Skip to main content

Too Much Information: Can AI Cope with Modern Knowledge Graphs?

  • Conference paper
  • First Online:
Formal Concept Analysis (ICFCA 2019)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11511))

Included in the following conference series:

Abstract

Knowledge graphs play an important role in artificial intelligence (AI) applications – especially in personal assistants, question answering, and semantic search – and public knowledge bases like Wikidata are widely used in industry and research. However, modern AI includes many different techniques, including machine learning, data mining, natural language processing, which are often not able to use knowledge graphs in their full size and complexity. Feature engineering, sampling, and simplification are needed, and commonly achieved with custom preprocessing code. In this position paper, we argue that a more principled integrated approach to this task is possible using declarative methods from knowledge representation and reasoning. In particular, we suggest that modern rule-based systems are a promising platform for computing customised views on knowledge graphs, and for integrating the results of other AI methods back into the overall knowledge model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 74.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The company’s Google Knowledge Graph is the origin of the term.

  2. 2.

    Crawling and extracting such content is a difficult task, and a worthy research area in itself, yet the main work of knowledge gathering remains that of the human author.

  3. 3.

    SQL supports recursive views that resemble the expressivity of linear Datalog, but the standard forbids the use of duplicate elimination (DISTINCT) in their construction, making them quite useless for breadth-first search on graphs that may contain cycles.

  4. 4.

    https://grafana.wikimedia.org/dashboard/db/wikidata-query-service.

  5. 5.

    Data complexity characterises the worst-case asymptotic complexity of the reasoning problem for a fixed logical theory (i.e., MARPL rule set) with respect to the size of the input data (KG).

References

  1. Aberger, C.R., Tu, S., Olukotun, K., Ré, C.: EmptyHeaded: a relational engine for graph processing. In: Özcan, F., Koutrika, G., Madden, S. (eds.) Proceedings of the 2016 ACM SIGMOD International Conference on Management of Data, pp. 431–446. ACM (2016)

    Google Scholar 

  2. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison Wesley, Reading (1994)

    Google Scholar 

  3. Aref, M., et al.: Design and implementation of the LogicBlox system. In: Sellis, T.K., Davidson, S.B., Ives, Z.G. (eds.) Proceedings of the 2015 ACM SIGMOD International Conference on Management of Data, pp. 1371–1382. ACM (2015)

    Google Scholar 

  4. Baget, J.-F., Leclère, M., Mugnier, M.-L., Rocher, S., Sipieter, C.: Graal: a toolkit for query answering with existential rules. In: Bassiliades, N., Gottlob, G., Sadri, F., Paschke, A., Roman, D. (eds.) RuleML 2015. LNCS, vol. 9202, pp. 328–344. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21542-6_21

    Chapter  Google Scholar 

  5. Belleau, F., Nolin, M., Tourigny, N., Rigault, P., Morissette, J.: Bio2RDF: towards a mashup to build bioinformatics knowledge systems. J. Biomed. Inform. 41(5), 706–716 (2008)

    Article  Google Scholar 

  6. Bellomarini, L., Sallinger, E., Gottlob, G.: The Vadalog system: datalog-based reasoning for knowledge graphs. Proc. VLDB Endowment 11(9), 975–987 (2018)

    Article  Google Scholar 

  7. Benedikt, M., et al.: Benchmarking the chase. In: Sallinger, E., den Bussche, J.V., Geerts, F. (eds.) Proceedings of the 36th Symposium on Principles of Database Systems (PODS 2017), pp. 37–52. ACM (2017)

    Google Scholar 

  8. Benedikt, M., Leblay, J., Tsamoura, E.: PDQ: proof-driven query answering over web-based data. Proc. VLDB Endowment 7(13), 1553–1556 (2014)

    Article  Google Scholar 

  9. Bonifati, A., Ileana, I., Linardi, M.: Functional dependencies unleashed for scalable data exchange. In: Baumann, P., et al. (eds.) Proceedings of the 28th International Conference on Scientific and Statistical Database Management (SSDBM 2016), pp. 2:1–2:12. ACM (2016)

    Google Scholar 

  10. Borchmann, D.: Towards an error-tolerant construction of \(\cal{EL}^\bot \)-ontologies from data using formal concept analysis. In: Cellier, P., Distel, F., Ganter, B. (eds.) ICFCA 2013. LNCS (LNAI), vol. 7880, pp. 60–75. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38317-5_4

    Chapter  MATH  Google Scholar 

  11. Bordes, A., Usunier, N., García-Durán, A., Weston, J., Yakhnenko, O.: Translating embeddings for modeling multi-relational data. In: Burges, C.J.C., Bottou, L., Ghahramani, Z., Weinberger, K.Q. (eds.) Proceedings of the 27th Annual Conference on Neural Information Processing Systems (NIPS 2013), pp. 2787–2795 (2013)

    Google Scholar 

  12. Burgstaller-Muehlbacher, S., et al.: Wikidata as a semantic framework for the Gene Wiki initiative. Database 2016, baw015 (2016)

    Article  Google Scholar 

  13. Calì, A., Gottlob, G., Lukasiewicz, T.: A general datalog-based framework for tractable query answering over ontologies. In: Paredaens, J., Su, J. (eds.) Proceedings of the 28th Symposium on Principles of Database Systems (PODS 2009), pp. 77–86. ACM (2009)

    Google Scholar 

  14. Calvanese, D., Giacomo, G.D., Lembo, D., Lenzerini, M., Rosati, R.: Tractable reasoning and efficient query answering in description logics: the DL-Lite family. J. Autom. Reasoning 39(3), 385–429 (2007)

    Article  MathSciNet  Google Scholar 

  15. Carral, D., Dragoste, I., Krötzsch, M.: Restricted chase (non)termination for existential rules with disjunctions. In: Sierra, C. (ed.) Proceedings of the 26th International Joint Conference on Artificial Intelligence (IJCAI 2017), pp. 922–928 (2017). ijcai.org

    Google Scholar 

  16. Cuenca Grau, B., et al.: Acyclicity notions for existential rules and their application to query answering in ontologies. J. Artif. Intell. Res. 47, 741–808 (2013)

    Article  MathSciNet  Google Scholar 

  17. Cyganiak, R., Wood, D., Lanthaler, M. (eds.): RDF 1.1 Concepts and Abstract Syntax. W3C Recommendation, 25 February 2014. http://www.w3.org/TR/rdf11-concepts/

  18. Deutsch, A., Nash, A., Remmel, J.B.: The chase revisited. In: Lenzerini, M., Lembo, D. (eds.) Proceedings of the 27th Symposium on Principles of Database Systems (PODS 2008), pp. 149–158. ACM (2008)

    Google Scholar 

  19. Eiter, T., Ianni, G., Schindlauer, R., Tompits, H.: A uniform integration of higher-order reasoning and external evaluations in answer-set programming. In: Kaelbling, L., Saffiotti, A. (eds.) Proceeding 19th Internation Joint Conference on Artificial Intelligence (IJCAI 2005), pp. 90–96. Professional Book Center (2005)

    Google Scholar 

  20. Fagin, R., Kolaitis, P.G., Miller, R.J., Popa, L.: Data exchange: semantics and query answering. Theoret. Comput. Sci. 336(1), 89–124 (2005)

    Article  MathSciNet  Google Scholar 

  21. Ferrucci, D.A., et al.: Building watson: an overview of the DeepQA project. AI Mag. 31(3), 59–79 (2010)

    Article  Google Scholar 

  22. Ganter, B., Wille, R.: Formal Concept Analysis: Mathematical Foundations. Springer, Heidelberg (1997)

    MATH  Google Scholar 

  23. Geerts, F., Mecca, G., Papotti, P., Santoro, D.: That’s all folks! LLUNATIC goes open source. PVLDB 7(13), 1565–1568 (2014)

    Google Scholar 

  24. González, L., Hogan, A.: Modelling dynamics in semantic web knowledge graphs with formal concept analysis. In: Champin, P., Gandon, F.L., Lalmas, M., Ipeirotis, P.G. (eds.) Proceedings of the 2018 World Wide Web Conference (WWW 2018), pp. 1175–1184. ACM (2018)

    Google Scholar 

  25. Hanika, T., Marx, M., Stumme, G.: Discovering implicational knowledge in Wikidata. In: Cristea, D., et al. (eds.) ICFCA 2019, LNAI 11511, pp. 315–323. Springer, Cham (2019)

    Google Scholar 

  26. Harris, S., Seaborne, A. (eds.): SPARQL 1.1 Query Language. W3C Recommendation, 21 March 2013. http://www.w3.org/TR/sparql11-query/

  27. Hernández, D., Hogan, A., Krötzsch, M.: Reifying RDF: what works well with wikidata? In: Liebig, T., Fokoue, A. (eds.) Proceedings of the 11th International Workshop on Scalable Semantic Web Knowledge Base Systems. CEUR Workshop Proceedings, vol. 1457, pp. 32–47. CEUR-WS.org (2015)

