Skip to main content

On-demand Relational Concept Analysis

  • Conference paper
  • First Online:
Formal Concept Analysis (ICFCA 2019)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11511))

Included in the following conference series:

Abstract

Formal Concept Analysis (FCA) and its associated conceptual structures are used to support exploratory search through conceptual navigation. Relational Concept Analysis (RCA) is an extension of Formal Concept Analysis to process relational datasets. RCA and its multiple interconnected structures represent good candidates to support exploratory search in relational datasets, as they are enabling navigation within a structure as well as between the connected structures. However, building the entire structures does not present an efficient solution to explore a small localised area of the dataset, to retrieve the closest alternatives to a given query. In these cases, generating only a concept and its neighbour concepts at each navigation step appears as a less costly alternative. In this paper, we propose an algorithm to compute a concept, and its neighbourhood, in connected concept lattices. The concepts are generated directly from the relational context family, and possess both formal and relational attributes. The algorithm takes into account two RCA scaling operators and it is implemented in the RCAExplore tool.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 74.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://dataqual.engees.unistra.fr/.

  2. 2.

    http://www.cirad.fr/en/news/all-news-items/articles/2017/science/identifying-plants-used-as-natural-pesticides-in-africa-knomana.

  3. 3.

    http://dataqual.engees.unistra.fr/logiciels/rcaExplore.

References

  1. Alam, M., Le, T.N.N., Napoli, A.: LatViz: a new practical tool for performing interactive exploration over concept lattices. In: Proceedings of CLA 2016, pp. 9–20 (2016)

    Google Scholar 

  2. Arévalo, G., Berry, A., Huchard, M., Perrot, G., Sigayret, A.: Performances of galois sub-hierarchy-building algorithms. In: Kuznetsov, S.O., Schmidt, S. (eds.) ICFCA 2007. LNCS (LNAI), vol. 4390, pp. 166–180. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-70901-5_11

    Chapter  Google Scholar 

  3. Bazin, A., Carbonnel, J., Kahn, G.: On-demand generation of AOC-posets: reducing the complexity of conceptual navigation. In: Kryszkiewicz, M., Appice, A., Ślęzak, D., Rybinski, H., Skowron, A., Raś, Z.W. (eds.) ISMIS 2017. LNCS (LNAI), vol. 10352, pp. 611–621. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-60438-1_60

    Chapter  Google Scholar 

  4. Ben Nasr, S., et al.: Automated extraction of product comparison matrices from informal product descriptions. J. Syst. Softw. 124, 82–103 (2017)

    Article  Google Scholar 

  5. Braud, A., Dolques, X., Huchard, M., Ber, F.L.: Generalization effect of quantifiers in a classification based on relational concept analysis. Knowl.-Based Syst. 160, 119–135 (2018)

    Article  Google Scholar 

  6. Carbonnel, J., Huchard, M., Nebut, C.: Towards the extraction of variability information to assist variability modelling of complex product lines. In: Proceedings of VAMOS 2018, pp. 113–120 (2018)

    Google Scholar 

  7. Carpineto, C., Romano, G.: Exploiting the potential of concept lattices for information retrieval with CREDO. J. Univers. Comp. Sci. 10(8), 985–1013 (2004)

    MATH  Google Scholar 

  8. Codocedo, V., Lykourentzou, I., Napoli, A.: A semantic approach to concept lattice-based information retrieval. Ann. Math. Artif. Intell. 72(1–2), 169–195 (2014)

    Article  MathSciNet  Google Scholar 

  9. Codocedo, V., Napoli, A.: Formal concept analysis and information retrieval – a survey. In: Baixeries, J., Sacarea, C., Ojeda-Aciego, M. (eds.) ICFCA 2015. LNCS (LNAI), vol. 9113, pp. 61–77. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-19545-2_4

    Chapter  MATH  Google Scholar 

  10. Ducrou, J., Eklund, P.W.: SearchSleuth: the conceptual neighbourhood of an web query. In: Proceedigs of CLA 2007, pp. 249–259 (2007)

    Google Scholar 

  11. Dunaiski, M., Greene, G.J., Fischer, B.: Exploratory search of academic publication and citation data using interactive tag cloud visualizations. Scientometrics 110(3), 1539–1571 (2017)

    Article  Google Scholar 

  12. Ferré, S., Hermann, A.: Reconciling faceted search and query languages for the semantic web. Int. J. Metadata Semant. Ontol. 7(1), 37–54 (2012)

    Article  Google Scholar 

  13. Ferré, S., Ridoux, O., Sigonneau, B.: Arbitrary relations in formal concept analysis and logical information systems. In: Dau, F., Mugnier, M.-L., Stumme, G. (eds.) ICCS-ConceptStruct 2005. LNCS (LNAI), vol. 3596, pp. 166–180. Springer, Heidelberg (2005). https://doi.org/10.1007/11524564_11

    Chapter  Google Scholar 

  14. Ferré, S.: Reconciling Expressivity and Usability in Information Access - From Filesystems to the Semantic Web. Habilitation thesis, Matisse, Univ. Rennes 1 (2014). habilitation à Diriger des Recherches (HDR), defended on November 6th

    Google Scholar 

  15. Ganter, B., Wille, R.: Formal Concept Analysis. Springer, Heidelberg (1999). https://doi.org/10.1007/978-3-642-59830-2

    Book  MATH  Google Scholar 

  16. Godin, R., Gecsei, J., Pichet, C.: Design of a browsing interface for information retrieval. In: Proceedings of SIGIR 1989, pp. 32–39 (1989)

    Article  Google Scholar 

  17. Godin, R., Saunders, E., Gecsei, J.: Lattice model of browsable data spaces. Inf. Sci. 40(2), 89–116 (1986)

    Article  Google Scholar 

  18. Rouane, M.H., Huchard, M., Napoli, A., Valtchev, P.: A proposal for combining formal concept analysis and description logics for mining relational data. In: Kuznetsov, S.O., Schmidt, S. (eds.) ICFCA 2007. LNCS (LNAI), vol. 4390, pp. 51–65. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-70901-5_4

    Chapter  MATH  Google Scholar 

  19. Huchard, M., Hacene, M.R., Roume, C., Valtchev, P.: Relational concept discovery in structured datasets. Ann. Math. Artif. Intell. 49(1–4), 39–76 (2007)

    Article  MathSciNet  Google Scholar 

  20. Hébert, C., Bretto, A., Crémilleux, B.: A data mining formalization to improve hypergraph minimal transversal computation. Fundam. Informaticae 80, 415–433 (2007)

    MathSciNet  MATH  Google Scholar 

  21. Jäschke, R., Hotho, A., Schmitz, C., Ganter, B., Stumme, G.: TRIAS - an algorithm for mining iceberg tri-lattices. In: Proceedings of ICDM 2006, pp. 907–911 (2006)

    Google Scholar 

  22. Keip, P., et al.: Effects of input data formalisation in Relational Concept Analysis for a data model with a ternary relation. In: Proceedings of ICFCA 2019 (2019, to appear)

    Google Scholar 

  23. Marchionini, G.: Exploratory search: from finding to understanding. Commun. ACM 49(4), 41–46 (2006)

    Article  Google Scholar 

  24. Melo, C.A., Grand, B.L., Aufaure, M.: Browsing large concept lattices through tree extraction and reduction methods. Int. J. Intell. Inf. Technol. 9(4), 16–34 (2013)

    Article  Google Scholar 

  25. Mimouni, N., Nazarenko, A., Salotti, S.: A conceptual approach for relational IR: application to legal collections. In: Baixeries, J., Sacarea, C., Ojeda-Aciego, M. (eds.) ICFCA 2015. LNCS (LNAI), vol. 9113, pp. 303–318. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-19545-2_19

    Chapter  Google Scholar 

  26. Palagi, É., Gandon, F.L., Giboin, A., Troncy, R.: A survey of definitions and models of exploratory search. In: ACM Workshop ESIDA@IUI, pp. 3–8 (2017)

    Google Scholar 

  27. Stumme, G., Taouil, R., Bastide, Y., Pasquier, N., Lakhal, L.: Computing iceberg concept lattices with Titanic. Data Knowl. Eng. 42(2), 189–222 (2002)

    Article  Google Scholar 

Download references

Acknowledgement

The authors warmly thank Xavier Dolques who helped us during the implementation in RCAexplore. This work was supported by the INRA-CIRAD Glofoods metaprogramme (Knomana project) and by the French National Research Agency under the Investments for the Future Program, referred as ANR-16-CONV-0004.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jessie Carbonnel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bazin, A., Carbonnel, J., Huchard, M., Kahn, G., Keip, P., Ouzerdine, A. (2019). On-demand Relational Concept Analysis. In: Cristea, D., Le Ber, F., Sertkaya, B. (eds) Formal Concept Analysis. ICFCA 2019. Lecture Notes in Computer Science(), vol 11511. Springer, Cham. https://doi.org/10.1007/978-3-030-21462-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-21462-3_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-21461-6

  • Online ISBN: 978-3-030-21462-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics