Skip to main content

Physiological and Biochemical Changes in Plant Growth and Different Plant Enzymes in Response to Lead Stress

  • Chapter
  • First Online:
Lead in Plants and the Environment

Abstract

Lead (Pb) is one of the most widespread, persistent and toxic heavy metal contaminants in agricultural soil. Though Pb is not an essential metal for plant metabolism, it is taken up primarily by the root system and accumulated in the different plant parts. Because Pb ions accumulate predominantly in roots, root growth is more sensitive to this metal than shoot growth. Growth inhibition due to Pb stress depends on various mechanisms affecting directly (such as reduction of cell division and elongation) or indirectly (such as disorders nutrient uptake, photosynthesis and water uptake) plant growth. After entering the cell, Pb ions can also influence the activity of the key enzymes of different metabolic processes such as antioxidative and photosynthesis. Pb stress might inhibit or induce the activity of these enzymes depending on the plant species, metal type and concentration, and duration of the exposure. The inhibition of enzyme activity by Pb mostly arises from the interaction between the Pb and enzyme sulfhydryl groups. Also, inhibition of metalloenzymes under Pb stress may occur due to the displacement of an essential metal by Pb ion. Furthermore, activities of certain enzymes induced by Pb stress might result from the changes in enzyme synthesis, immobilization of their inhibitors. This chapter reviews from the point of view of physiological and biochemical mechanisms the alterations occurring in growth and the activations of different enzymes in plants due to Pb stress.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdelkrim S, Jebara SH, Saadani O, Jebara M (2018) Potential of efficient and resistant plant growth-promoting rhizobacteria in lead uptake and plant defence stimulation in Lathyrus sativus under lead stress. Plant Biol 20:857–869

    Article  CAS  Google Scholar 

  • Agency for Toxic Substances and Disease Registry (ATSDR) (2017) Priority list of hazardous substances (Online: https://www.atsdr.cdc.gov/spl/#2017spl)

  • Alamri SA, Siddiqui MH, Al-Khaishany MY, Nasir Khan M, Ali HM, Alaraidh IA, Mateen M (2018) Ascorbic acid improves the tolerance of wheat plants to lead toxicity. J Plant Interact 13:409–419

    Article  CAS  Google Scholar 

  • Ali N, Masood S, Mukhtar T, Kamran MA, Rafique M, Munis MFH, Chaudhary HJ (2015) Differential effects of cadmium and chromium on growth, photosynthetic activity, and metal uptake of Linum usitatissimum in association with Glomus intraradices. Environ Monit Assess 187:311

    Article  CAS  Google Scholar 

  • Aliu S, Gashi B, Rusinovci I, Fetahu S, Vataj R (2013) Effects of some heavy metals in some morpho-physiological parameters in maize seedlings. Am J Biochem Biotechnol 9:27

    Article  CAS  Google Scholar 

  • Arshad M, Ali S, Noman A, Ali Q, Rizwan M, Farid M, Irshad MK (2016) Phosphorus amendment decreased cadmium (Cd) uptake and ameliorates chlorophyll contents, gas exchange attributes, antioxidants, and mineral nutrients in wheat (Triticum aestivum L) under Cd stress. Arch Agron Soil Sci 62:533–546

    Article  CAS  Google Scholar 

  • Ashraf U, Kanu AS, Mo ZW, Hussain S, Anjum SA, Khan I, Abbas RN, Tang X (2015) Lead toxicity in rice; effects, mechanisms and mitigation strategies-a mini review. Environ Sci Pollut Res 22:18318–18332

    Article  CAS  Google Scholar 

  • Atici O, Aar G, Battal P (2005) Changes in phytohormone contents in chickpea seeds germinating under lead or zinc stress. Biol Plant 49:215–222

    Article  CAS  Google Scholar 

  • Bai XY, Dong YJ, Wang QH, Xu LL, Kong J, Liu S (2015) Effects of lead and nitric oxide on photosynthesis, antioxidative ability, and mineral element content of perennial ryegrass. Biol Plant 59:163–170

    Article  CAS  Google Scholar 

  • Bali S, Jamwal VL, Kaur P, Kohli SK, Ohri P, Gandhi SG, Ahmad P (2019) Role of P-type ATPase metal transporters and plant immunity induced by jasmonic acid against Lead (Pb) toxicity in tomato. Ecotoxicol Environ Saf 174:283–294

    Article  CAS  Google Scholar 

  • Barceló JUAN, Poschenrieder C (1990) Plant water relations as affected by heavy metal stress. J Plant Nutr 13:1–37

    Article  Google Scholar 

  • Bazzaz FA, Carlson RW, Rolfe GL (1975) Inhibition of corn and sunflower photosynthesis to lead concentration. J Environ Qual 34:156–1588

    Google Scholar 

  • Bharwana SA, Ali S, Farooq MA, Iqbal N, Abbas F, Ahmad MSA (2013) Alleviation of lead toxicity by silicon is related to elevated photosynthesis, antioxidant enzymes suppressed lead uptake and oxidative stress in cotton. J Bioremed Biodegr 4:187

    Google Scholar 

  • Brunet J, Repellin A, Varrault G, Terryn N, Zuily-Fodil Y (2008) Lead accumulation in the roots of grass pea (Lathyrus sativus L.): a novel plant for phytoremediation systems? C R Biol 331:859–864

    Article  CAS  Google Scholar 

  • Brunet J, Varrault G, Zuily-Fodil Y, Repellin A (2009) Accumulation of lead in the roots of grass pea (Lathyrus sativus L.) plants triggers systemic variation in gene expression in the shoots. Chemosphere 77:1113–1120

    Article  CAS  Google Scholar 

  • Burzynski M (1987) Influence of lead and cadmium on the absorption and distribution of potassium, calcium, magnesium and iron in cucumber seedlings. Acta Physiol Plant 9:229–238

    CAS  Google Scholar 

  • Burzyński M, Grabowski A (1984) Influence of lead on N03 uptake and reduction in cucumber seedlings. Acta Soc Bot Pol 53:77–86

    Article  Google Scholar 

  • Cenkci S, Ciğerci İH, Yıldız M, Özay C, Bozdağ A, Terzi H (2010) Lead contamination reduces chlorophyll biosynthesis and genomic template stability in Brassica rapa L. Environ Exp Bot 67:467–473

    Article  CAS  Google Scholar 

  • Chatterjee C, Dube BK, Sinha P, Srivastava P (2004) Detrimental effects of lead phytotoxicity on growth, yield, and metabolism of rice. Commun Soil Sci Plant Anal 35:255–265

    Google Scholar 

  • Checchi PM, Nettles JH, Zhou J, Snyder JP, Joshi HC (2003) Microtubule-interacting drugs for cancer treatment. Trends Pharmacol Sci 24:361–365

    Article  CAS  Google Scholar 

  • Chen Q, Zhang X, Liu Y, Wei J, Shen W, Shen Z, Cui J (2017) Hemin-mediated alleviation of zinc, lead and chromium toxicity is associated with elevated photosynthesis, antioxidative capacity; suppressed metal uptake and oxidative stress in rice seedlings. Plant Growth Regul 81:253–264

    Article  CAS  Google Scholar 

  • Chen Z, Yang B, Hao Z, Zhu J, Zhang Y, Xu T (2018) Exogenous hydrogen sulfide ameliorates seed germination and seedling growth of cauliflower under lead stress and its antioxidant role. J Plant Growth Regul 37:5–15

    Article  CAS  Google Scholar 

  • Choudhury S, Panda SK (2005) Toxic effects, oxidative stress and ultrastructural changes in moss Taxithelium nepalense (Schwaegr) Broth under chromium and lead phytotoxicity. Water Air Soil Pollut 167:73–90

    Article  CAS  Google Scholar 

  • Dalyan E, Yüzbaşıoğlu E, Akpınar I (2018) Effect of 24-Epibrassinolide on antioxidative defence system against lead-induced oxidative stress in the roots of Brassica juncea L. seedlings. Russ J Plant Physiol 65:570–578

    Article  CAS  Google Scholar 

  • Drazkiewicz M (1994) Chlorophyllase: occurrence, functions, mechanism of action, effects of external and internal factors. Photosynthetica 30:321–331

    CAS  Google Scholar 

  • Đurđević B, Lisjak M, Stošić M, Engler M, Popović B (2008) Influence of Pb And Cu toxicity on lettuce photosynthetic pigments and dry matter accumulation. Cereal Res Commun 36:1951–1954

    Google Scholar 

  • El-Beltagi HS, Mohamed AA (2010) Changes in non protein thiols, some antioxidant enzymes activity and ultrastructural alteration in radish plant (Raphanus sativus L) grown under lead toxicity. Not Bot Horti Agrobo 38:76–85

    CAS  Google Scholar 

  • Estrella-Gómez N, Mendoza-Cózatl D, Moreno-Sánchez R, González-Mendoza D, Zapata-Pérez O, Martínez-Hernández A, Santamaría JM (2009) The Pb-hyperaccumulator aquatic fern Salvinia minima Baker, responds to Pb2+ by increasing phytochelatins via changes in SmPCS expression and in phytochelatin synthase activity. Aquat Toxicol 91:320–328

    Article  CAS  Google Scholar 

  • Fischer S, Kühnlenz T, Thieme M, Schmidt H, Clemens S (2014) Analysis of plant Pb tolerance at realistic submicromolar concentrations demonstrates the role of phytochelatin synthesis for Pb detoxification. Environ Sci Technol 48:7552–7559

    Article  CAS  Google Scholar 

  • Ghani A, Shah AU, Akhtar U (2010) Effect of lead toxicity on growth, chlorophyll and lead (Pb). Pak J Nutr 9:887–891

    Article  CAS  Google Scholar 

  • Gichner T, Žnidar I, Száková J (2008) Evaluation of DNA damage and mutagenicity induced by lead in tobacco plants. Mutat Res Genet Toxicol Environ 652:186–190

    Article  CAS  Google Scholar 

  • Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909–930

    Article  CAS  Google Scholar 

  • Gopal R, Rizvi AH (2008) Excess lead alters growth, metabolism and translocation of certain nutrients in radish. Chemosphere 70:1539–1544

    Article  CAS  Google Scholar 

  • Gupta DK, Nicoloso FT, Schetinger MRC, Rossato LV, Pereira LB, Castro GY, Tripathi RD (2009) Antioxidant defense mechanism in hydroponically grown Zea mays seedlings under moderate lead stress. J Hazard Mater 172:479–484

    Article  CAS  Google Scholar 

  • Gupta DK, Huang HG, Yang XE, Razafindrabe BHN, Inouhe M (2010) The detoxification of lead in Sedum alfredii H is not related to phytochelatins but the glutathione. J Hazard Mater 177:437–444

    Article  CAS  Google Scholar 

  • Hadi F, Aziz T (2015) A mini review on lead (Pb) toxicity in plants. J Biol Life Sci 6:91–101

    Article  Google Scholar 

  • Hao F, Wang X, Chen J (2006) Involvement of plasma-membrane NADPH oxidase in nickel-induced oxidative stress in roots of wheat seedlings. Plant Sci 170:151–158

    Article  CAS  Google Scholar 

  • Harpaz-Saad S, Azoulay T, Arazi T, Ben-Yaakov E, Mett A, Shiboleth YM, Eyal Y (2007) Chlorophyllase is a rate-limiting enzyme in chlorophyll catabolism and is posttranslationally regulated. Plant Cell 19:007–1022

    Article  CAS  Google Scholar 

  • Hasanuzzaman M, Hossain MA, Teixeira da Silva JA, Fujita M (2012) Plant response and tolerance to abiotic oxidative stress: antioxidant defense is a key factor. In: Venkateswarlu B, Shanker A, Shanker C, Maheswari M (eds) Crop stress and its management: perspectives and strategies. Springer, Dordrecht, pp 261–315

    Chapter  Google Scholar 

  • Hasanuzzaman M, Nahar K, Rahman A, Mahmud JA, Alharby HF, Fujita M (2018) Exogenous glutathione attenuates lead-induced oxidative stress in wheat by improving antioxidant defense and physiological mechanisms. J Plant Interac 13:203–212

    Article  CAS  Google Scholar 

  • Hattab S, Flores-Casseres ML, Boussetta H, Doumas P, Hernandez LE, Banni M (2016) Characterisation of lead-induced stress molecular biomarkers in Medicago sativa plants. Environ Exp Bot 123:1–12

    Article  CAS  Google Scholar 

  • Hou X, Han H, Cai L, Liu A, Ma X, Zhou C, Meng F (2018) Pb stress effects on leaf chlorophyll fluorescence, antioxidative enzyme activities, and organic acid contents of Pogonatherum crinitum seedlings. Flora 240:82–88

    Article  Google Scholar 

  • Huang H, Gupta DK, Tian S, Yang XE, Li T (2012) Lead tolerance and physiological adaptation mechanism in roots of accumulating and non-accumulating ecotypes of Sedum alfredii. Environ Sci Pollut Res 19:1640–1651

    Article  CAS  Google Scholar 

  • Hussain A, Abbas N, Arshad F, Akram M, Khan ZI, Ahmad K, Mirzaei F (2013) Effects of diverse doses of Lead (Pb) on different growth attributes of Zea-Mays L. Agric Sci 4:262–265

    CAS  Google Scholar 

  • Islam E, Liu D, Li T, Yang X, Jin X, Mahmood Q, Tian S, Li J (2008) Effect of Pb toxicity on leaf growth, physiology and ultrastructure in the two ecotypes of Elsholtzia argyi. J Hazard Mater 154:914–926

    Article  CAS  Google Scholar 

  • Jayasri MA, Suthindhiran K (2016) Effect of zinc and lead on the physiological and biochemical properties of aquatic plant Lemna minor: its potential role in phytoremediation. Appl Water Sci 7:1247–1253

    Article  CAS  Google Scholar 

  • Jiang Z, Qin R, Zhang H, Zou J, Shi Q, Wang J, Liu D (2014) Determination of Pb genotoxic effects in Allium cepa root cells by fluorescent probe, microtubular immunofluorescence and comet assay. Plant and Soil 383:357–372

    Article  CAS  Google Scholar 

  • John R, Ahmad P, Gadgil K, Sharma S (2009) Cadmium and lead-induced changes in lipid peroxidation, antioxidative enzymes and metal accumulation in Brassica juncea L. at three different growth stages. Arch Agron Soil Sci 55:395–405

    Article  CAS  Google Scholar 

  • Kaur G, Singh HP, Batish DR, Kumar Kohli R (2012a) Growth, photosynthetic activity and oxidative stress in wheat (Triticum aestivum) after exposure of lead to soil. J Environ Biol 33:265–269

    CAS  Google Scholar 

  • Kaur G, Singh HP, Batish DR, Kohli RK (2012b) A time course assessment of changes in reactive oxygen species generation and antioxidant defense in hydroponically grown wheat in response to lead ions (Pb 2+). Protoplasma 249:1091–1100

    Article  CAS  Google Scholar 

  • Kaur G, Singh HP, Batish DR, Kohli RK (2014) Pb-inhibited mitotic activity in onion roots involves DNA damage and disruption of oxidative metabolism. Ecotoxicology 23:1292–1304

    Article  CAS  Google Scholar 

  • Khan M, Daud MK, Basharat A, Khan MJ, Azizullah A, Muhammad N (2016) Alleviation of lead-induced physiological, metabolic, and ultramorphological changes in leaves of upland cotton through glutathione. Environ Sci Pollut Res 23:8431–8440

    Article  CAS  Google Scholar 

  • Khan MN, Mobin M, Abbas ZK, Siddiqui MH (2017) Nitric oxide-induced synthesis of hydrogen sulfide alleviates osmotic stress in wheat seedlings through sustaining antioxidant enzymes, osmolyte accumulation and cysteine homeostasis. Nitric Oxide 68:91–102

    Article  CAS  Google Scholar 

  • Khan F, Hussain S, Tanveer M, Khan S, Hussain HA, Iqbal B, Geng M (2018a) Coordinated effects of lead toxicity and nutrient deprivation on growth, oxidative status, and elemental composition of primed and non-primed rice seedlings. Environ Sci Pollut Res 25:21185–21194

    Article  CAS  Google Scholar 

  • Khan MM, Islam E, Irem S, Akhtar K, Ashraf MY, Iqbal J, Liu D (2018b) Pb-induced phytotoxicity in para grass (Brachiaria mutica) and Castorbean (Ricinus communis L) antioxidant and ultrastructural studies. Chemosphere 200:257–265

    Article  CAS  Google Scholar 

  • Kohli SK, Handa N, Sharma A, Gautam V, Arora S, Bhardwaj R, Wijaya L, Alyemeni MN, Ahmad P (2018) Interaction of 24-epibrassinolide and salicylic acid regulates pigment contents, antioxidative defense responses, and gene expression in Brassica juncea L. seedlings under Pb stress. Environ Sci Pollut Res 25:15159–15173

    Article  CAS  Google Scholar 

  • Kozhevnikova AD, Seregin IV, Bystrova EI, Belyaeva AI, Kataeva MN, Ivanov VB (2009) The effects of lead, nickel, and strontium nitrates on cell division and elongation in maize roots. Russ J Plant Physiol 56:242–250

    Article  CAS  Google Scholar 

  • Kumar A, Majeti NVP (2014) Proteomic responses to lead-induced oxidative stress in Talinum triangulare Jacq (Willd ) roots: identification of key biomarkers related to glutathione metabolisms. Environ Sci Pollut Res 21:8750–8764

    Article  CAS  Google Scholar 

  • Kumar A, Prasad MNV (2018) Plant–lead interactions: transport, toxicity, tolerance, and detoxification mechanisms. Ecotoxicol Environ Saf 166:401–418

    Article  CAS  Google Scholar 

  • Kumar A, Pal L, Agrawal V (2017) Glutathione and citric acid modulates lead- and arsenic-induced phytotoxicity and genotoxicity responses in two cultivars of Solanum lycopersicum L. Acta Physiol Planta 39:151

    Article  CAS  Google Scholar 

  • Lamhamdi M, Bakrim A, Aarab A, Lafont R, Sayah F (2011) Lead phytotoxicity on wheat (Triticum aestivum L) seed germination and seedlings growth. C R Biol 334:118–126

    Article  CAS  Google Scholar 

  • Lamhamdi M, El Galiou O, Bakrim A, Nóvoa-Muñoz JC, Arias-Estevez M, Aarab A, Lafont R (2013) Effect of lead stress on mineral content and growth of wheat (Triticum aestivum) and spinach (Spinacia oleracea) seedlings. Saudi J Biol Sci 20:29–36

    Article  CAS  Google Scholar 

  • Liu D, Li TQ, Jin XF, Yang XE, Islam E, Mahmood Q (2008) Lead induced changes in the growth and antioxidant metabolism of the lead accumulating and non-accumulating ecotypes of Sedum alfredii. J Integr Plant Biol 50:129–140

    Article  CAS  Google Scholar 

  • Lopez ML, Peralta-Videa JR, Benitez T, Duarte-Gardea M, Gardea-Torresdey JL (2007) Effects of lead, EDTA, and IAA on nutrient uptake by alfalfa plants. J Plant Nutr 30:1247–1261

    Article  CAS  Google Scholar 

  • Maier R (1978) Studies on the effect of lead in the acid phosphatase in Zea mays L. Z Pflanzenphysiol 87:347–354

    Article  CAS  Google Scholar 

  • Malar S, Manikandan R, Favas PJ, Sahi SV, Venkatachalam P (2014a) Effect of lead on phytotoxicity, growth, biochemical alterations and its role on genomic template stability in Sesbania grandiflora: a potential plant for phytoremediation. Ecotoxicol Environ Saf 108:249–257

    Article  CAS  Google Scholar 

  • Malar S, Vikram SS, Favas PJC, Perumal V (2014b) Lead heavy metal toxicity induced changes on growth and antioxidative enzymes level in water hyacinths [Eichhornia crassipes (Mart.)]. Bot Stud 55:54

    Article  CAS  Google Scholar 

  • Małecka A, Derba-Maceluch M, Kaczorowska K, Piechalak A, Tomaszewska B (2009) Reactive oxygen species production and antioxidative defense system in pea root tissues treated with lead ions: mitochondrial and peroxisomal level. Physiol Plant 31:1065–1075

    Google Scholar 

  • Mika A, Minibayeva F, Beckett R, Lüthje S (2004) Possible functions of extracellular peroxidases in stress-induced generation and detoxification of active oxygen species. Phytochem Rev 3:173–193

    Article  CAS  Google Scholar 

  • Mishra S, Srivastava S, Tripathi RD, Kumar R, Seth CS, Gupta DK (2006) Lead detoxification by coontail (Ceratophyllum demersum L) involves induction of phytochelatins and antioxidant system in response to its accumulation. Chemosphere 65:1027–1039

    Article  CAS  Google Scholar 

  • Mroczek-Zdyrska M, Strubińska J, Hanaka A (2017) Selenium improves physiological parameters and alleviates oxidative stress in shoots of lead-exposed Vicia faba L minor plants grown under phosphorus-deficient conditions. J Plant Growth Regul 36:186–199

    Article  CAS  Google Scholar 

  • Mukherji S, Maitra P (1976) Toxic effects of lead on growth metabolism of germinating rice (Oryza sativa L) seeds on mitosis of onion (Allium cepa L) root tip cells. Indian J Exp Biol 14:519–521

    CAS  Google Scholar 

  • Nareshkumar A, Veeranagamallaiah G, Pandurangaiah M, Kiranmai K, Amaranathareddy V, Lokesh U, Sudhakar C (2015) Pb-stress induced oxidative stress caused alterations in antioxidant efficacy in two groundnut (Arachis hypogaea L) cultivars. Agric Sci 6:1283–1297

    CAS  Google Scholar 

  • Olmos E, Martínez-Solano JR, Piqueras A, Hellín E (2003) Early steps in the oxidative burst induced by cadmium in cultured tobacco cells (BY-2 line). J Exp Bot 54:291–300

    Article  CAS  Google Scholar 

  • Päıvöke A (1983) The long-term effects of lead and arsenate on the growth and development, chlorophyll content and nitrogen fixation of the garden pea. Ann Bot Fennici 20:297–306

    Google Scholar 

  • Päivöke AE (2002) Soil lead alters phytase activity and mineral nutrient balance of Pisum sativum. Environ Exp Bot 48:61–73

    Article  Google Scholar 

  • Pandey S, Gupta K, Mukherjee AK (2007) Impact of cadmium and lead on Catharanthus roseus-a phytoremediation study. J Environ Biol 28:655–662

    CAS  Google Scholar 

  • Parys E, Wasilewska W, Siedlecka M, Zienkiewicz M, Drożak A, Romanowska E (2014) Metabolic responses to lead of metallicolous and nonmetallicolous populations of Armeria maritima. Arch Environ Contam Toxicol 67:565–577

    Article  CAS  Google Scholar 

  • Piechalak A, Tomaszewska B, Baralkiewicz D, Malecka A (2002) Accumulation and detoxification of lead ions in legumes. Phytochemistry 60:153–162

    Article  CAS  Google Scholar 

  • Piotrowska A, Bajguz A, Godlewska-Żyłkiewicz B, Czerpak R, Kamińska M (2009) Jasmonic acid as modulator of lead toxicity in aquatic plant Wolffia arrhiza (Lemnaceae). Environ Exp Bot 66:507–513

    Article  CAS  Google Scholar 

  • Porter JR, Sheridan RP (1981) Inhibition of nitrogen fixation in alfalfa by arsenate, heavy metals, fluoride, and simulated acid rain. Plant Physiol 68:143–148

    Article  CAS  Google Scholar 

  • Potters G, Horemans N, Jansen MA (2010) The cellular redox state in plant stress biology–a charging concept. Plant Physiol Biochem 48:292–300

    Article  CAS  Google Scholar 

  • Pourrut B (2008) Implication du stress oxydatif dans la toxicité du plomb sur une plante modèle, Vicia faba. Doctoral dissertation, Institut National Polytechnique de Toulouse, France

    Google Scholar 

  • Pourrut B, Jean S, Silvestre J, Pinelli E (2011) Lead-induced DNA damage in Vicia faba root cells: potential involvement of oxidative stress. Mutat Res Genet Toxicol Environ 726:123–128

    Article  CAS  Google Scholar 

  • Quartacci MF, Cosi E, Navari-Izzo F (2001) Lipids and NADPH-dependent superoxide production in plasma membrane vesicles from roots of wheat grown under copper deficiency or excess. J Exp Bot 52:77–84

    CAS  Google Scholar 

  • Qureshi MI, Abdin MZ, Qadir S, Iqbal M (2007) Lead-induced oxidative stress and metabolic alterations in Cassia angustifolia Vahl. Biol Plant 51:121–128

    Article  CAS  Google Scholar 

  • Reddy AM, Kumar SG, Jyothsnakumari G, Thimmanaik S, Sudhakar C (2005) Lead induced changes in antioxidant metabolism of horsegram (Macrotyloma uniflorum (Lam) Verdc) and bengalgram (Cicer arietinum L). Chemosphere 60:97–104

    Article  CAS  Google Scholar 

  • Riffat J, Ahmad P, Gadgil K, Sharma S (2009) Cadmium and lead-induced changes in lipid peroxidation, antioxidative enzymes and metal accumulation in Brassica juncea L. at three different growth stages. Arch Agron Soil Sci 55:395–405

    Article  CAS  Google Scholar 

  • Rizwan M, Ali S, Rehman MZ, Javed MR, Bashir A (2018) Lead toxicity in cereals and its management strategies: a critical review. Water Air Soil Pollut 229:211

    Article  CAS  Google Scholar 

  • Rodriguez E, Azevedo R, Moreira H, Sout L, Santos C (2013) Pb2+ exposure induced microsatellite instability in Pisum sativum in a locus related with glutamine metabolism. Plant Physiol Biochem 62:19–22

    Article  CAS  Google Scholar 

  • Romanowska E, Igamberdiev AU, Parys E, Gardeström P (2002) Stimulation of respiration by Pb2+ in detached leaves and mitochondria of C3 and C4 plants. Physiol Plant 116:148–154

    Article  CAS  Google Scholar 

  • Rucińska R, Waplak S, Gwóźdź EA (1999) Free radical formation and activity of antioxidant enzymes in lupin roots exposed to lead. Plant Physiol Biochem 37:187–194

    Article  Google Scholar 

  • Rucińska R, Sobkowiak R, Gwóźdź EA (2004) Genotoxicity of lead in lupin root cells as evaluated by the comet assay. Cell Mol Biol Lett 9:519–528

    Google Scholar 

  • Rucińska-Sobkowiak R, Nowaczyk G, Krzesłowska M, Rabęda I, Jurga S (2013) Water status and water diffusion transport in lupine roots exposed to lead. Environ Exp Bot 87:100–109

    Article  CAS  Google Scholar 

  • Ruley T, Sharma NC, Sahi SV (2004) Antioxidant defense in a lead accumulating plant, Sesbania drummondii. Plant Physiol Biochem 42:899–906

    Article  CAS  Google Scholar 

  • Sengar RS, Gautam M, Sengar RS, Sengar RS, Garg SK, Sengar K, Chaudhary R (2009) Lead stress effects on physiobiochemical activities of higher plants. Rev Environ Contam Toxicol 196:1–21

    Google Scholar 

  • Seregin IV, Ivanov VB (2001) Physiological aspects of cadmium and lead toxic effects on higher plants. Russ J Plant Physiol 48:523–544

    Article  CAS  Google Scholar 

  • Seregin IV, Kozhevnikova AD (2006) Physiological role of nickel and its toxic effects on higher plants. Russ J Plant Physiol 53:257–277

    Article  CAS  Google Scholar 

  • Shahid M, Pinelli E, Pourrut B, Silvestre J, Dumat C (2011) Lead-induced genotoxicity to Vicia faba L roots in relation with metal cell uptake and initial speciation. Ecotoxicol Environ Saf 74:78–84

    Article  CAS  Google Scholar 

  • Shakoor MB, Ali S, Hameed A, Farid M, Hussain S, Yasmeen T, Abbasi GH (2014) Citric acid improves lead (Pb) phytoextraction in Brassica napus L by mitigating Pb-induced morphological and biochemical damages. Ecotoxicol Environ Saf 109:38–47

    Article  CAS  Google Scholar 

  • Sharma P, Dubey RS (2005) Lead toxicity in plants. Braz J Plant Physiol 17:35–52

    Article  CAS  Google Scholar 

  • Shu X, Yin L, Zhang Q, Wang W (2012) Effect of Pb toxicity on leaf growth, antioxidant enzyme activities, and photosynthesis in cuttings and seedlings of Jatropha curcas L. Environ Sci Pollut Res 19:893–902

    Article  CAS  Google Scholar 

  • Sidhu GPS, Singh HP, Batish DR, Kohli RK (2016) Effect of lead on oxidative status, antioxidative response and metal accumulation in Coronopus didymus. Plant Physiol Biochem 105:290–296

    Article  CAS  Google Scholar 

  • Silva S, Silva P, Oliveira H, Gaivão I, Matos M, Pinto-Carnide O, Santos C (2017) Pb low doses induced genotoxicity in Lactuca sativa plants. Plant Physiol Biochem 112:109–116

    Article  CAS  Google Scholar 

  • Singh R, Tripathi RD, Dwivedi S, Kumar A, Trivedi PK, Chakrabarty D (2010) Lead bioaccumulation potential of an aquatic macrophyte Najas indica are related to antioxidant system. Bioresour Technol 101:3025–3032

    Article  CAS  Google Scholar 

  • Singh S, Srivastava PK, Kumar D, Tripathi DK, Chauhan DK, Prasad SM (2015) Morpho-anatomical and biochemical adapting strategies of maize (Zea mays L) seedlings against lead and chromium stresses. Biocatal Agric Biotechnol 4:286–295

    Article  Google Scholar 

  • Stefanov K, Seizova K, Popova I, Petkov V, Kimenov G, Popov S (1995) Effect of lead ions on the phospholipid composition in leaves of Zea mays and Phaseolus vulgaris. J Plant Physiol 147:243–246

    Article  CAS  Google Scholar 

  • Sudhakar R, Venu G (2001) Mitotic abnormalities induced by silk dyeing industry effluents in the cells of Allium cepa. Cytologia 66:235–239

    Article  Google Scholar 

  • Tariq SR, Rashid N (2013) Multivariate analysis of metal levels in paddy soil, rice plants, and rice grains: a case study from Shakargarh, Pakistan. J Chem 2013:539251

    Article  CAS  Google Scholar 

  • Thakur S, Singh L, Zularisam AW, Sakinah M, Din MFM (2017) Lead induced oxidative stress and alteration in the activities of antioxidative enzymes in rice shoots. Biol Plant 61:595–598

    Article  CAS  Google Scholar 

  • Thangavel P, Long S, Minocha R (2007) Changes in phytochelatins and their biosynthetic intermediates in red spruce (Picea rubens Sarg ) cell suspension cultures under cadmium and zinc stress. Plant Cell Tiss Org Cult 88:201–216

    Article  CAS  Google Scholar 

  • Tu SI, Brouillette JN (1987) Metal ion inhibition of corn root plasma membrane ATPase. Phytochemistry 26:65–69

    Article  Google Scholar 

  • Türkoğlu S (2012) Determination of genotoxic effects of chlorfenvinphos and fenbuconazole in Allium cepa root cells by mitotic activity, chromosome aberration, DNA content, and comet assay. Pestic Biochem Physiol 103:224–230

    Article  CAS  Google Scholar 

  • Venkatachalam P, Jayalakshmi N, Geetha N, Sahi SV, Sharma NC, Rene ER, Favas PJ (2017) Accumulation efficiency, genotoxicity and antioxidant defense mechanisms in medicinal plant Acalypha indica L under lead stress. Chemosphere 171:544–553

    Article  CAS  Google Scholar 

  • Verma S, Dubey RS (2003) Lead toxicity induces lipid peroxidation and alters the activities of antioxidant enzymes in growing rice plants. Plant Sci 164:645–655

    Article  CAS  Google Scholar 

  • Wang CR, Wang XR, Tian Y, Yu HX, Gu XY, Du WC, Zhou H (2008) Oxidative stress, defense response, and early biomarkers for lead-contaminated soil in Vicia faba seedlings. Environ Toxicol Chem 27:970–977

    Article  Google Scholar 

  • Weryszko-Chmielewska E, Chwil M (2005) Lead-induced histological and ultrastructural changes in the leaves of soybean (Glycine max (L.) Merr.). Soil Sci Plant Nutr 51:203–212

    Article  CAS  Google Scholar 

  • Wierzbicka M (1998) Lead in the apoplast of Allium cepa L root tips—ultrastructural studies. Plant Sci 133:105–119

    Article  CAS  Google Scholar 

  • Xiong ZT, Zhao F, Li MJ (2006) Lead toxicity in Brassica pekinensis Rupr: effect on nitrate assimilation and growth. Environ Toxicol 21:147–153

    Article  CAS  Google Scholar 

  • Yandow TS, Klein RM (1986) Nitrate reductase of primary roots of red spruce seedlings: effects of acidity and metal ions. Plant Physiol 81:723–725

    Article  CAS  Google Scholar 

  • Yang Y, Zhang Y, Wei X, You J, Wang W, Lu J, Shi R (2011) Comparative antioxidative responses and proline metabolism in two wheat cultivars under short term lead stress. Ecotoxicol Environ Saf 74:733–740

    Article  CAS  Google Scholar 

  • Zhang Y, Deng B, Li Z (2018) Inhibition of NADPH oxidase increases defense enzyme activities and improves maize seed germination under Pb stress. Ecotoxicol Environ Saf 158:187–192

    Article  CAS  Google Scholar 

  • Zhou C, Huang M, Li Y, Luo J, Ping Cai L (2016) Changes in subcellular distribution and antioxidant compounds involved in Pb accumulation and detoxification in Neyraudia reynaudiana. Environ Sci Pollut Res 23:21,794–21,804

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eda Dalyan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dalyan, E., Yüzbaşıoğlu, E., Akpınar, I. (2020). Physiological and Biochemical Changes in Plant Growth and Different Plant Enzymes in Response to Lead Stress. In: Gupta, D., Chatterjee, S., Walther, C. (eds) Lead in Plants and the Environment. Radionuclides and Heavy Metals in the Environment. Springer, Cham. https://doi.org/10.1007/978-3-030-21638-2_8

Download citation

Publish with us

Policies and ethics