Skip to main content

Laser and Light-Based Therapies in the Treatment of Hair Loss

  • Chapter
  • First Online:
Book cover Hair and Scalp Treatments

Abstract

Laser and light-based therapies including low-level laser and light therapy, fractional, excimer, and other lasers are increasingly well-regarded treatment options for patients with hair loss.

Lasers emit wavelengths of light specific to a chromophore in the tissue, causing a targeted thermal response with minimal damage to surrounding tissue. The cascade of events downstream of the initial injury is responsible for the clinical effects seen. Low-level laser or light therapy (LLLT) was accidentally discovered in the 1960s when Hungarian scientist Endre Mester attempted to repeat an experiment performed by American Paul McGuff, who had cured malignant tumors in rats using a ruby laser. Mester’s laser was much less powerful than McGuff’s, and while he did not successfully cure any tumors, he observed for the first time that a low-level laser induced hair growth and improved wound healing. The mechanism by which this occurs is described as photobiomodulation or the stimulation of biological processes in the target tissue. This accidental discovery is the basis for the huge variety of LLLT products available on the market today.

In the last 2 years alone, the number of approved items classified as laser, comb, or hair products intended for the purpose of the growth of scalp hairs on the FDA’s 510(k) premarket notification list, meaning the device is demonstrated to be at least safe and effective, has nearly doubled to a total of 50. This chapter will summarize current knowledge regarding all laser and light devices for patients with various forms of alopecia and will outline treatment strategy, device parameters, and appropriate limitations of use to guide providers toward optimal patient management.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Anderson RR, Parrish JA. Selective photothermolysis: precise microsurgery by selective absorption of pulsed radiation. Science. 1983;220(4596):524–7.

    CAS  PubMed  Google Scholar 

  2. McGuff PE, Deterling RA Jr, Gottlieb LS. Tumoricidal effect of laser energy on experimental and human malignant tumors. N Engl J Med. 1965;273(9):490–2.

    CAS  PubMed  Google Scholar 

  3. Hamblin MR. Photobiomodulation or low-level laser therapy. J Biophotonics. 2016;9(11–12):1122–4.

    PubMed  PubMed Central  Google Scholar 

  4. Gold MH. Update on fractional laser technology. J Clin Aesthet Dermatol. 2010;3(1):42–50.

    Google Scholar 

  5. Kim WS, Lee HI, Lee JW, Lim YY, Lee SJ, Kim BJ, et al. Fractional photothermolysis laser treatment of male pattern hair loss. Dermatol Surg. 2011;37(1):41–51.

    CAS  PubMed  Google Scholar 

  6. Meephansan J, Ungpraphakorn N, Ponnikorn S, Suchonwanit P, Poovorawan Y. Efficacy of 1,550-nm erbium-glass fractional laser treatment and its effect on the expression of insulin-like growth factor 1 and Wnt/beta-catenin in androgenetic alopecia. Dermatol Surg. 2018;44(10):1295–303.

    CAS  PubMed  Google Scholar 

  7. Ke J, Guan H, Li S, Xu L, Zhang L, Yan Y. Erbium: YAG laser (2,940 nm) treatment stimulates hair growth through upregulating Wnt 10b and beta-catenin expression in C57BL/6 mice. Int J Clin Exp Med. 2015;8(11):20883–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Lee GY, Lee SJ, Kim WS. The effect of a 1550 nm fractional erbium-glass laser in female pattern hair loss. J Eur Acad Dermatol Venereol. 2011;25(12):1450–4.

    PubMed  Google Scholar 

  9. Gundin NL, Eckert MM, Crespo RL. Alopecia areata: good response to treatment with fractional laser in 5 cases. J Cosmetol Trichology. 2016;2:108. https://doi.org/10.4172/2471-9323.1000108.

    Article  Google Scholar 

  10. Cho S, Choi MJ, Zheng Z, Goo B, Kim DY, Cho SB. Clinical effects of non-ablative and ablative fractional lasers on various hair disorders: a case series of 17 patients. J Cosmet Laser Ther. 2013;15(2):74–9.

    PubMed  Google Scholar 

  11. Yoo KH, Kim MN, Kim BJ, Kim CW. Treatment of alopecia areata with fractional photothermolysis laser. Int J Dermatol. 2010;49(7):845–7.

    PubMed  Google Scholar 

  12. Cho SB, Goo BL, Zheng Z, Yoo KH, Kang JS, Kim H. Therapeutic efficacy and safety of a 1927-nm fractionated thulium laser on pattern hair loss: an evaluator-blinded, split-scalp study. Lasers Med Sci. 2018;33(4):851–9.

    PubMed  Google Scholar 

  13. Cho SB, Zheng Z, Kang JS, Kim H. Therapeutic efficacy of 1,927-nm fractionated thulium laser energy and polydeoxyribonucleotide on pattern hair loss. Med Laser. 2016;5:22–8.

    Google Scholar 

  14. Bae JM, Jung HM, Goo B, Park YM. Hair regrowth through wound healing process after ablative fractional laser treatment in a murine model. Lasers Surg Med. 2015;47(5):433–40.

    PubMed  Google Scholar 

  15. Yalici-Armagan B, Elcin G. The effect of neodymium: yttrium aluminum garnet and fractional carbon dioxide lasers on alopecia areata: a prospective controlled clinical trial. Dermatol Surg. 2016;42(4):500–6.

    CAS  PubMed  Google Scholar 

  16. Issa MC, Pires M, Silveira P, Xavier de Brito E, Sasajima C. Transepidermal drug delivery: a new treatment option for areata alopecia? J Cosmet Laser Ther. 2015;17(1):37–40.

    PubMed  Google Scholar 

  17. Darwin E, Heyes A, Hirt PA, Wikramanayake TC, Jimenez JJ. Low-level laser therapy for the treatment of androgenic alopecia: a review. Lasers Med Sci. 2018;33(2):425–34.

    PubMed  Google Scholar 

  18. Lubart R, Eichler M, Lavi R, Friedman H, Shainberg A. Low-energy laser irradiation promotes cellular redox activity. Photomed Laser Surg. 2005;23(1):3–9.

    CAS  PubMed  Google Scholar 

  19. Eells JT, Wong-Riley MT, VerHoeve J, Henry M, Buchman EV, Kane MP, et al. Mitochondrial signal transduction in accelerated wound and retinal healing by near-infrared light therapy. Mitochondrion. 2004;4(5–6):559–67.

    CAS  PubMed  Google Scholar 

  20. Pastore D, Greco M, Passarella S. Specific helium-neon laser sensitivity of the purified cytochrome c oxidase. Int J Radiat Biol. 2000;76(6):863–70.

    CAS  PubMed  Google Scholar 

  21. Sakurai Y, Yamaguchi M, Abiko Y. Inhibitory effect of low-level laser irradiation on LPS-stimulated prostaglandin E2 production and cyclooxygenase-2 in human gingival fibroblasts. Eur J Oral Sci. 2000;108(1):29–34.

    CAS  PubMed  Google Scholar 

  22. Arany PR, Nayak RS, Hallikerimath S, Limaye AM, Kale AD, Kondaiah P. Activation of latent TGF-beta1 by low-power laser in vitro correlates with increased TGF-beta1 levels in laser-enhanced oral wound healing. Wound Repair Regen. 2007;15(6):866–74.

    PubMed  Google Scholar 

  23. de Lima FM, Villaverde AB, Albertini R, Corrêa JC, Carvalho RL, Munin E, et al. Dual effect of low-level laser therapy (LLLT) on the acute lung inflammation induced by intestinal ischemia and reperfusion: action on anti- and pro-inflammatory cytokines. Lasers Surg Med. 2011;43(5):410–20.

    PubMed  Google Scholar 

  24. Fonda-Pascual P, Moreno-Arrones OM, Saceda-Corralo D, et al. Effectiveness of low level laser therapy in lichen planopilaris. J Am Acad Dermatol. 2018;78(5):1029–3.

    Google Scholar 

  25. Leavitt M, Charles G, Heyman E, Michaels D. HairMax LaserComb laser phototherapy device in the treatment of male androgenetic alopecia: a randomized, double-blind, sham device-controlled, multicentre trial. Clin Drug Investig. 2009;29(5):283–92.

    PubMed  Google Scholar 

  26. Jimenez JJ, Wikramanayake TC, Bergfeld W, Hordinsky M, Hickman JG, Hamblin MR, et al. Efficacy and safety of a low-level laser device in the treatment of male and female pattern hair loss: a multicenter, randomized, sham device-controlled, double-blind study. Am J Clin Dermatol. 2014;15(2):115–27.

    PubMed  PubMed Central  Google Scholar 

  27. Munck A, Gavazzoni MF, Trueb RM. Use of low-level laser therapy as monotherapy or concomitant therapy for male and female androgenetic alopecia. Int J Trichology. 2014;6(2):45–9.

    PubMed  PubMed Central  Google Scholar 

  28. Satino JM, Markou M. Hair regrowth and increased hair tensile strength using the HairMax LaserComb for low-level laser therapy. Int J Cosmet Surg Aesthet Dermatol. 2003;5(2):113–7.

    Google Scholar 

  29. Lanzafame RJ, Blanche RR, Chiacchierini RP, Kazmirek ER, Sklar JA. The growth of human scalp hair in females using visible red light laser and LED sources. Lasers Surg Med. 2014;46(8):601–7.

    PubMed  Google Scholar 

  30. Lanzafame RJ, Blanche RR, Bodian AB, Chiacchierini RP, Fernandez-Obregon A, Kazmirek ER. The growth of human scalp hair mediated by visible red light laser and LED sources in males. Lasers Surg Med. 2013;45(8):487–95.

    PubMed  Google Scholar 

  31. Kim H, Choi JW, Kim JY, Shin JW, Lee SJ, Huh CH. Low-level light therapy for androgenetic alopecia: a 24-week, randomized, double-blind, sham device-controlled multicenter trial. Dermatol Surg. 2013;39(8):1177–83.

    CAS  PubMed  Google Scholar 

  32. Friedman S, Schnoor P. Novel approach to treating androgenetic alopecia in females with photobiomodulation (low-level laser therapy). Dermatol Surg. 2017;43(6):856–67.

    CAS  PubMed  Google Scholar 

  33. Esmat SM, Hegazy RA, Gawdat HI, Abdel Hay RM, Allam RS, El Naggar R, et al. Low level light-minoxidil 5% combination versus either therapeutic modality alone in management of female patterned hair loss: a randomized controlled study. Lasers Surg Med. 2017;49(9):835–43.

    PubMed  Google Scholar 

  34. Barikbin B, Khodamrdi Z, Kholoosi L, Akhgri MR, Haj Abbasi M, Hajabbasi M, et al. Comparison of the effects of 665 nm low level diode laser hat versus and a combination of 665 nm and 808 nm low level diode laser scanner of hair growth in androgenic alopecia. J Cosmet Laser Ther. 2017. https://doi.org/10.1080/14764172.2017.1326609.

  35. Blum K, Han D, Madigan MA, Lohmann R, Braverman ER. “Cold” X5 Hairlaser used to treat male androgenic alopecia and hair growth: an uncontrolled pilot study. BMC Res Notes. 2014;7:103.

    PubMed  PubMed Central  Google Scholar 

  36. Avram MR, Rogers NE. The use of low-level light for hair growth: part I. J Cosmet Laser Ther. 2009;11(2):110–7.

    PubMed  Google Scholar 

  37. Kim SS, Park MW, Lee CJ. Phototherapy of androgenetic alopecia with low level narrow band 655-nm red light and 780-nm infrared light. J Am Acad Dermatol. 2007;56(2):AB112.

    Google Scholar 

  38. Hughes OB, Maderal AD, Tosti A. An unusual case of contact dermatitis. Skin Appendage Disord. 2017;3(3):163–5.

    PubMed  PubMed Central  Google Scholar 

  39. Feldman SR, Mellen BG, Housman TS, Fitzpatrick RE, Geronemus RG, Friedman PM, et al. Efficacy of the 308-nm excimer laser for treatment of psoriasis: results of a multicenter study. J Am Acad Dermatol. 2002;46(6):900–6.

    PubMed  Google Scholar 

  40. McMichael AJ. Excimer laser: a module of the alopecia areata common protocol. J Investig Dermatol Symp Proc. 2013;16(1):S77–9.

    CAS  PubMed  Google Scholar 

  41. Beggs S, Short J, Rengifo-Pardo M, Ehrlich A. Applications of the excimer laser: a review. Dermatol Surg. 2015;41(11):1201–11.

    CAS  PubMed  Google Scholar 

  42. Gundogan C, Greve B, Raulin C. Treatment of alopecia areata with the 308-nm xenon chloride excimer laser: case report of two successful treatments with the excimer laser. Lasers Surg Med. 2004;34(2):86–90.

    PubMed  Google Scholar 

  43. Zakaria W, Passeron T, Ostovari N, Lacour JP, Ortonne JP. 308-nm excimer laser therapy in alopecia areata. J Am Acad Dermatol. 2004;51(5):837–8.

    PubMed  Google Scholar 

  44. Al-Mutairi N. 308-nm excimer laser for the treatment of alopecia areata in children. Pediatr Dermatol. 2009;26(5):547–50.

    PubMed  Google Scholar 

  45. Al-Mutairi N. 308-nm excimer laser for the treatment of alopecia areata. Dermatol Surg. 2007;33(12):1483–7.

    CAS  PubMed  Google Scholar 

  46. Ohtsuki A, Hasegawa T, Ikeda S. Treatment of alopecia areata with 308-nm excimer lamp. J Dermatol. 2010;37(12):1032–5.

    PubMed  Google Scholar 

  47. Ohtsuki A, Hasegawa T, Komiyama E, Takagi A, Kawasaki J, Ikeda S. 308-nm excimer lamp for the treatment of alopecia areata: clinical trial on 16 cases. Indian J Dermatol. 2013;58(4):326.

    PubMed  PubMed Central  Google Scholar 

  48. Fertig R, Tosti A. Frontal fibrosing alopecia treatment options. Intractable Rare Dis Res. 2016;5(4):314–5.

    PubMed  PubMed Central  Google Scholar 

  49. Navarini AA, Kolios AG, Prinz-Vavricka BM, Haug S, Trüeb RM. Low-dose excimer 308-nm laser for treatment of lichen planopilaris. Arch Dermatol. 2011;147(11):1325–6.

    PubMed  Google Scholar 

  50. Yamazaki M, Miura Y, Tsuboi R, Ogawa H. Linear polarized infrared irradiation using Super Lizer is an effective treatment for multiple-type alopecia areata. Int J Dermatol. 2003;42(9):738–40.

    PubMed  Google Scholar 

  51. Waiz M, Saleh AZ, Hayani R, Jubory SO. Use of the pulsed infrared diode laser (904 nm) in the treatment of alopecia areata. J Cosmet Laser Ther. 2006;8(1):27–30.

    PubMed  Google Scholar 

  52. Nanda S, Bansal S. Long pulsed Nd:YAG laser with inbuilt cool sapphire tip for long term hair reduction on type-IV and V skin: a prospective analysis of 200 patients. Indian J Dermatol Venereol Leprol. 2010;76(6):677–81.

    PubMed  Google Scholar 

  53. Cheyasak N, Manuskiatti W, Maneeprasopchoke P, Wanitphakdeedecha R. Topical corticosteroids minimise the risk of postinflammatory hyper-pigmentation after ablative fractional CO2 laser resurfacing in Asians. Acta Derm Venereol. 2015;95(2):201–5.

    PubMed  Google Scholar 

  54. Navratil L, Kymplova J. Contraindications in noninvasive laser therapy: truth and fiction. J Clin Laser Med Surg. 2002;20(6):341–3.

    PubMed  Google Scholar 

  55. Semenkov VF, et al. [Effect of low intensity laser radiation with various wavelength on bone marrow immunopoiesis progenitors]. Biofizika. 1993;38(3):504–6.

    Google Scholar 

  56. Shields TD, O’Kane S, Gilmore WS. The effect of laser irradiation upon human mononuclear leukocytes. Lasers Surg Med Suppl. 1992;4:11.

    Google Scholar 

  57. Cheetham M, Young S, Dyson M. 820-nm irradiation of the healthy growth plate. Lasers Surg Med Suppl. 1991;3:12.

    Google Scholar 

  58. Pontinen PJ. Low-level laser therapy as a medical treatment modality. Tampere: Art Urpo; 1992.

    Google Scholar 

  59. Dawe RS, Ibbotson SH. Drug-induced photosensitivity. Dermatol Clin. 2014;32(3):363–8, ix.

    CAS  PubMed  Google Scholar 

  60. Buscone S, Mardaryev AN, Raafs B, Bikker JW, Sticht C, Gretz N, et al. A new path in defining light parameters for hair growth: discovery and modulation of photoreceptors in human hair follicle. Lasers Surg Med. 2017;49(7):705–18.

    PubMed  Google Scholar 

  61. Dodd EM, Winter MA, Hordinsky MK, Sadick NS, Farah RS. Photobiomodulation therapy for androgenetic alopecia: a clinician’s guide to home-use devices cleared by the Federal Drug Administration. J Cosmet Laser Ther. 2018;20(3):159–67.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nelson Sanchez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Fayne, R., Sanchez, N., Tosti, A. (2020). Laser and Light-Based Therapies in the Treatment of Hair Loss. In: Tosti, A., Asz-Sigall, D., Pirmez, R. (eds) Hair and Scalp Treatments. Springer, Cham. https://doi.org/10.1007/978-3-030-21555-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-21555-2_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-21554-5

  • Online ISBN: 978-3-030-21555-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics