Skip to main content

Simultaneous, Polynomial-Time Layout of Context Bigraph and Lattice Digraph

  • Conference paper
  • First Online:
Formal Concept Analysis (ICFCA 2019)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11511))

Included in the following conference series:

Abstract

Formal Concept Analysis (FCA) takes as input the bipartite context graph and produces a directed acyclic graph representing the lattice of formal concepts. Excepting possibly the supremum and infimum, the set of formal concepts corresponds to the set of proper maximal bicliques in the context bigraph. This paper proposes polynomial-time graph layouts which emphasise maximal bicliques in the context bigraph and facilitate “reading” directed paths in the lattice digraph. These layouts are applied to sub-contexts of the InfoVis 2004 data set which are indivisible by the Carve divide-and-conquer FCA algorithm. The paper also investigates the relationship between vertex proximity in the bigraph layout and co-membership of maximal bicliques, and demonstrates the significant reduction of edge crossings in the digraph layout.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 74.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    A sentence containing square brackets is true both when read without the bracketed terms, and when read with each bracketed term substituted for the preceding term.

  2. 2.

    Table 1 demonstrates that this lexicographic permutation of the resistance-assigned ordering of the co-atoms has only a minor effect on edge crossings.

References

  1. Berry, A., Gutierrez, A., Huchard, M., Napoli, A., Sigayret, A.: Hermes: a simple and efficient algorithm for building the AOC-poset of a binary relation. Ann. Math. Artif. Intell. 72(1), 45–71 (2014). https://doi.org/10.1007/s10472-014-9418-6

    Article  MathSciNet  MATH  Google Scholar 

  2. Card, S., Mackinlay, J., Shneiderman, B.: Readings in Information Visualization: Using Vision to Think. Morgan Kaufmann, San Francisco (1999)

    Google Scholar 

  3. Cohen, J.D.: Drawing graphs to convey proximity: an incremental arrangement method. ACM Trans. Comput.-Hum. Interact. 4(3), 197–229 (1997). https://doi.org/10.1145/264645.264657

    Article  Google Scholar 

  4. Cox, T., Cox, M.: Multidimensional Scaling. Chapman Hall, London (1994)

    MATH  Google Scholar 

  5. Cuffe, P., Keane, A.: Visualizing the electrical structure of power systems. IEEE Syst. J. 11(99), 1810–1821 (2017)

    Article  Google Scholar 

  6. Di Battista, G., Eades, P., Tamassia, R., Tollis, I.: Graph Drawing: Algorithms for the Visualization of Graphs. Prentice Hall, New Jersey (1999)

    MATH  Google Scholar 

  7. Didimo, W., Patrignani, M. (eds.): GD 2012. LNCS, vol. 7704. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36763-2

    Book  MATH  Google Scholar 

  8. Doerfel, S., Jäschke, R., Stumme, G.: Publication analysis of the formal concept analysis community. In: Domenach, F., Ignatov, D.I., Poelmans, J. (eds.) ICFCA 2012. LNCS (LNAI), vol. 7278, pp. 77–95. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29892-9_12

    Chapter  MATH  Google Scholar 

  9. Doyle, P., Snell, J.: Random Walks and Electric Networks. The Mathematical Association of America (1984)

    Google Scholar 

  10. Eades, P., Wormald, N.C.: Edge crossings in drawings of bipartite graphs. Algorithmica 11, 379–403 (1994)

    Article  MathSciNet  Google Scholar 

  11. Estrada, E., Hatano, N.: Resistance distance, information centrality, node vulnerability and vibrations in complex networks. In: Estrada, E., Fox, M., Higham, D.J., Oppo, G.L. (eds.) Network Science: Complexity in Nature and Technology, pp. 13–29. Springer, London (2010). https://doi.org/10.1007/978-1-84996-396-1_2

    Chapter  Google Scholar 

  12. Freese, R.: Automated lattice drawing. In: Eklund, P. (ed.) ICFCA 2004. LNCS (LNAI), vol. 2961, pp. 112–127. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24651-0_12

    Chapter  Google Scholar 

  13. Ganter, B., Wille, R.: Formal Concept Analysis. Springer, Heidelberg (1999). https://doi.org/10.1007/978-3-642-59830-2

    Book  MATH  Google Scholar 

  14. Ganter, B.: Conflict avoidance in additive order diagrams. J. Univers. Comput. Sci. 10(8), 955–966 (2004)

    MathSciNet  MATH  Google Scholar 

  15. Gervacio, S.V.: Resistance distance in complete n-partite graphs. Discrete Appl. Math. 203 (2016).https://doi.org/10.1016/j.dam.2015.09.017

    Article  MathSciNet  Google Scholar 

  16. Gibson, H., Faith, J., Vickers, P.: A survey of two-dimensional graph layout techniques for information visualisation. Inf. Vis. 12(3–4), 324–357 (2012)

    Google Scholar 

  17. Gross, J.L., Yellen, J., Zhang, P. (eds.): Discrete Mathematics and its Applications. Handbook of Graph Theory, 2nd edn. Chapman and Hall/CRC Press, New York (2013)

    Google Scholar 

  18. Gutman, I., Xiao, W.: Generalized inverse of the Laplacian matrix and some applications. Bulletin: Classe des sciences mathématiques et naturelles 129(29), 15–23 (2004). https://doi.org/10.2298/BMAT0429015G

    Article  MathSciNet  MATH  Google Scholar 

  19. Hannan, T., Pogel, A.: Spring-based lattice drawing highlighting conceptual similarity. In: Missaoui, R., Schmidt, J. (eds.) ICFCA 2006. LNCS (LNAI), vol. 3874, pp. 264–279. Springer, Heidelberg (2006). https://doi.org/10.1007/11671404_18

    Chapter  Google Scholar 

  20. Ho, N.D., van Dooren, P.: On the pseudo-inverse of the Laplacian of a bipartite graph. Appl. Math. Lett. 18, 917–922 (2005)

    Article  MathSciNet  Google Scholar 

  21. Klein, D., Randić, M.: Resistance distance. J. Math. Chem. 12, 81–85 (1993)

    Article  MathSciNet  Google Scholar 

  22. Klimenta, M., Brandes, U.: Graph drawing by classical multidimensional scaling: new perspectives. In: Didimo, W., Patrignani, M. (eds.) GD 2012. LNCS, vol. 7704, pp. 55–66. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36763-2_6

    Chapter  MATH  Google Scholar 

  23. Kunegis, J.: Exploiting the structure of bipartite graphs for algebraic and spectral graph theory applications. Internet Math. 11(3), 201–321 (2015). https://doi.org/10.1080/15427951.2014.958250

    Article  MathSciNet  Google Scholar 

  24. Kunegis, J., Schmidt, S., Albayrak, Ş., Bauckhage, C., Mehlitz, M.: Modeling collaborative similarity with the signed resistance distance kernel. In: Ghallab, M. (ed.) European Conference on Artificial Intelligence. IOS Press (2008)

    Google Scholar 

  25. Kuznetsov, S.O., Poelmans, J.: Knowledge representation and processing with Formal Concept Analysis. Wiley Interdisc. Rev. Data Min. Know. Disc. 3(3), 200–215 (2013). https://doi.org/10.1002/widm.1088

    Article  Google Scholar 

  26. von Luxburg, U., Radl, A., Hein, M.: Getting lost in space: large sample analysis of the resistance distance. In: Advances in Neural Information Processing Systems 23: 24th Annual Conference on Neural Information Processing Systems 2010. pp. 2622–2630. Curran, New York (2010)

    Google Scholar 

  27. Pattison, T., Ceglar, A.: Interaction challenges for the dynamic construction of partially-ordered sets. In: Bertet, K., Rudolph, S. (eds.) Proceedings of 11th International Conference on Concept Lattices and their Applications, pp. 23–34. CEUR Workshop Proceedings, Košice, Slovakia (2014). http://ceur-ws.org/Vol-1252/

  28. Pattison, T., Ceglar, A., Weber, D.: Efficient Formal Concept Analysis through recursive context partitioning. In: Ignatov, D.I., Nourine, L. (eds.) Proceedings of 14th International Conference on Concept Lattices & Their Applications, vol. 2123. CEUR Workshop Proceedings. Czech Republic (2018). http://ceur-ws.org/Vol-2123/

  29. Pattison, T., Weber, D., Ceglar, A.: Enhancing layout and interaction in Formal Concept Analysis. In: Proceedings of 2014 IEEE Pacific Visualization Symposium (PacificVis), pp. 248–252 (2014). https://doi.org/10.1109/PacificVis.2014.21

  30. Plaisant, C., Fekete, J.D., Grinstein, G.: Promoting insight-based evaluation of visualizations: from contest to benchmark repository. IEEE Trans. Vis. Comput. Graph. 14(1), 120–134 (2008). https://doi.org/10.1109/TVCG.2007.70412

    Article  Google Scholar 

  31. Pohlmann, J.: Configurable Graph Drawing Algorithms for the TikZ Graphics Description Language. Master’s thesis, Univerisität zu Lübeck (2011). http://www.tcs.uni-luebeck.de/downloads/papers/2011/

  32. Rival, I.: Reading, drawing, and order. In: Rosenberg, I.G., Sabidussi, G. (eds.) Algebras and Orders, vol. 389, pp. 359–404. Springer, Dordrecht (1993). https://doi.org/10.1007/978-94-017-0697-1_9

    Chapter  MATH  Google Scholar 

  33. Stephenson, K., Zelen, M.: Rethinking centrality: methods and applications. Soc. Netw. 11, 1–37 (1989)

    Article  Google Scholar 

  34. Sugiyama, K., Tagawa, S., Toda, M.: Methods for visual understanding of hierarchical system structures. IEEE Trans. Syst. Man Cybern. 11(2), 109–125 (1981)

    Article  MathSciNet  Google Scholar 

  35. Tantau, T.: Graph drawing in TikZ. In: Didimo and Patrignani [7], pp. 517–528. https://doi.org/10.1007/978-3-642-36763_246

  36. Wilkinson, J.: The Algebraic Eigenvalue Problem. Oxford University Press, Oxford (1965)

    MATH  Google Scholar 

  37. Zschalig, C.: An FDP-algorithm for drawing lattices. In: Diatta, J., Eklund, P., Liquire, M. (eds.) Proceedings of CLA 2007, vol. 331, pp. 58–71. CEUR-WS.org (2007). http://ceur-ws.org/Vol-331/Zschalig.pdf

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tim Pattison .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Crown Copyright

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pattison, T., Ceglar, A. (2019). Simultaneous, Polynomial-Time Layout of Context Bigraph and Lattice Digraph. In: Cristea, D., Le Ber, F., Sertkaya, B. (eds) Formal Concept Analysis. ICFCA 2019. Lecture Notes in Computer Science(), vol 11511. Springer, Cham. https://doi.org/10.1007/978-3-030-21462-3_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-21462-3_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-21461-6

  • Online ISBN: 978-3-030-21462-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics