rates following ICSI with sperm with high DNA fragmentation. Hum Reprod 25(7):1609–1618

    Article  CAS  PubMed  Google Scholar 

  • Stevanato J et al (2008) Semen processing by density gradient centrifugation does not improve sperm apoptotic deoxyribonucleic acid fragmentation rates. Fertil Steril 90(3):889–890

    Article  PubMed  Google Scholar 

  • Sun JG, Jurisicova A, Casper RF (1997) Detection of deoxyribonucleic acid fragmentation in human sperm: correlation with fertilization in vitro. Biol Reprod 56(3):602–607

    Article  CAS  PubMed  Google Scholar 

  • Tarozzi N et al (2007) Clinical relevance of sperm DNA damage in assisted reproduction. Reprod Biomed Online 14(6):746–757

    Article  CAS  PubMed  Google Scholar 

  • Tarozzi N et al (2009) Anomalies in sperm chromatin packaging: implications for assisted reproduction techniques. Reprod Biomed Online 18(4):486–495

    Article  PubMed  Google Scholar 

  • Tavalaee M, Razavi S, Nasr-Esfahani MH (2009) Influence of sperm chromatin anomalies on assisted reproductive technology outcome. Fertil Steril 91(4):1119–1126

    Article  CAS  PubMed  Google Scholar 

  • Tesarik J, Greco E, Mendoza C (2004) Late, but not early, paternal effect on human embryo development is related to sperm DNA fragmentation. Hum Reprod 19(3):611–615

    Article  CAS  PubMed  Google Scholar 

  • Thomson LK, Zieschang JA, Clark AM (2011) Oxidative deoxyribonucleic acid damage in sperm has a negative impact on clinical pregnancy rate in intrauterine insemination but not intracytoplasmic sperm injection cycles. Fertil Steril 96(4):843–847

    Article  CAS  PubMed  Google Scholar 

  • Tomsu M, Sharma V, Miller D (2002) Embryo quality and IVF treatment outcomes may correlate with different sperm comet assay parameters. Hum Reprod 17(7):1856–1862

    Article  CAS  PubMed  Google Scholar 

  • Twigg JP, Irvine DS, Aitken RJ (1998) Oxidative damage to DNA in human spermatozoa does not preclude pronucleus formation at intracytoplasmic sperm injection. Hum Reprod 13(7):1864–1871

    Article  CAS  PubMed  Google Scholar 

  • Velez de la Calle JF et al (2008) Sperm deoxyribonucleic acid fragmentation as assessed by the sperm chromatin dispersion test in assisted reproductive technology programs: results of a large prospective multicenter study. Fertil Steril 90(5):1792–1799

    Article  PubMed  Google Scholar 

  • Virro MR, Larson-Cook KL, Evenson DP (2004) Sperm chromatin structure assay (SCSA) parameters are related to fertilization, blastocyst development, and ongoing pregnancy in in vitro fertilization and intracytoplasmic sperm injection cycles. Fertil Steril 81(5):1289–1295

    Article  PubMed  Google Scholar 

  • Xia Y et al (2005) Genotoxic effects on spermatozoa of carbaryl-exposed workers. Toxicol Sci 85(1):615–623

    Article  CAS  PubMed  Google Scholar 

  • Yang XY, et al. (2011) [Sperm chromatin structure assay predicts the outcome of intrauterine insemination]. Zhonghua Nan Ke Xue 17(11):977–83

    Google Scholar 

  • Yang XY, et al. (2013) [Impact of sperm DNA fragmentation index and sperm malformation rate on the clinical outcome of ICSI]. Zhonghua Nan Ke Xue 19(12):1082–1086

    Google Scholar 

  • Zeyad A et al (2018) Relationships between bacteriospermia, DNA integrity, nuclear protamine alteration, sperm quality and ICSI outcome. Reprod Biol 18(1):115–121

    Article  PubMed  Google Scholar 

  • Zhang X, Gabriel MS, Zini A (2006) Sperm nuclear histone to protamine ratio in fertile and infertile men: evidence of heterogeneous subpopulations of spermatozoa in the ejaculate. J Androl 27(3):414–420

    Article  PubMed  CAS  Google Scholar 

  • Zhao J et al (2014) Whether sperm deoxyribonucleic acid fragmentation has an effect on pregnancy and miscarriage after in vitro fertilization/intracytoplasmic sperm injection: a systematic review and meta-analysis. Fertil Steril 102(4):998–1005 e8

    Article  CAS  PubMed  Google Scholar 

  • Zheng WW et al (2018) Sperm DNA damage has a negative effect on early embryonic development following in vitro fertilization. Asian J Androl 20(1):75–79

    Article  CAS  PubMed  Google Scholar 

  • Zini A, Sigman M (2009) Are tests of sperm DNA damage clinically useful? Pros and cons. J Androl 30(3):219–229

    Article  CAS  PubMed  Google Scholar 

  • Zini A et al (2001) Correlations between two markers of sperm DNA integrity, DNA denaturation and DNA fragmentation, in fertile and infertile men. Fertil Steril 75(4):674–677

    Article  CAS  PubMed  Google Scholar 

  • Zini A et al (2005) Potential adverse effect of sperm DNA damage on embryo quality after ICSI. Hum Reprod 20(12):3476–3480

    Article  CAS  PubMed  Google Scholar 

  • Zini A et al (2008) Sperm DNA damage is associated with an increased risk of pregnancy loss after IVF and ICSI: systematic review and meta-analysis. Hum Reprod 23(12):2663–2668

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Douglas T. Carrell .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Simon, L., Emery, B., Carrell, D.T. (2019). Sperm DNA Fragmentation: Consequences for Reproduction. In: Baldi, E., Muratori, M. (eds) Genetic Damage in Human Spermatozoa. Advances in Experimental Medicine and Biology, vol 1166. Springer, Cham. https://doi.org/10.1007/978-3-030-21664-1_6

Download citation

Publish with us

Policies and ethics