    Google Scholar 

  28. Ho, V.T., Stepanova, D., Gad-Elrab, M.H., Kharlamov, E., Weikum, G.: Learning rules from incomplete KGs using embeddings. In: van Erp, M., Atre, M., López, V., Srinivas, K., Fortuna, C. (eds.) Posters & Demonstrations, Industry and Blue Sky Ideas Tracks of the 17th International Semantic Web Conference (ISWC 2018). CEUR Workshop Proceedings, vol. 2180. CEUR-WS.org (2018)

    Google Scholar 

  29. Hoffart, J., Suchanek, F.M., Berberich, K., Weikum, G.: YAGO2: a spatially and temporally enhanced knowledge base from Wikipedia. J. Artif. Intell. 194, 28–61 (2013)

    Article  MathSciNet  Google Scholar 

  30. Kaminski, M., Grau, B.C., Kostylev, E.V., Motik, B., Horrocks, I.: Foundations of declarative data analysis using limit datalog programs. In: Sierra, C. (ed.) Proceedings of the 26th International Joint Conference on Artificial Intelligence (IJCAI 2017), pp. 1123–1130 (2017). ijcai.org

  31. Khamis, M.A., Ngo, H.Q., Nguyen, X., Olteanu, D., Schleich, M.: In-database learning with sparse tensors. In: den Bussche, J.V., Arenas, M. (eds.) Proceedings of the 37th Symposium on Principles of Database Systems (PODS 2018), pp. 325–340. ACM (2018)

    Google Scholar 

  32. Kontchakov, R., Lutz, C., Toman, D., Wolter, F., Zakharyaschev, M.: The combined approach to ontology-based data access. In: Walsh, T. (ed.) Proceedings 22nd International Joint Conference on Artificial Intelligence (IJCAI 2011). pp. 2656–2661. AAAI Press/IJCAI (2011)

    Google Scholar 

  33. Krötzsch, M.: Ontologies for knowledge graphs? In: Artale, A., Glimm, B., Kontchakov, R. (eds.) Proceedings of the 30th International Workshop on Description Logics (DL 2017). CEUR Workshop Proceedings, vol. 1879. CEUR-WS.org (2017)

    Google Scholar 

  34. Krötzsch, M., Marx, M., Ozaki, A., Thost, V.: Attributed description logics: Reasoning on knowledge graphs. In: Lang, J. (ed.) Proceedings of the 27th International Joint Conference on Artificial Intelligence (IJCAI 2018), pp. 5309–5313 (2018). https://doi.org/10.24963/ijcai.2018/743

  35. Krötzsch, M., Thost, V.: Ontologies for knowledge graphs: breaking the rules. In: Groth, P., et al. (eds.) ISWC 2016. LNCS, vol. 9981, pp. 376–392. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46523-4_23

    Chapter  Google Scholar 

  36. Krötzsch, M., Marx, M., Rudolph, S.: The power of the terminating chase. In: Barceló, P., Calautti, M. (eds.) Proceedings of the 22nd International Conference on Database Theory (ICDT 2019). LIPIcs, vol. 127, pp. 3:1–3:17. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2019)

    Google Scholar 

  37. Lenzerini, M.: Data integration: a theoretical perspective. In: Popa, L. (ed.) Proceedings of the 21st Symposium on Principles of Database Systems (PODS 2002), pp. 233–246. ACM (2002)

    Google Scholar 

  38. Leskovec, J., Rajaraman, A., Ullman, J.D.: Mining of Massive Datasets, 2nd edn. Cambridge University Press, Cambridge (2014)

    Book  Google Scholar 

  39. Malyshev, S., Krötzsch, M., González, L., Gonsior, J., Bielefeldt, A.: Getting the most out of wikidata: semantic technology usage in Wikipedia’s knowledge graph. In: Vrandečić, D., et al. (eds.) ISWC 2018. LNCS, vol. 11137, pp. 376–394. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00668-6_23

    Chapter  Google Scholar 

  40. Marnette, B.: Generalized schema-mappings: from termination to tractability. In: Paredaens, J., Su, J. (eds.) Proceedings of the 28th Symposium on Principles of Database Systems (PODS 2009), pp. 13–22. ACM (2009)

    Google Scholar 

  41. Marx, M., Krötzsch, M., Thost, V.: Logic on MARS: Ontologies for generalised property graphs. In: Sierra, C. (ed.) Proceedings of the 26th International Joint Conference on Artificial Intelligence (IJCAI 2017), pp. 1188–1194 (2017)

    Google Scholar 

  42. Nenov, Y., Piro, R., Motik, B., Horrocks, I., Wu, Z., Banerjee, J.: RDFox: a highly-scalable RDF store. In: Arenas, M., et al. (eds.) ISWC 2015. LNCS, vol. 9367, pp. 3–20. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-25010-6_1

    Chapter  Google Scholar 

  43. Nickel, M., Murphy, K., Tresp, V., Gabrilovich, E.: A review of relational machine learning for knowledge graphs. Proc. IEEE 104(1), 11–33 (2016)

    Article  Google Scholar 

  44. openCypher community: Cypher Query Language Reference, Version 9 (2019). http://www.opencypher.org/resources

  45. Prud’hommeaux, E., Seaborne, A. (eds.): SPARQL Query Language for RDF. W3C Recommendation, 15 January 2008. http://www.w3.org/TR/rdf-sparql-query/

  46. Rodriguez, M.A., Neubauer, P.: Constructions from dots and lines. Bull. Am. Soc. Inf. Sci. Technol. 36(6), 35–41 (2010)

    Article  Google Scholar 

  47. Rudolph, S.: Exploring relational structures via \({\cal{F\!LE}}\). In: Wolff, K.E., Pfeiffer, H.D., Delugach, H.S. (eds.) ICCS-ConceptStruct 2004. LNCS (LNAI), vol. 3127, pp. 196–212. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-27769-9_13

    Chapter  MATH  Google Scholar 

  48. Simonite, T.: Inside the Alexa-friendly world of Wikidata. WIRED Magazine 27.03 (2019). https://www.wired.com/story/inside-the-alexa-friendly-world-of-wikidata/. Accessed 16 Mar 2019

  49. Tanon, T.P., Vrandecic, D., Schaffert, S., Steiner, T., Pintscher, L.: From freebase to wikidata: the great migration. In: Bourdeau, J., Hendler, J., Nkambou, R., Horrocks, I., Zhao, B.Y. (eds.) Proceedings of the 25th International Conference on World Wide Web (WWW 2016), pp. 1419–1428. ACM (2016)

    Google Scholar 

  50. Urbani, J., Jacobs, C., Krötzsch, M.: Column-oriented Datalog materialization for large knowledge graphs. In: Schuurmans, D., Wellman, M.P. (eds.) Proceedings of the 30th AAAI Conference on Artificial Intelligence (AAAI 2016), pp. 258–264. AAAI Press (2016)

    Google Scholar 

  51. Urbani, J., Krötzsch, M., Jacobs, C., Dragoste, I., Carral, D.: Efficient model construction for horn logic with VLog. In: Galmiche, D., Schulz, S., Sebastiani, R. (eds.) IJCAR 2018. LNCS (LNAI), vol. 10900, pp. 680–688. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-94205-6_44

    Chapter  Google Scholar 

  52. Vrandečić, D., Krötzsch, M.: Wikidata: a free collaborative knowledgebase. Commun. ACM 57(10), 78–85 (2014)

    Article  Google Scholar 

  53. Wagner, C., Graells-Garrido, E., Garcia, D., Menczer, F.: Women through the glass ceiling: gender asymmetries in Wikipedia. EPJ Data Sci. 5(1), 5 (2016)

    Article  Google Scholar 

  54. Wang, Z., Zhang, J., Feng, J., Chen, Z.: Knowledge graph embedding by translating on hyperplanes. In: Brodley, C.E., Stone, P. (eds.) Proceedings of the 28th AAAI Conference on Artificial Intelligence (AAAI 2014), pp. 1112–1119. AAAI Press (2014)

    Google Scholar 

Download references

Acknowledgements

This work is partly supported by Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) in project number 389792660 (TRR 248, Center for Perspicuous Systems), CRC 912 (Highly Adaptive Energy-Efficient Computing, HAEC), and Emmy Noether grant KR 4381/1-1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus Krötzsch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Krötzsch, M. (2019). Too Much Information: Can AI Cope with Modern Knowledge Graphs?. In: Cristea, D., Le Ber, F., Sertkaya, B. (eds) Formal Concept Analysis. ICFCA 2019. Lecture Notes in Computer Science(), vol 11511. Springer, Cham. https://doi.org/10.1007/978-3-030-21462-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-21462-3_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-21461-6

  • Online ISBN: 978-3-030-21462-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics